@inproceedings{ramponi-etal-2025-multilingual,
title = "Multilingual vs Crosslingual Retrieval of Fact-Checked Claims: A Tale of Two Approaches",
author = "Ramponi, Alan and
Rovera, Marco and
Moro, Robert and
Tonelli, Sara",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.1480/",
pages = "29045--29064",
ISBN = "979-8-89176-332-6",
abstract = "Retrieval of previously fact-checked claims is a well-established task, whose automation can assist professional fact-checkers in the initial steps of information verification. Previous works have mostly tackled the task monolingually, i.e., having both the input and the retrieved claims in the same language. However, especially for languages with a limited availability of fact-checks and in case of global narratives, such as pandemics, wars, or international politics, it is crucial to be able to retrieve claims across languages. In this work, we examine strategies to improve the multilingual and crosslingual performance, namely selection of negative examples (in the supervised) and re-ranking (in the unsupervised setting). We evaluate all approaches on a dataset containing posts and claims in 47 languages (283 language combinations). We observe that the best results are obtained by using LLM-based re-ranking, followed by fine-tuning with negative examples sampled using a sentence similarity-based strategy. Most importantly, we show that crosslinguality is a setup with its own unique characteristics compared to the multilingual setup."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ramponi-etal-2025-multilingual">
<titleInfo>
<title>Multilingual vs Crosslingual Retrieval of Fact-Checked Claims: A Tale of Two Approaches</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ramponi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Rovera</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robert</namePart>
<namePart type="family">Moro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Tonelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Retrieval of previously fact-checked claims is a well-established task, whose automation can assist professional fact-checkers in the initial steps of information verification. Previous works have mostly tackled the task monolingually, i.e., having both the input and the retrieved claims in the same language. However, especially for languages with a limited availability of fact-checks and in case of global narratives, such as pandemics, wars, or international politics, it is crucial to be able to retrieve claims across languages. In this work, we examine strategies to improve the multilingual and crosslingual performance, namely selection of negative examples (in the supervised) and re-ranking (in the unsupervised setting). We evaluate all approaches on a dataset containing posts and claims in 47 languages (283 language combinations). We observe that the best results are obtained by using LLM-based re-ranking, followed by fine-tuning with negative examples sampled using a sentence similarity-based strategy. Most importantly, we show that crosslinguality is a setup with its own unique characteristics compared to the multilingual setup.</abstract>
<identifier type="citekey">ramponi-etal-2025-multilingual</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.1480/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>29045</start>
<end>29064</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multilingual vs Crosslingual Retrieval of Fact-Checked Claims: A Tale of Two Approaches
%A Ramponi, Alan
%A Rovera, Marco
%A Moro, Robert
%A Tonelli, Sara
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F ramponi-etal-2025-multilingual
%X Retrieval of previously fact-checked claims is a well-established task, whose automation can assist professional fact-checkers in the initial steps of information verification. Previous works have mostly tackled the task monolingually, i.e., having both the input and the retrieved claims in the same language. However, especially for languages with a limited availability of fact-checks and in case of global narratives, such as pandemics, wars, or international politics, it is crucial to be able to retrieve claims across languages. In this work, we examine strategies to improve the multilingual and crosslingual performance, namely selection of negative examples (in the supervised) and re-ranking (in the unsupervised setting). We evaluate all approaches on a dataset containing posts and claims in 47 languages (283 language combinations). We observe that the best results are obtained by using LLM-based re-ranking, followed by fine-tuning with negative examples sampled using a sentence similarity-based strategy. Most importantly, we show that crosslinguality is a setup with its own unique characteristics compared to the multilingual setup.
%U https://aclanthology.org/2025.emnlp-main.1480/
%P 29045-29064
Markdown (Informal)
[Multilingual vs Crosslingual Retrieval of Fact-Checked Claims: A Tale of Two Approaches](https://aclanthology.org/2025.emnlp-main.1480/) (Ramponi et al., EMNLP 2025)
ACL