@inproceedings{liu-etal-2025-scaling-temporal,
title = "Scaling Up Temporal Domain Generalization via Temporal Experts Averaging",
author = "Liu, Aoming and
Miller, Kevin and
Saligrama, Venkatesh and
Saenko, Kate and
Gong, Boqing and
Lim, Ser-Nam and
Plummer, Bryan A.",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.1432/",
doi = "10.18653/v1/2025.emnlp-main.1432",
pages = "28208--28231",
ISBN = "979-8-89176-332-6",
abstract = "Temporal Domain Generalization (TDG) aims to generalize across temporal distribution shifts, e.g., lexical change over time. Prior work often addresses this by predicting future model weights. However, full model prediction is prohibitively expensive for even reasonably sized models. Thus, recent methods only predict the classifier layer, limiting generalization by failing to adjust other model components. To address this, we propose Temporal Expert Averaging (TEA), a novel and scalable TDG framework that updates the entire model using weight averaging to maximize generalization potential while minimizing computational costs. Our theoretical analysis guides us to two steps that enhance generalization to future domains. First, we create expert models with functional diversity yet parameter similarity by fine-tuning a domain-agnostic base model on individual temporal domains while constraining weight changes. Second, we optimize the bias-variance tradeoff through adaptive averaging coefficients derived from modeling temporal weight trajectories in a principal component subspace. Expert{'}s contributions are based on their projected proximity to future domains. Extensive experiments across 7 TDG benchmarks, 5 models, and 2 TDG settings shows TEA outperforms prior TDG methods by up to 69{\%} while being up to 60x more efficient."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2025-scaling-temporal">
<titleInfo>
<title>Scaling Up Temporal Domain Generalization via Temporal Experts Averaging</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aoming</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Miller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Venkatesh</namePart>
<namePart type="family">Saligrama</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kate</namePart>
<namePart type="family">Saenko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Boqing</namePart>
<namePart type="family">Gong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ser-Nam</namePart>
<namePart type="family">Lim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bryan</namePart>
<namePart type="given">A</namePart>
<namePart type="family">Plummer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Temporal Domain Generalization (TDG) aims to generalize across temporal distribution shifts, e.g., lexical change over time. Prior work often addresses this by predicting future model weights. However, full model prediction is prohibitively expensive for even reasonably sized models. Thus, recent methods only predict the classifier layer, limiting generalization by failing to adjust other model components. To address this, we propose Temporal Expert Averaging (TEA), a novel and scalable TDG framework that updates the entire model using weight averaging to maximize generalization potential while minimizing computational costs. Our theoretical analysis guides us to two steps that enhance generalization to future domains. First, we create expert models with functional diversity yet parameter similarity by fine-tuning a domain-agnostic base model on individual temporal domains while constraining weight changes. Second, we optimize the bias-variance tradeoff through adaptive averaging coefficients derived from modeling temporal weight trajectories in a principal component subspace. Expert’s contributions are based on their projected proximity to future domains. Extensive experiments across 7 TDG benchmarks, 5 models, and 2 TDG settings shows TEA outperforms prior TDG methods by up to 69% while being up to 60x more efficient.</abstract>
<identifier type="citekey">liu-etal-2025-scaling-temporal</identifier>
<identifier type="doi">10.18653/v1/2025.emnlp-main.1432</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.1432/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>28208</start>
<end>28231</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Scaling Up Temporal Domain Generalization via Temporal Experts Averaging
%A Liu, Aoming
%A Miller, Kevin
%A Saligrama, Venkatesh
%A Saenko, Kate
%A Gong, Boqing
%A Lim, Ser-Nam
%A Plummer, Bryan A.
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F liu-etal-2025-scaling-temporal
%X Temporal Domain Generalization (TDG) aims to generalize across temporal distribution shifts, e.g., lexical change over time. Prior work often addresses this by predicting future model weights. However, full model prediction is prohibitively expensive for even reasonably sized models. Thus, recent methods only predict the classifier layer, limiting generalization by failing to adjust other model components. To address this, we propose Temporal Expert Averaging (TEA), a novel and scalable TDG framework that updates the entire model using weight averaging to maximize generalization potential while minimizing computational costs. Our theoretical analysis guides us to two steps that enhance generalization to future domains. First, we create expert models with functional diversity yet parameter similarity by fine-tuning a domain-agnostic base model on individual temporal domains while constraining weight changes. Second, we optimize the bias-variance tradeoff through adaptive averaging coefficients derived from modeling temporal weight trajectories in a principal component subspace. Expert’s contributions are based on their projected proximity to future domains. Extensive experiments across 7 TDG benchmarks, 5 models, and 2 TDG settings shows TEA outperforms prior TDG methods by up to 69% while being up to 60x more efficient.
%R 10.18653/v1/2025.emnlp-main.1432
%U https://aclanthology.org/2025.emnlp-main.1432/
%U https://doi.org/10.18653/v1/2025.emnlp-main.1432
%P 28208-28231
Markdown (Informal)
[Scaling Up Temporal Domain Generalization via Temporal Experts Averaging](https://aclanthology.org/2025.emnlp-main.1432/) (Liu et al., EMNLP 2025)
ACL