@inproceedings{lei-etal-2025-learning,
title = "Learning from Diverse Reasoning Paths with Routing and Collaboration",
author = "Lei, Zhenyu and
Tan, Zhen and
Wang, Song and
Zhu, Yaochen and
Chen, Zihan and
Dong, Yushun and
Li, Jundong",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.141/",
pages = "2832--2845",
ISBN = "979-8-89176-332-6",
abstract = "Advances in large language models (LLMs) significantly enhance reasoning capabilities but their deployment is restricted in resource-constrained scenarios. Knowledge distillation addresses this by transferring knowledge from powerful teacher models to compact and transparent students.However, effectively capturing the teacher{'}s comprehensive reasoning is challenging due to conventional token-level supervision{'}s limited scope. Using multiple reasoning paths per query alleviates this problem, but treating each path identically is suboptimal as paths vary widely in quality and suitability across tasks and models.We propose Quality-filtered Routing with Cooperative Distillation(QR-Distill), combining path quality filtering, conditional routing, and cooperative peer teaching. First, quality filtering retains only correct reasoning paths scored by an LLM-based evaluation. Second, conditional routing dynamically assigns paths tailored to each student{'}s current learning state. Finally, cooperative peer teaching enables students to mutually distill diverse insights, addressing knowledge gaps and biases toward specific reasoning styles. Experiments demonstrate QR-Distill{'}s superiority over traditional single- and multi-path distillation methods. Ablation studies further highlight the importance of each component{---}quality filtering, conditional routing, and peer teaching{---}in effective knowledge transfer. Our code is available at https://github.com/LzyFischer/Distill."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lei-etal-2025-learning">
<titleInfo>
<title>Learning from Diverse Reasoning Paths with Routing and Collaboration</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhenyu</namePart>
<namePart type="family">Lei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhen</namePart>
<namePart type="family">Tan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Song</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yaochen</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zihan</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yushun</namePart>
<namePart type="family">Dong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jundong</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Advances in large language models (LLMs) significantly enhance reasoning capabilities but their deployment is restricted in resource-constrained scenarios. Knowledge distillation addresses this by transferring knowledge from powerful teacher models to compact and transparent students.However, effectively capturing the teacher’s comprehensive reasoning is challenging due to conventional token-level supervision’s limited scope. Using multiple reasoning paths per query alleviates this problem, but treating each path identically is suboptimal as paths vary widely in quality and suitability across tasks and models.We propose Quality-filtered Routing with Cooperative Distillation(QR-Distill), combining path quality filtering, conditional routing, and cooperative peer teaching. First, quality filtering retains only correct reasoning paths scored by an LLM-based evaluation. Second, conditional routing dynamically assigns paths tailored to each student’s current learning state. Finally, cooperative peer teaching enables students to mutually distill diverse insights, addressing knowledge gaps and biases toward specific reasoning styles. Experiments demonstrate QR-Distill’s superiority over traditional single- and multi-path distillation methods. Ablation studies further highlight the importance of each component—quality filtering, conditional routing, and peer teaching—in effective knowledge transfer. Our code is available at https://github.com/LzyFischer/Distill.</abstract>
<identifier type="citekey">lei-etal-2025-learning</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.141/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>2832</start>
<end>2845</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning from Diverse Reasoning Paths with Routing and Collaboration
%A Lei, Zhenyu
%A Tan, Zhen
%A Wang, Song
%A Zhu, Yaochen
%A Chen, Zihan
%A Dong, Yushun
%A Li, Jundong
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F lei-etal-2025-learning
%X Advances in large language models (LLMs) significantly enhance reasoning capabilities but their deployment is restricted in resource-constrained scenarios. Knowledge distillation addresses this by transferring knowledge from powerful teacher models to compact and transparent students.However, effectively capturing the teacher’s comprehensive reasoning is challenging due to conventional token-level supervision’s limited scope. Using multiple reasoning paths per query alleviates this problem, but treating each path identically is suboptimal as paths vary widely in quality and suitability across tasks and models.We propose Quality-filtered Routing with Cooperative Distillation(QR-Distill), combining path quality filtering, conditional routing, and cooperative peer teaching. First, quality filtering retains only correct reasoning paths scored by an LLM-based evaluation. Second, conditional routing dynamically assigns paths tailored to each student’s current learning state. Finally, cooperative peer teaching enables students to mutually distill diverse insights, addressing knowledge gaps and biases toward specific reasoning styles. Experiments demonstrate QR-Distill’s superiority over traditional single- and multi-path distillation methods. Ablation studies further highlight the importance of each component—quality filtering, conditional routing, and peer teaching—in effective knowledge transfer. Our code is available at https://github.com/LzyFischer/Distill.
%U https://aclanthology.org/2025.emnlp-main.141/
%P 2832-2845
Markdown (Informal)
[Learning from Diverse Reasoning Paths with Routing and Collaboration](https://aclanthology.org/2025.emnlp-main.141/) (Lei et al., EMNLP 2025)
ACL