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Abstract

Language models can be used to provide inter-
active, personalized student feedback in edu-
cational settings. However, real-world deploy-
ment faces three key challenges: privacy con-
cerns, limited computational resources, and the
need for pedagogically valid responses. These
constraints require small, open-source mod-
els that can run locally and reliably ground
their outputs in correct information. We in-
troduce SCRIBE, a framework for multi-hop,
tool-augmented reasoning designed to gener-
ate valid responses to student questions about
feedback reports. SCRIBE combines domain-
specific tools with a self-reflective inference
pipeline that supports iterative reasoning, tool
use, and error recovery. We distil these capabili-
ties into 3B and 8B models via two-stage LoRA
fine-tuning on synthetic GPT-4o-generated data.
Evaluation with a human-aligned GPT-Judge
and a user study with 108 students shows that
8B-SCRIBE models achieve comparable or su-
perior quality to much larger models in key
dimensions such as relevance and actionabil-
ity, while being perceived on par with GPT-4o
and Llama-3.3 70B by students. These find-
ings demonstrate the viability of SCRIBE for
low-resource, privacy-sensitive educational ap-
plications.

1 Introduction

Education at scale, in contexts like massive open
online courses (MOOCs) or large in-person lecture
halls, enables thousands of learners to engage with
the same material simultaneously (De Freitas et al.,
2015). However, this scale comes at a cost: lim-
ited access to personalized guidance, feedback, and
support.

Recent progress in Large Language Models
(LLMs) offers a promising avenue toward personal-
ized support at scale. LLMs have been applied to a
wide range of tasks including question generation
(Scaria et al., 2024; Hang et al., 2024; Fawzi et al.,

How can I improve my 
performance to pass the course?

Useful Relevant Actionable Correct 

Tools

sort_student_features_with_importance

Improve your performance by watching 
course videos more regularly and 
following a steady study routine — these 
habits strongly influence learning 
outcomes.

I need to understand which specific 
behaviors were most affecting your 
performance in the course.

This helped identify the most influential 
factors—mainly video load frequency 
and the number of study sessions.

Tools

get_feature_definitions

I used this to clarify what those features 
represent, confirming they reflect how 
frequently you engage with videos and 
how consistently you study.

Tools

To provide meaningful advice, I needed to 
understand which general learning behaviors 
correlate with success. Without specific 
performance data, I looked for broad 
behavioral factors linked to better outcomes.

impact_of_student_behaviors

This tool mapped the question to the 
assessment dimension (quiz performance 
patterns) and highlighted consistency and 
regularity as the top success factors —
relating to how students manage their time 
and maintain steady effort across the course.

To improve your performance, focus on 
consistency and regularity — study at similar 
times each week, stick to a schedule, and 
aim to complete quizzes with fewer 
attempts by preparing ahead.

Reasoning Step Final answer

Figure 1: Structured multi-hop reasoning for pedagog-
ically valid feedback via tool calls. The question is
addressed using distinct reasoning strategies: one model
uses multi-step analysis of learner behavior for a person-
alized advice (left), the other links it to effective learning
behavior dimensions for general guidance (right).

2024; Ma et al., 2024; Liang et al., 2023), grading
(Golchin et al., 2025), and automatic feedback gen-
eration (Phung et al., 2023; Pardos and Bhandari,
2024; Swamy et al., 2024; Nair et al., 2024).

Despite promising results in educational tasks,
LLMs face challenges limiting their reliability in
real-world use. Hallucinations and factually incor-
rect explanations can mislead learners and erode
trust, especially problematic in education, where re-
sponses must be accurate and pedagogically sound
(Nazaretsky et al., 2024; Manakul et al., 2023;
Kumar et al., 2023; Levonian et al., 2025). A
promising direction to mitigate this is retrieval-
augmented generation (RAG) (Fang et al., 2025;
Dakshit, 2024), or tool augmentation (Wu et al.,
2024; Ross et al., 2025; Schick et al., 2023; Patil
et al., 2024; Yao et al., 2023; Inaba et al., 2023)
where models use external resources or tools to sup-
port reasoning and verification. While these meth-
ods improve factuality and interpretability, they are
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more effective in large models (Shen et al., 2024)
(such as GPT-4o (OpenAI et al., 2024)), which are
costly to run. As a result, there is growing interest
in training smaller, open-source models that can
run locally and securely (Zhang et al., 2024).

Recent work has explored fine-tuning small mod-
els on synthetic tool-calling data (Patil et al., 2024;
Schick et al., 2023; Liu et al., 2025; Qin et al.,
2023). However, these efforts typically address
narrow tasks with short, domain-agnostic prompts
and a known, fixed sequence of tool calls (e.g.,
querying the fuel level of an aircraft). This setup
fails to reflect real-world domains like education,
where open-ended questions require flexible, multi-
step reasoning. As shown in Fig. 1, a question
like “How can I improve my performance?” can
be answered through different tool-use paths. The
provided responses are both pedagogically valid,
yet created by distinct reasoning trajectories.

In this work, we propose SCRIBE, a framework
for self-reflective, multi-hop tool reasoning in ed-
ucational feedback scenarios, where models must
flexibly use external tools and iteratively revise
their outputs to generate pedagogically meaning-
ful responses. We collect real student questions
about structured feedback reports and augment
them with high-quality synthetic data including rea-
soning traces, tool calls, and final responses. We
fine-tune small open-source models via a two-stage
LoRA (Hu et al., 2022) pipeline and implement a
self-reflective inference loop that enables iterative
reasoning and tool use outperforming or matching
larger models. Our evaluation combines automatic
assessment using a human-aligned GPT-as-a-judge,
alongside a user study with 108 students interact-
ing with feedback across three different MOOCs.
Notably, we find students equally rate our SCRIBE-
trained 8B model, a much larger Llama-3.3 70B
and GPT-4o. Our main contributions are:

1. We propose SCRIBE, a framework for multi-
hop tool reasoning, where models must flexi-
bly call tools and self-reflect to generate high-
quality responses.

2. We distill tool calling and self-reflection rea-
soning behavior of a larger model (GPT-4o)
into relatively smaller open-source models
through a two-stage LoRA fine-tuning process
to enhance reasoning and multi-hop tool calling.

3. We create a new synthetic dataset of 7000 stu-
dent performance feedback questions derived
from 28 real-world students with answers, tool

calling and reasoning chains.
4. We design a rubric for interactive feedback

evaluation for a human-aligned GPT-as-a-
judge, enabling scalable and consistent eval-
uation of model responses.

5. We conduct a real-world interactive user
study with 108 university students assessing
perception of interactions with a small SCRIBE
8B model, Llama-3.3 70B, and GPT-4o across
distinct reports from three different MOOCs.

We provide our full implementation, open-source
dataset, and trained models, enabling reproducibil-
ity and further research.1

2 Related Work

Tool-Augmented Language Models. Tool calling
helps LLMs compensate for missing world knowl-
edge and reduce hallucinations (Komeili et al.,
2022; Wang et al., 2024a). Recent work has ex-
plored in-context learning and few-shot prompting
to encourage reasoning about tool use (Yao et al.,
2023; Kim et al., 2024; Shen et al., 2023; Chen
et al., 2023b). Prompting techniques like chain-of-
thought (CoT) (Wei et al., 2022), and ReAct (Yao
et al., 2023) structure intermediate reasoning and
improve factuality (as demonstrated by Inaba et al.
(2023)), but remain fragile in smaller models and
generalize poorly with weak instruction-following.

To enhance tool calling, especially in smaller
open-source LLMs, other works have performed
finetuning. Toolformer (Schick et al., 2023) uses a
self-supervised approach with LLM-generated data
to train models to decide when to call APIs. Go-
rilla (Patil et al., 2024) fine-tunes a LLaMA-based
model on GPT-4 instruction–API pairs to gener-
ate accurate calls from documentation or internal
knowledge. Recent works like ToolLLM (Qin et al.,
2023) and ToolACE (Liu et al., 2025) use synthetic
data to support multi-tool use for complex tasks.
However, tool use is often treated as an end in itself
rather than a step toward producing high-quality,
correct answers. Despite gains in tool call accu-
racy, models are rarely trained to reason before
and after tool calls, and are seldom evaluated in
domain-specific, real-world settings such as edu-
cational feedback where clarity, correctness, and
user trust are essential. As a result, their responses
may often lack coherence, context-awareness, and
alignment with user needs.

1All resources are available at https://github.com/epfl-
ml4ed/SCRIBE.
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Figure 2: SCRIBE Data Generation Pipeline. Synthetic data is generated by collecting questions from students to
guide expert annotators in identifying essential tools (Stage 1). GPT-4o generates reasoning chains with these tools,
and GPT-4.1 filters the outputs based on actionability, relevance, tool use, and correctness (Stage 2).

LLMs in Education. LLMs are increasingly
used in education, enabling natural interactions
through conversational agents (Lieb and Goel,
2024; Wolfbauer et al., 2023; Neumann et al., 2024;
Pal Chowdhury et al., 2024). Their broad domain
knowledge reduces reliance on domain-specific
models, supporting applications like personalized
learning (Park et al., 2024), knowledge tracing (Ne-
shaei et al., 2024), and automated feedback (Stam-
per et al., 2024). Prior work has explored various
integration strategies, often focusing on prompt-
ing, e.g., zero-shot prompts for automatic science
scoring (Wu et al., 2023) or CoT for classifying
learning outcomes via Bloom’s taxonomy (Alma-
trafi and Johri, 2025). Others fine-tune LLMs on
educational data, e.g., to recognize epistemic and
topic-related dialogue acts in collaborative learning
(Acosta et al., 2024) or to score math responses
(Morris et al., 2024). Prior work also explored
RAG, using textbooks for guidance (Henkel et al.,
2024) or student reflections for feedback (Neshaei
et al., 2025). However, most models act as stan-
dalone generators, with few integrating tools for
grounded interactions.

3 Methods
Our goal is to enable interactive feedback with
small LLMs by using multi-hop tool calling to gen-
erate pedagogically meaningful personalized re-
sponses. Our framework, SCRIBE, consists of two
main phases: (1) Dataset generation (see Fig. 2)
and (2) Finetuning and inference (see Fig. 3).

3.1 Dataset Generation Pipeline

Our dataset generation pipeline consists of (1) a
user study to identify real student questions and
categorize them by pedagogical need, (2) domain-
specific tools to support grounded, context-aware
answers, (3) synthetic data generation using GPT-
4o simulating multi-hop reasoning and tool calls.

3.1.1 Data Context
Our experiments use data from four globally-
offered MOOCs at a European university: Digital
Signal Processing (DSP), Éléments de Géomatique
(GEO), Villes Africaines (VA), and Launching New
Ventures (LNV). Each includes weekly video lec-
tures, quizzes, and graded assignments. To analyze
student performance, we use feedback reports from
iLLuMinaTE (Swamy et al., 2024), a zero-shot
LLM-XAI framework that generates social science
theory-driven, actionable explanations based on be-
havioral features predicting pass/fail outcomes. We
focus on feedback based on social science theories
and post-hoc explainers shown to be highly useful
and actionable: Necessity and Robustness selection
(NR) (Lipton, 1990; Lombrozo, 2010), Abnormal
Conditions (AC) (Hilton and Slugoski, 1986), and
Contrastive Explanation (Con) (Hilton, 1990), with
Contrastive Explanation Method (CEM) (Dhurand-
har et al., 2018) as the explainer.

3.1.2 Human Data Collection
Student Study. To design an interactive feedback
system, we first investigated the types of ques-
tions students ask when presented with explanation-
based feedback. We used five feedback reports
from Swamy et al. (2024). Two reports described a
student enrolled in DSP (based on the NR and Con
theories), two reports belonged to a student from
GEO (again one report per theory), and one report
was from a student in VA using the AC theory.

We conducted a study with 28 postgraduate
STEM students, each randomly assigned one of five
reports and given a brief description of the associ-
ated MOOC. Participants (1) wrote three follow-up
questions about the feedback, (2) rated five GPT-
4o-generated questions on a 1–5 scale (5 = very
useful), and (3) selected the most useful feedback
category, from Mandouit and Hattie (2023): What
have I done well?, Where should I improve?, How
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Figure 3: SCRIBE finetuning, inference, and evaluation pipelines. Finetuning involves two successive LoRA
stages for multi-hop reasoning with tool use. Inference operates as a closed-loop system with self-reflection
prompting for error correction. Evaluation combines GPT-as-a-judge assessments and a user study.

should I improve?, and What should I do next time?.
All students gave informed consent to participation
and the study was approved by the university’s hu-
man research ethics commission.
Expert Annotations. We manually annotated 75
student-written questions categorizing feedback
students seek, using 3 dimensions from Mandouit
and Hattie (2023): Where to improve? (Where?),
How to improve? (How?), and What to do next
time? (Next Time). Our rubric is provided in sec-
tion G. Two expert annotators independently la-
beled the questions, achieving substantial agree-
ment (Cohen’s κ = 0.67). During annotation, we
identified an additional category, "Course Evalu-
ation", for questions about course structure and
assessment. Based on annotations, we derived six
tools needed to meaningfully answer these queries.

3.1.3 Tools Development

To be able to answer the students’ questions, we
developed six different domain-specific tools.
Textbook and Syllabus Retrieval Tools. For
course content questions, we used RAG over
MOOC materials. Textbook sections and exercises
were embedded using the bge-small model (Xiao
et al., 2023), enabling query-based retrieval. Syl-
labi were embedded with the bilingual-embedding-
base model (Lajavaness, 2024) for structure-related
queries.
Topic Dependency Mapping. To clarify topic de-
pendencies, we constructed skill maps that capture
prerequisite relationships. For DSP, we adopted the
map from Swamy et al. (2022). For GEO, the in-
structor provided a custom map. For VA and LNV,
we extracted skills from video transcripts using
GPT-4o and then re-prompted it to infer dependen-
cies. The VA map was validated by the instructor.
Finally, we implemented a function that, given a
MOOC name and week, returns the relevant pre-
requisite weeks. The full set of maps is available

in section E.
Grade Calculator. To address performance ques-
tions, we designed a function that calculates student
total grade from their ID, compares to the passing
threshold, and returns the points needed to pass.
Sort Student Features. The tool summarizes
student progress using behavioral features from
(Swamy et al., 2024), and importance ranked by
CEM. For a student and week, it returns 5 most and
least important features with raw feature values for
context.
Features Description Search. Some student ques-
tions focused on unfamiliar terms from feedback re-
ports, derived from features used in student model-
ing (Swamy et al., 2024). To support these queries
and the Sort Student Features tool, we developed a
function that retrieves feature descriptions. Given
a feature name, we use efficient fuzzy string match-
ing for an efficient nearest-neighbor matching and
return the corresponding definition.
Student Behavior Impact on Performance. The
tool answers hypothetical questions about how be-
havioral changes affect outcomes (e.g., “Would
more consistent engagement improve my grade?”).
Given a MOOC name and query, it maps the in-
put to one of five behavioral dimensions (Mejia-
Domenzain et al., 2022)—Effort, Consistency,
Proactivity, Assessment, and Regularity—linked
to features from (Swamy et al., 2024) using CEM-
derived importance scores. Queries and feature
descriptions are embedded with all-MiniLM-L6-v2
(Reimers and Gurevych, 2019) and matched via
cosine similarity. The tool returns the closest di-
mension and two alternatives, each with a brief
definition, helping students assess their behavior’s
impact and explore other strategies.

3.1.4 Synthetic Data Generation
To generate synthetic questions that closely resem-
ble those written by students, we selected 16 stu-
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dents across three MOOCs (DSP, GEO, and VA)
and chose two reports per student, each gener-
ated using one of two theories introduced in sec-
tion 3.1.1 (NR and Con). For each of these re-
ports, we used real student-written questions and
insights collected from students in human study
section 3.1.2 to construct the prompts for GPT-4o.
We generated 20 synthetic questions per feedback
category, per report, yielding a rich dataset of ap-
proximately 7000, diverse student-like questions.

Using the generated questions, we prompted
GPT-4o with a feedback report and a student ques-
tion to generate structured reasoning followed by
an initial tool call. This tool call is executed, and
its output is returned to GPT-4o to produce the next
reasoning step and either a subsequent tool call or
a final answer. This process is repeated until a final
answer is produced. Each example thus forms a rea-
soning trajectory of alternating reasoning and tool
interactions, which we automatically filter using
GPT-as-a-judge to exclude samples with erroneous
reasoning chains or tool misuse. We used examples
that the judge marked YES in all categories (details
described in section 3.2.3).

To assess the similarity and diversity of the
generated questions relative to real student ques-
tions, we first compared the distributions of ques-
tion lengths and removed outliers that were shorter
or longer than student responses. Next, we com-
puted the distributions of Shannon entropy (to esti-
mate token-level information content) and perplex-
ity (to approximate linguistic fluency), and com-
pared these between real and synthetic questions
using Jensen-Shannon Divergence (JSD). We per-
formed these comparisons across question types
and courses. To further assess semantic diversity,
we computed pairwise cosine similarity within each
dataset (real and synthetic) across all questions,
for each course and feedback category. This en-
abled us to quantify question diversity within each
dataset. Next, to evaluate the similarity of the gen-
erated questions to real student questions, we com-
pared the embeddings of 76 generated questions
(matched to the number of human-authored ones),
using the bge-large-en model (Xiao et al., 2023),
against embeddings of (a) real student questions
from the same reports and (b) randomly selected
SQuAD questions (Rajpurkar et al., 2018). We
applied Hotelling’s T² test on 2D representations
from t-SNE to compare distributions.

3.2 Inference and Finetuning Pipeline
The objective of this pipeline is to distill GPT-4o
tool calling and reasoning capabilities into smaller
LLMs through a two-stage LoRA finetuning. Our
finetuning and inference pipeline consists of (1)
a multi-stage fine-tuning process where relatively
small open-source models (e.g., Llama 8B) are
trained via LoRA adapters to perform structured
reasoning and tool use, and (2) a closed-loop in-
ference pipeline that supports iterative tool use,
self-reflection, and error correction.

3.2.1 Multi-Stage LoRA Fine-Tuning
To enhance the reasoning and multi-hop tool use
abilities of relatively small open-source models, we
distill structured tool-calling behavior from a much
larger teacher model (GPT-4o). Inspired by multi-
stage instruction tuning and curriculum-style learn-
ing (Chen et al., 2023a; Guan et al., 2025; Pang
et al., 2024), our training process is divided into
two sequential stages that progressively increase
task complexity. Each training instance consists of
a student query q, a feedback report f , a sequence
of reasoning steps {ri}ni=0, tool calls {ti}ni=0, tool
outputs {oi}ni=0, and a final answer a.
Stage 1 (Initial Reasoning and Tool Selection).
The model is trained to generate an initial reasoning
step r0 and the first tool call t0 conditioned on
(q, f). This teaches the model how to interpret
student questions and initiate tool-call reasoning.

r0, t0 ∼ Pstage1(r, t | q, f) (1)

Stage 2 (Multi-Hop Reasoning and Answer Gen-
eration). Conditioned on q, f , the initial tool call
t0 and output o0, the model learns to iteratively
reason and revise its outputs across multiple steps.
It produces intermediate reasoning steps ri, addi-
tional tool calls ti, and the final answer a.

ri, ti ∼ Preason (r, t | q, f, {(rj , tj , oj)}j<i) ,

for i = 1, . . . , n (2)

a ∼ Panswer (a | q, f, {(rj , tj , oj)}j≤n)

This decomposition ensures the model first
learns how to initiate tool-augmented reasoning be-
fore handling more complex reasoning trajectories
with iterative refinement. We use LoRA adapters
for efficient parameter updates in both stages.

3.2.2 Closed-Loop Tool Calling
Inspired by AnyTool (Du et al., 2024) which re-
queries the tool using a self-reflection loop, we
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implement self-reflective, multi-hop reasoning as
our prompting framework for inference, where
the model incrementally constructs responses to
student questions by interacting with external tools
and revising reasoning based on their outputs. We
provide the prompts in section H. This task is inher-
ently underdetermined, as different sequences of
tool calls may lead to equally valid answers. Our
pipeline supports this flexibility while enabling er-
ror recovery and iterative refinement.

Formally, for a given student query q and feed-
back report f , the model produces an initial reason-
ing step r0 and a corresponding tool call t0. The
output o0 from executing t0 is passed back to the
model, which generates the next reasoning step
r1 = Reason(r0, o0, q, f), followed optionally by
another tool call t1. This process continues for up
to N steps, producing a trajectory:

(f, q, r0, t0, o0, r1, t1, o1, . . . , rn, a) (3)

where a is the final answer and n < N . At each
step i, the model decides whether to call another
tool or produce a final answer, based on the evolv-
ing context of the query, feedback report, previous
reasoning steps, and tool outputs. This iterative
process continues until the model outputs a final
answer or reaches a predefined step limit N .

The model may select the same tool repeatedly
or switch tools across steps, depending on the
evolving context. To improve robustness, the sys-
tem monitors for tool-call errors or instruction vio-
lations (e.g., invalid tools, skipped reasoning). In
such cases, the model is re-prompted to self-reflect
and revise its reasoning or tool choice. If no valid
answer is generated after N iterations, the interac-
tion is terminated and marked as unresolved.

3.2.3 Evaluation
We evaluated the models’ responses using expert
annotation and a LLM-as-a-judge protocol as well
as through a user study with real students.
GPT-as-a-Judge. Given the open-ended task, stan-
dard metrics like tool selection accuracy are insuf-
ficient, as multiple tool sequences can yield valid
answers. We therefore developed a rubric to eval-
uate both the tool used and the model’s student-
facing final response. Based on existing literature,
we defined four criteria and added a fifth, tool rele-
vance, specific to our setting. The criteria include:
(1) Relevance to the question (Zheng et al., 2023),
(2) Actionability in terms of providing concrete
advice (Swamy et al., 2024), (3) Tool Relevance

(whether the selected tools were appropriate), (4)
Spelling and Grammar (Swamy et al., 2024), and
(5) Correctness based on factual alignment with
tool outputs and feedback (Zheng et al., 2023). The
detailed rubric is provided in section C.

In a first step, two researchers independently la-
beled 60 instances comprising 20 responses, tool
calls, and tool outputs from three different mod-
els (Llama-3.1 8B base, SCRIBE, and Llama-3.3
70B) sampled across three MOOCs (DSP, GEO,
and VA). The annotations achieved an overall Co-
hen’s κ of 0.85, indicating strong inter-rater agree-
ment. To assess the quality of model outputs at
scale, we then adopted GPT-4.1 (OpenAI, 2025) as
an third evaluator, following prior work on LLM-
based judgment for response quality (Liu et al.,
2023; Zheng et al., 2023; Qin et al., 2023; Du et al.,
2024). Each judgment is generated by prompting
GPT-4.1 with a feedback report, student question,
a description of available tools, the model’s full
reasoning trace (with tool calls and outputs), and
definitions for each evaluation criterion. We used
CoT prompting to encourage step-by-step reason-
ing before GPT-4.1 returns a binary rating (Yes/No)
for each question criterion (Qin et al., 2024). To en-
sure reliabilty, we ran GPT-4.1 five times, achieving
Cohen’s κ = 0.818± 0.014 between the GPT-4.1
judge and the humans. We provide prompts and per
criterion inter-annotator agreement in section C.
User Study. To evaluate how students perceive
model-generated responses, we conducted a user
study comparing a small multi-stage LoRA-tuned
model (ToolACE-8B SCRIBE) to two larger LLMs
(Llama-3.3 70B and GPT-4o). To reflect deploy-
ment constraints where hosting large models may
be infeasible for schools, we used API for Llama-
3.3 70B and GPT-4o. We recruited 108 students via
Prolific2 (see section F for more details). All par-
ticipants provided informed consent, and the study
was approved by our university’s human research
ethics commission. Each participant saw three feed-
back reports (passing and failing students) gener-
ated by iLLuMinaTE (Swamy et al., 2024), each
from a different MOOC: DSP, GEO, and LNV
(hold-out MOOC). The study was designed to en-
sure that each participant interacted with reports
from all three MOOCs and models. We constructed
108 unique combinations, each consisting of one
student report per course (drawn from six possi-
ble reports per course: 3 passing and 3 failing),

2https://www.prolific.com
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with each report paired with a different model. Re-
port–model assignments were permuted to ensure
that each model was used exactly once within each
combination and to prevent ordering effects.

Participants posed 3–5 unrestricted questions
per report to have natural conversations. After
each conversation, participants rate the model’s re-
sponses on a 5-point scale (1 is lowest and 5 is high-
est) across five criteria from prior work (Swamy
et al., 2024; Frej et al., 2024): (1) Relevance: Re-
sponse directly addresses the question. (2) Useful-
ness: Response provides meaningful insights that
answer the question and that can enhance learn-
ing or deepen understanding. (3) Actionability:
Response provides clear steps or instructions. (4)
Coverage: Response comprehensively addresses
all components of questions asked, including sub-
questions. (5) Conciseness: Response is clear, and
complete with minimal redundancy.

At the end of the study, participants reviewed the
three full conversations side by side and selected
their overall preferred interaction and provided the
reasons for their preference in an open text field.
Generalisation to Unseen Tools. To assess
whether SCRIBE can extend its tool-use behaviour
beyond those seen in training, we introduced a
new tool, web_search, designed to retrieve on-
line resources. We evaluated generalisation in two
ways. First, we used 27 GPT-4o–generated ques-
tions specifically constructed to test whether the
model could invoke the unseen web_search tool
after training on a different set of tools. Second,
we used the same 192-question test set employed
for model evaluations, spanning the three MOOCs
(DSP, GEO, VA), and augmented the existing tool
set with web_search as an extra unseen tool. We
then compared our ToolACE-8B-SCRIBE with the
base ToolACE-8B in a zero-shot setting.

4 Results
We conducted a series of experiments to evalu-
ate the quality of the synthetic data used to train
SCRIBE, the response quality of the model through
a quantitative analysis, and student perception of
its outputs through a user study.
Experimental Protocol. We finetuned and evalu-
ated three small models: Llama-3.2 3B and Llama-
3.1 8B, which natively support tool calling, and
ToolACE-8B (Liu et al., 2025), an 8B model that
achieves state-of-the-art performance on the Berke-
ley Function Calling Leaderboard (BFCL) (Patil
et al., 2025), and was able to follow our self-

reflection and reasoning instructions. The finetun-
ing required six A100 GPU hours per stage. We
compared the small models to GPT-4o (gold stan-
dard) and Llama-3.3 70B. All small models were
finetuned on 7,000 generated questions (see sec-
tion 3.1.4) with corresponding tool-use and reason-
ing chains (see section 3.2.1). Our self-reflection
inference pipeline was applied uniformly across
models for fair comparison. Evaluation was con-
ducted on 192 test questions, including 75 written
by real students and additional synthetic questions
(unseen in fine-tuning) used to balance coverage
across three MOOCs (DSP, GEO, VA) and four cat-
egories (How, Where, Next Time, Course Evalua-
tion). We also evaluated on 192 additional held-out
questions from the LNV MOOC which was not in-
cluded in the fine-tuning. For the Llama-3.1 8B and
ToolACE-8B models, we achieved best results with
LoRAs of rank of 256 (see ablations section B). We
used LoRAs of rank of 128 for Llama-3.2 3B.

4.1 Synthetic student questions closely match
real student questions

To evaluate the quality and variety of GPT-4o-
generated questions, we compared them to real
student-written questions. Table 1 shows the JSD
for the Shannon entropy and for perplexity be-
tween student and generated questions as well as
cosine similarity within each dataset. We observe
that all JSD values are < 0.387, indicating that
the generated questions are reasonably close to
human questions in both entropy and perplexity.
Among the MOOCs, the lowest divergence in en-
tropy was observed in GEO (entropy JSD = 0.114
± 0.076), while the highest was in VA (entropy
JSD = 0.335 ± 0.144), suggesting more distinc-
tive phrasing in student-written questions for that
course. For perplexity, VA had the lowest diver-
gence (0.140 ± 0.093), indicating strong alignment
in fluency. Across question categories, “Next Time”
questions diverged the most (entropy JSD = 0.387
± 0.089 and perplexity JSD = 0.211 ± 0.064), likely
due to the high variability and learner-specific na-
ture of next-step feedback questions (Mandouit and
Hattie, 2023). The pairwise cosine similarity was
slightly higher among generated questions in GEO
and DSP and categories How? and Where?, indicat-
ing slightly less variation. However, overlapping
standard deviations suggest that both generated and
human questions exhibit comparable diversity.

Complementing these distributional metrics, Ta-
ble 2 reports Hotelling’s T 2 test results on t-SNE
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Table 1: Jensen-Shannon Divergence (JSD) and pair-
wise cosine similarity between human and generated
questions across MOOCs and question categories.

Group Type JSD
(Entropy)

JSD
(Perplexity)

Pairwise
Cosine Similarity

Generated Human

MOOC
GEO 0.114 ±0.076 0.202 ±0.079 0.265 ±0.034 0.238 ±0.024
DSP 0.327 ±0.079 0.212 ±0.095 0.279 ±0.044 0.265 ±0.029
VA 0.335 ±0.144 0.140 ±0.093 0.280 ±0.064 0.307 ±0.047

Question
Category

How? 0.180 ±0.093 0.184 ±0.095 0.241 ±0.035 0.234 ±0.034
Where? 0.242 ±0.121 0.152 ±0.075 0.272 ±0.046 0.249 ±0.021

Next Time 0.387 ±0.089 0.211 ±0.064 0.271 ±0.052 0.319 ±0.026

Table 2: Synthetic vs. human question similarity. Left:
descriptive statistics of t-SNE (2D) embeddings per
questions source (Generated, Human, Random). Right:
Hotelling’s T 2 tests with F and p values for pairwise
comparisons.

Descriptive (t-SNE 2D) Hotelling’s T 2 Tests

Metric Generated Human Random Pair T2 F p

Centroid (x, y) [−2.19, 9.85] [−0.32, 8.88] [3.22, −15.03] Gen vs. Human 2.99 1.49 0.229
STD (x, y) [7.64, 8.85] [7.78, 6.96] [8.62, 8.64] Gen vs. Random 484.62 241.28 1.11× 10−16

SEM (x, y) [0.71, 0.82] [0.89, 0.80] [0.79, 0.79] Human vs. Random 440.34 219.04 1.11× 10−16

embeddings. Generated and human questions are
not significantly different (p = 0.229), whereas
both differ significantly from random questions
(p ≈ 10−16). Their centroids also cluster closely
in t-SNE space, further confirming that GPT-4o-
generated questions align with real student ques-
tions while remaining distinct from unrelated out-
of-domain data.

GPT-4o-generated questions closely match real stu-
dent ones in fluency, content, and diversity, validating
them as high-quality training data.

4.2 SCRIBE achieves the performance of
significantly larger models

The top plot in Fig. 4 shows evaluation results on
the test dataset from GEO, DSP, and VA. Across
these courses, fine-tuned SCRIBE models signifi-
cantly outperform their base versions on relevance,
actionability, and tool relevance, with no signif-
icant difference in correctness (see Table 4 in
appendix A for full test results). ToolACE-8B-
SCRIBE and Llama-3.1 8B-SCRIBE both surpass
the much larger Llama-3.3 70B in actionability, and
match it on relevance and correctness. The 70B
model remains significantly stronger on tool rele-
vance, while improvements in correctness remain
modest overall.

The bottom plot of Fig. 4 shows results on LNV
(an unseen MOOC), where a similar pattern holds.
SCRIBE models again significantly outperform
their base counterparts on all criteria except cor-
rectness. Relative to the 70B model, 8B SCRIBE

DSP, GEO, VA

LNV

Figure 4: Percentage of YES given by GPT-Judge for
each criterion on a holdout dataset of GEO, DSP and
VA MOOCs (top) and a holdout set of LNV MOOC
(bottom). Hashed bars indicate SCRIBE models

models show no significant difference in relevance
or actionability, but the 70B remains stronger in
tool relevance and correctness. These findings con-
firm that SCRIBE finetuning yields statistically ro-
bust gains over base models and narrows the gap
to much larger systems. Detailed statistical test
results are provided in Table 5 in appendix A. All
models achieved a perfect score on the spelling
and grammar criterion, we therefore omitted this
category in the Figures.

SCRIBE-trained models significantly outperform
their base versions on relevance, actionability, and
tool relevance, while matching much larger models in
relevance and actionability.

4.3 Students rate SCRIBE responses highly

Fig. 5 shows the average ratings per criterion for
each model included in the user study. We observe
that the ratings across all five criteria are highly
similar across models. Despite the SCRIBE model
being significantly smaller in size (8B vs. 70B),
students perceive its response quality as on par with
much larger models. To test whether any observed
differences in ratings were statistically significant,
we conducted a one-way ANOVA for each criterion
across the three models. In all cases, we failed to
reject the null hypothesis (p > 0.05), indicating no
significant difference in perceived response quality
(see appendix F.3 for ANOVA results).

29281



When students were asked to select their pre-
ferred conversation and explain why, 47.2% chose
GPT-4o, while the remaining responses were
evenly split between Llama-3.3 70B and ToolACE-
SCRIBE. Among those who preferred GPT-4o,
about 25% cited its detailed explanations as the
main reason. Others highlighted its actionable ad-
vice and clarity. In contrast, 32.1% of students
who preferred ToolACE-SCRIBE praised its con-
ciseness. One participant stated: “The feedback
provided clear and direct answers to all my ques-
tions in a precise and concise manner, making it
easy to understand what I’m doing well.”.

Figure 5: Average ratings from 108 students (1–5 scale)
for LLama-3.3 70B, GPT-4o and ToolAce-8B SCRIBE.

Students rate Relevance, Usefulness, Actionability,
Coverage, and Conciseness of the SCRIBE model on
par with larger API-based models, validating its use in
low-resource, privacy-sensitive educational settings.

4.4 SCRIBE generalises to unseen tools

On 27 GPT-4o–generated questions specifically
designed to trigger the unseen web_search tool,
ToolACE-8B SCRIBE invoked it 9 times, showing
that the model can generalise tool-use behaviour in
a zero-shot setting. On the original 192-question
dataset (DSP, GEO, VA) with web_search avail-
able, ToolACE-8B-SCRIBE used the tool 25 times
compared to 7 times for the ToolACE-8B, indicat-
ing generalization of tool-use behaviour.

As shown in Table 3, both models employed the
new tool despite no prior exposure, with SCRIBE
achieving higher Tool Relevance. However, intro-
ducing web_search led to a slight drop in perfor-
mance across metrics for both models relative to
their runs without it. This is likely due to the larger
action space and added ambiguity, since most ques-
tions in the 192-question set did not require this
new tool. We also examined how the original tools
were used and found that each was invoked at least
once, underscoring that all were necessary to ad-
dress student questions. Full results are reported in
Appendix I.

Group Type Relevance Actionability Tool Relevance Correctness

Web Search
ToolACE-8B SCRIBE-27-Trigger-Qs 85.19 ± 6.95 92.59 ± 5.07 77.78 ± 7.60 77.78 ± 7.70
ToolACE-8B-Original-192-Qs 81.25 ± 2.80 73.44 ± 3.20 64.58 ± 3.39 76.04 ± 2.90
ToolACE-8B SCRIBE-Original-192-Qs 83.33 ± 2.71 72.40 ± 3.27 73.96 ± 3.24 76.56 ± 2.95

No Web Search
ToolACE-8B-Original-192-Qs 83.33 ± 2.80 70.83 ± 3.31 64.06 ± 3.52 81.77 ± 2.81
ToolACE-8B SCRIBE-Original-192-Qs 91.67 ± 1.88 84.90 ± 2.57 67.71 ± 3.45 82.81 ± 2.76

Table 3: GPT-as-Judge evaluation on the 27 new ques-
tions that are designed to trigger the (web_search) tool
(27-Trigger-Qs), and on the original with DSP, GEO,
and VA (Original-192-Qs) after introducing the new tool

SCRIBE demonstrates zero-shot generalisation by
successfully invoking web_search, a tool not seen
during training.

5 Conclusion
We introduce SCRIBE, a framework for interac-
tive student behavior explanations that combines
synthetic data generation, two-stage LoRA fine-
tuning, and automatic evaluation with a human-
aligned GPT-as-a-Judge. SCRIBE enables small
language models to perform self-reflective, multi-
hop tool-calling in domains with multiple valid
tool-use paths. In education, SCRIBE-trained mod-
els consistently outperform base models in rele-
vance, actionability, and tool relevance, while 8B-
SCRIBE models match or exceed much larger ones
in relevance and actionability, key dimensions of
student-centered feedback. A user study with 108
students confirmed they are perceived as equally
helpful, relevant, and actionable as larger models.
These results show that synthetic data and staged
fine-tuning can distill complex tool use into smaller,
privacy-preserving educational assistants. Future
work will extend SCRIBE to additional models and
contexts, and focus on improving correctness and
tool relevance. One possible context is medical
and psychiatric diagnosis where different diagnos-
tic paths are valid and lead to the same diagno-
sis (Alarcón, 2009; Maung, 2016; The National
Academies of Sciences et al., 2015).

6 Limitations

While SCRIBE advances small LLMs on inter-
active student feedback, multihop reasoning, and
tool-calling, there is room for further improvement.
Specifically, gains in correctness remain limited
due to the already strong performance of the base
models, and tool relevance is another challenging
criterion since it depends heavily on the model’s
initial reasoning. Moreover, while our user study
found no perceived difference in the quality of re-
sponses between SCRIBE models and much larger
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API-based models such as Llama-3.3 70B and GPT-
4o, we did not evaluate the impact of these models
on actual educational outcomes. Assessing how in-
teraction with our system influences student learn-
ing and performance remains an important direc-
tion for future work.
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A Statistical Analysis of GPT-as-Judge
Evaluation Results

To complement the main results reported in Sec-
tion 4.2, we provide the outcomes of statistical
significance testing. We used Fisher’s Exact Tests
to compare (i) SCRIBE models against their corre-
sponding base models, and (ii) 8B SCRIBE models
against the Llama-3.3 70B model. These tests were
conducted on both the original evaluation dataset
drawn from DSP, GEO, and VA, and on the unseen
LNV dataset.

Table 4 presents results for DSP, GEO, and VA,
showing that SCRIBE models significantly outper-
form their base versions in relevance, actionability,
and tool relevance, with no significant difference in
correctness. In comparison with the 70B model, 8B
SCRIBE achieves significantly higher actionability,
parity on relevance and correctness, and lower tool
relevance. Table 5 reports results for the unseen
LNV course. Here, SCRIBE models again signifi-
cantly outperform their base versions in relevance,
actionability, and tool relevance, while correctness
shows no significant difference. Against the 70B
model, however, the 8B SCRIBE models show no
significant difference in relevance and actionability
but are significantly weaker in tool relevance and
correctness.

Criterion SCRIBE vs. Base Models
(Odds Ratio, p-value)

Interpretation 8B SCRIBE vs. 70B
(Odds Ratio, p-value)

Interpretation

Relevance 1.492 (0.0103) Significantly higher odds for SCRIBE 1.395 (0.1917) No significant difference
Actionability 1.684 (0.00018) Significantly higher odds for SCRIBE 1.775 (0.0081) 8B SCRIBE significantly better
Tool Relevance 1.445 (0.00364) Significantly higher odds for SCRIBE 0.516 (0.0023) 70B significantly better
Correctness 1.111 (0.5139) No significant difference 0.742 (0.3048) No significant difference

Table 4: Fisher’s Exact Test results on DSP, GEO, and
VA (192 questions). Odds ratios > 1 favor the first
model listed. Statistically significant differences (p <
0.05) are reflected in the interpretation.

Criterion SCRIBE vs. Base Models
(Odds Ratio, p-value)

Interpretation 8B SCRIBE vs. 70B
(Odds Ratio, p-value)

Interpretation

Relevance 1.54 (0.0027) SCRIBE significantly better 1.06 (0.81) Not significant
Actionability 1.53 (0.0010) SCRIBE significantly better 0.67 (0.09) Not significant
Tool Relevance 1.48 (0.0016) SCRIBE significantly better 0.40 (0.0001) 70B significantly better
Correctness 1.14 (0.35) Not significant 0.39 (0.0022) 70B significantly better

Table 5: Fisher’s Exact Test results on the unseen
MOOC (LNV, 192 questions). Odds ratios > 1 favor the
first model listed. Statistically significant differences
(p < 0.05) are reflected in the interpretation.

B Ablation Studies

It is worth noting that in all of our quantitative
results we found that Spelling and Grammar was
always perfect across all models.

B.1 Different LoRA Ranks
In this section, we ablate the LoRA rank used for
fine-tuning models on multihop reasoning with tool
calling. As shown in Figs. 6 and 7, we compare
rank sizes 32, 64, 128, and 256 across both fine-
tuning stages for the ToolACE-8B and Llama-3.1-
8B models. Results indicate that rank 256 consis-
tently outperforms lower ranks on actionability, and
correctness for both models. It also out performs
lower ranks on relevance in the case of ToolACE.
An exception is tool relevance, where rank 32
achieves the highest performance. For Llama-3.1-
8B, relevance is less sensitive to LoRA rank, but
the model follows the same trend as ToolACE-8B
on the other criteria.

Figure 6: Percentage of YES given by the GPT-as-Judge
for each criterion on the 192 evaluation questions (GEO,
DSP and VA) on different LoRA ranks for ToolACE-
8B-SCRIBE.

Figure 7: Percentage of YES given by the GPT-as-Judge
for each criterion on the 192 evaluation questions (GEO,
DSP and VA) on different LoRA ranks for Llama-3.1-
8B-SCRIBE.

B.2 Single Stage vs two-stage LoRA
We additionally ablate our two-stage LoRA ap-
proach versus single LoRA in which the model was
finetuned on single, multi-hop tool calling and final
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response formulation in a single stage. Figs. 8 and 9
shows the comparison between the approaches for
ToolACE-8B and LLama-3.1-8B models respec-
tively. While the only exception is the tool rele-
vance only for the ToolACE model where the two-
stage is slightly less, the figures show the two-stage
LoRA consistently outperform single LoRA fine-
tuning across all evaluation criteria for both models.
This highlights the effectiveness of our multi-stage
LoRA finetuning technique.

Figure 8: Percentage of YES given by the GPT-as-Judge
for each criterion on the 192 evaluation questions (GEO,
DSP and VA) to compare between single and multi stage
LoRA

Figure 9: Percentage of YES given by the GPT-as-Judge
for each criterion on the 192 evaluation questions (GEO,
DSP and VA) to compare between single and multi stage
LoRA

C GPT-as-a-Judge

In this section, we report the rubric defined by the
annotators for each evaluation criterion as well as
the per-category alignment, and the prompt used
with GPT-4.1 for evaluation.

C.1 Evaluation Rubric
In the following, we describe the rubric agreed
upon by human annotators for the judge. We ex-

plain the criteria used for judging the final response
in terms of relevance, actionability, tool relevance,
spelling and grammar, and correctness respectively.

Human Annotators Rubric – Relevance

The response from the model directly ad-
dresses the student’s question. If the answer
includes relevant responses and also extra-
neous information, then the response is still
YES. The answer doesn’t need to be very
detailed to be considered relevant, as long
as it meaningfully responds to the student’s
question. If the Response is vague, unre-
lated, or fails to address the core question,
then the response is NO.

Human Annotators Rubric – Actionability

The response provides clear steps or instruc-
tions for the student to take to answer their
question. If there is no action that is relevant
based on the question (the question is purely
informational such as asking about course
materials or grading), then the answer to this
question is YES. If the response provides
vague, unclear, or generic advice without
actionable instructions, then mark it as NO.
Fallback advice in case tools did not prove
enough information counts as actionable if
clear — provided it’s not hallucination or
made up information (it can be a summary
of what the model got from the tools or feed-
back reports or general actionable advice
that it doesn’t contain specific details that
need to be double checked with an external
source).

Human Annotators Rubric – Tool Relevance

The tools that the model called are conceptu-
ally relevant to answer the question and can
produce a response that directly answers the
student’s question. If the model calls multi-
ple tools, some of which produce errors, the
answer is YES if one or more of the tools
provide sufficient information to answer the
question. Do not evaluate the accuracy of
the tool output or the correctness of the in-
formation passed to the tools by the LLM
in this step. Multiple tools can be equally
relevant to the question. If the called tools
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can "in theory" sufficient to answer the ques-
tions without needing to call another follow
up tool then mark as YES.

Human Annotators Rubric – Spelling and
Grammar

The response is understandable without
grammatical mistakes.

Human Annotators Rubric – Correctness

The response is factually correct and strictly
aligns with the provided tool outputs and
course feedback context without any extrap-
olations or assumptions beyond the given
data (tool outputs and feedback reports).
Comparing tool arguments and outputs to
the LLM response can be crucial for an accu-
rate evaluation. For instance, if the response
mentions weeks 4 and 5, but the tool was
only called with week 4 as an argument, then
the LLM is extrapolating the tool output and
should be marked as NO. Only penalise tool
misuse if it affects the final answer, render-
ing it factually incorrect. It is okay if the
model relies entirely on the feedback re-
port to provide an answer. It is also okay
if the model says I couldn’t find enough in-
formation and provide general "correct" ad-
vice. This is better than "not" saying that it
couldn’t find enough information and start
making up unsupported claims information.

C.2 Per-category Alignment

We report the per-category Cohen’s κ for alignment
between human and GPT as well as between both
human annotators in Table 6.

Metric Human-GPT Human-Human

Relevance 0.861 ± 0.000 0.755
Tool Relevance 0.775 ± 0.039 0.843
Actionability 1.000 ± 0.000 1.000
Correctness 0.814 ± 0.000 0.843
Overall κ 0.818 ± 0.014 0.850

Table 6: Cohen’s κ Scores between human annotations
and GPT and both human annotators.

C.3 Evaluation Prompts
Using the rubric agreed upon by humans, we use
the following prompt to GPT-4.1. For this prompt,
we feed the criterion and reasoning for CoT prompt-
ing depending on the evaluation criterion. In the
following, we show the general prompt followed by
the specific CoT prompt used for every criterion.

Prompt for Evaluation

You are an impartial AI Judge evaluating
the {criterion} of a response provided by
an AI assistant to a student question about
their feedback report. Evaluate this criterion
systematically using the reasoning process
provided below.

Provided Materials

• Tools Available for the AI Assistant:
{tool_schemas}

Evaluation Process for {criterion}

[1] Restate the student’s question in your
own words.

[2] Summarize the AI assistant’s response.
[3] Summarize tool arguments used.
[4] Explain your step-by-step reasoning re-

garding the {criterion} based on the
definition provided.

[5] Make a clear YES or NO decision, ex-
plicitly justified by your reasoning.

{criterion} Definition
{criterion_definition}

Reasoning Steps
{criterion_reasoning}

Please provide your evaluation for the
{criterion} criterion only.

FINAL DECISION: YES or NO

CoT Prompt – Relevance

Definition:

• YES: Response directly addresses the
student’s explicit question. It may in-
clude extra context or background in-
formation, as long as the core question
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is still clearly answered. Do not eval-
uate whether the correct tool was used
or whether the response is accurate. If
the response is on-topic and attempts
to answer the student’s question, even
if it cannot provide exact details due to
missing information, mark YES.

• NO: Response is vague, off-topic, or
does not engage with the core of the stu-
dent’s question. This includes generic
advice that does not attempt to answer
the actual question asked.

Reasoning Steps:

• Step 1: What specifically is the student
asking?

• Step 2: Does the response directly en-
gage with and attempt to answer that
question?

• Step 3: Even if partially detailed or
if the information is limited, does the
response stay on-topic and provide a
meaningful attempt to respond to the
student’s explicit request?

• Important: Do not penalize for incor-
rect tool usage or inaccurate content —
that is evaluated under Correctness.

CoT Prompt – Actionability

Definition:

• YES: The response explicitly provides
clear steps, recommendations, or di-
rections that the student can reason-
ably follow. If the question is infor-
mational (e.g., about course structure,
exercises, resources, definitions, or ex-
planations), mark YES automatically
without reviewing the response, as no
actions are required.

If tool outputs limit the ability to offer
detailed steps (e.g., no access to spe-
cific problems or resources), still mark
YES if the response provides the most
practical and targeted guidance pos-
sible—such as pointing to relevant top-
ics, review areas, or general strategies

tied to the tool output or feedback con-
text.

• NO: Mark NO if the response is
vague—e.g., generic, non-directional
advice like "study more," "improve
your skills," or "engage better" with-
out specifying what to focus on or
how to proceed. Also mark NO if it
uses unexplained terms (e.g., "improve
competency_anticipation") or suggests
unclear, impractical, or disconnected
actions.

Reasoning Steps:

• Step 1: Determine if the student’s ques-
tion requires actionable guidance or is
purely informational. Questions about
content, exercises, resources, or defi-
nitions do not need an actionable re-
sponse (MARK YES by default).
Note: Requests for extra exercises or
additional resources are not actionable
and default to YES.

• Step 2: If actionable, check whether
the response provides clear, focused,
and applicable steps or recommenda-
tions, even if high-level (e.g., “focus on
topics like DFT and DTFT”).

• Step 3: If tool output restricts detailed
actions, assess whether the response
still offers practical next steps based
on what’s available (e.g., pointing to
relevant topics or materials).

• Step 4: Mark NO if the response only
gives broad encouragement without di-
rection (e.g., “engage more”) or in-
cludes technical terms without explana-
tion.

• Step 5: Overall, if the student
can clearly understand what to do
next—even generally—mark YES. Do
not assess tool relevance, usefulness, or
correctness here.
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CoT Prompt – Tool Relevance

Definition:

• YES: At least one chosen tool is con-
ceptually appropriate for the question
and is among the available tools for
producing a correct or personalized an-
swer. It does not have to be the best
tool—only reasonably capable of gen-
erating the type of answer the student
needs. Do NOT evaluate how well
the tool was used or its output—only
whether it was a strong choice given
the available tools.

• NO: Either no tool was conceptually
suited to the question, or the assis-
tant used a tool when a clearly bet-
ter, more appropriate tool was avail-
able and should have been used instead.
This includes cases where the tool used
cannot provide the type of informa-
tion requested—e.g., using behavioral
tools alone when the student asks about
course topics, study strategies, or learn-
ing materials.

Reasoning Steps:

• Step 1: Identify the type of informa-
tion needed to answer the student’s
question: performance patterns, gen-
eral advice, conceptual understanding,
study materials, or strategies.

• Step 2: Identify which tools (from the
available list, not just the ones used)
are conceptually capable of providing
that information.

– sort_student_features_with _im-
portance is for behavioral/perfor-
mance analysis and cannot sup-
port content explanations or study
material suggestions.

– get_feature_description de-
fines internal metrics and is not
suited for topic or concept-level
guidance.

– Mark NO if these tools are
used alone for questions asking
about course understanding, con-
ceptual improvement, or finding
resources.

• Step 3: Determine if the assistant
used a conceptually appropriate tool.
If yes, mark YES. If a clearly mis-
matched tool was used—even if the an-
swer sounds plausible—mark NO. Do
not evaluate tool usage quality, argu-
ments, or output.

CoT Prompt – Spelling and Grammar

Definition:

• YES: The response is clear, readable,
and contains no major spelling or gram-
matical errors affecting comprehension.
Minor errors are acceptable if they do
not hinder understanding.

• NO: Errors significantly reduce read-
ability or clarity.

Reasoning Steps:

• Step 1: Check for any major grammar
or spelling errors.

• Step 2: Decide if these errors signifi-
cantly impact readability or clarity.

CoT Prompt – Correctness

Correctness
Definition:

• YES: The response is factually cor-
rect, aligns with the provided tool
outputs and course feedback context,
and avoids unsupported or misleading
claims. General strategies or logical
assumptions are acceptable as correct
interpretations of the tool (e.g., not-
ing that low engagement may impact
performance, if engagement is refer-
enced). Phrases like “likely to be rel-
evant” are acceptable. The response
does not need to explicitly acknowl-
edge missing information.

• NO: The response includes clear inac-
curacies, misleading assumptions, or
unjustified certainty not supported by
tool outputs or feedback. This in-
cludes:
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– Making definitive claims about
unknowns (e.g., exact exam con-
tent without syllabus details).

– Incorrect tool usage (e.g., pass-
ing week numbers to tools requir-
ing topic names). Accept course
name variants (e.g., dsp_002 for
dsp).

– Misinterpreting or misrepresent-
ing tool outputs or feedback—e.g.,
inventing definitions or substitut-
ing meanings not supported by
data.

– Any factual errors or distortions
that could mislead or confuse the
student.

Reasoning Steps:

• Step 1: Summarize the student’s ques-
tion, tool outputs, tool arguments, and
feedback reports.

• Step 2: Check for incorrect tool us-
age (e.g., wrong arguments). If present,
mark NO.

• Step 3: Verify that each claim or rec-
ommendation is explicitly supported by
tool outputs, feedback, or represents a
harmless, logical educational strat-
egy. Do not accept reinterpreted mean-
ings or invented definitions. Pay close
attention to topic names, weeks, tool
metrics, or feature names. Misuse of
these—even if plausible—should be
marked NO if potentially misleading.

• Step 4: General advice (e.g., study
tips) and harmless assumptions (e.g.,
“missing content may impact perfor-
mance”) are allowed without tool sup-
port, as long as they do not misin-
terpret or substitute tool meanings.
Phrases like “likely to help” are fine.
Penalize only if the advice introduces
harmful specifics or misleading cer-
tainty.

• Step 5: If unknown information is pre-
sented as certain (e.g., stating guaran-
teed exam content), mark NO.

• Step 6: Ensure there are no harmful
extrapolations, misinterpretations, or
misleading assumptions. Even if harm-
less, unsupported claims (e.g., made-
up definitions) must be rejected. Sug-
gestions like reviewing extra material
are acceptable, but definitions or spe-
cific answers must come from tools or
the feedback report. Do not penalize
use of known details from the feedback
report (e.g., preferences, course top-
ics). Do not evaluate tool relevance
or completeness—focus solely on fac-
tual alignment with tool outputs and
feedback.

D Student Questions Generation

D.1 Questions generation prompt

To generate questions that are close to those writ-
ten by students, we use persona-based prompting
(Wang et al., 2024b; White et al., 2023) with GPT-
4o. Each prompt simulates the scenario students
encountered during the data collection phase (see
section 3.1.2) and includes the MOOC name, the
feedback report, the question category (What have I
done well?, Where should I improve?, How should
I improve?, and What should I do next time?) and
a set of guidelines derived from student comments
and preferences observed during the study. Note
that all feedback reports used for generating the
questions were in English, and all generated ques-
tions are also in English.

Prompt for Question Generation

You are a student taking the an Online
Course (MOOC): {course_name}. Since
the courses are difficult, often with low pass-
ing rates, the teaching team wants to help
students who are not doing well to perform
better in the course by giving them personal-
ized assistance, and encourage students who
are already performing well to continue.
Our goal is to give students feedback on
their performance and possible trajectories.
To do this, we use various weekly behav-
ior features (such as the number of video
clicks or how accurately questions are an-
swered on weekly quizzes). We predict stu-
dent performance early in the course (before
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the halfway point) as passing or failing be-
havior. We use the explanation of the predic-
tion to give students additional, personalized
feedback to help pass the course.
You received the following personalized
feedback report: {feedback_report}

Your Task:

• Generate follow-up questions in the
style: {style}, defined as {ques-
tion_styles[style]}.

• Sound like a student: use simple, in-
formal language, include grammatical
mistakes, short, direct, or incomplete
questions.

• Refer to these student examples: {ques-
tions_sample} (don’t copy — generate
new ones).

• Include:

– Short: "Why did my score drop?"
– Medium: "How can I use Week 2

to help later weeks?"
– Long: "Week 7 not in report, but

says prep for 6 and 8. Does that
mean Week 7 is easier?"

Guidelines for Generating Questions:
[1] Use everyday student language. Typos

and grammar issues are okay.
[2] Ask about specific actions: e.g., "Should

I rewatch Week 5 videos?"
[3] Keep questions direct and practical.
[4] Avoid abstract or overly technical ques-

tions.
[5] Do not ask about general habits or exter-

nal resources.
[6] Show emotion or stress, e.g., "I did bad,

what to fix?"
[7] Focus on content: Week 5 priority,

quizzes, misunderstood topics.
[8] Avoid overused questions like:

• "Why did my score drop?"
• "What can I do to improve?"
• "Week X wasn’t mentioned, why?"

[9] Long questions (40+ words) should in-
volve improvement strategies or specific
content, not scheduling.
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D.2 Generated Questions Analysis
To compare real student questions with those gener-
ated by GPT-4o, we evaluate distributional similar-
ity using Shannon entropy, perplexity, and cosine
similarity. Figures 10–14 show that generated ques-
tions closely match human-authored ones across
feedback categories and MOOCs in terms of infor-
mativeness, fluency, and diversity.

(a) African Cities (b) Digital Signal
Processing

(c) Elements of Ge-
ometry

Figure 10: KDE plots of Shannon Entropy for human
vs. generated questions across MOOCs

(a) How can I im-
prove?

(b) Where to im-
prove?

(c) What to do next
time?

Figure 11: KDE plots of Shannon Entropy across ques-
tion types

(a) African Cities (b) Digital Signal
Processing

(c) Elements of Ge-
ometry

Figure 12: KDE plots of Perplexity across MOOCs

E Tools: Topic Dependency Mapping.

In this section, we report the topic dependency
maps created for the Digital Signal Processing
(DSP) MOOC, the Elements de Géomatique (Geo)
MOOC and the Villes Africaines (VA) MOOC used
for the Topic Dependancy Mapping tool. Note that
GEO and VA are taught in french while DSP and
LNV are taught in English. We generate the VA
and DSP maps in English and the GEO map in
french.

F User Study

In this section, we summarize the details of the user
study we conducted. We start with details about the
participants followed by the introduction used and

(a) How can I im-
prove?

(b) Where to im-
prove?

(c) What to do next
time?

Figure 13: KDE plots of Perplexity across question
types

(a) Pairwise Cosine Similar-
ity by MOOC

(b) Pairwise Cosine Similar-
ity by Feedback Category

Figure 14: Cosine similarity comparisons of real vs.
generated questions

ethical agreement. Finally, we show a statistical
analysis of the user ratings results shown in Fig. 5.

F.1 Participants Background

We recruited 108 participants via Prolific, selecting
individuals aged 18 and older who identified as stu-
dents. As post-secondary students, they were well-
positioned to engage with the academic context and
assess the clarity and usefulness of the explanations
provided. During the study, we gathered data on
their experience with online courses (MOOCs), ed-
ucation level, and confidence in handling academic
tasks (See Fig. 18 for the detailed demographics).
The median completion time was 35 minutes, and
participants earned an average hourly rate of £9.00
which was the recommended rate by the platform
based on the participants’ demographics.

F.2 User Study Introduction

All participants gave informed consent; they could
not proceed without first reading and agreeing to
the explanatory statement in the introduction sec-
tion of the study outlined below.

User Study Introduction Section

Dear participant,
Thank you for participating in our study on
model explanations. We are very grateful
for your participation and your invaluable
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Figure 15: Digital Signal Processing (DSP) topic de-
pendency map. The direction of each arrow indicates
a dependency, where the source topic provides founda-
tional knowledge required to understand the target topic

Figure 16: Elements de Géomatique (Geo) topic de-
pendency map. The direction of each arrow indicates
a dependency, where the source topic provides founda-
tional knowledge required to understand the target topic
(or groups of topics)

insight. Please read this Explanatory State-
ment in full before proceeding. If you would
like further information regarding any aspect
of this project, please contact us using the
email address provided below.
We are a group of researchers from the
ML4ED Laboratory at EPFL, dedicated to
improving education through technology.
The goal of this study is to evaluate the re-
sponses of a language model when asked
questions about progress feedback reports
given to students to help improve their per-
formance in an online course.

Human Research Ethics
This survey has been approved by the
EPFL Human Research Ethics Committee
(HREC) under application number HREC
065-2022/27.09.2022. HREC reviews re-
search proposals involving human partici-
pants to ensure they are ethically acceptable.

• All personal information will be kept
confidential and anonymized. Only
demographic information is recorded,
and it will be reported only in aggre-

Figure 17: Villes Africaines (VA) topic dependency
map. The direction of each arrow indicates a depen-
dency, where the source topic provides foundational
knowledge required to understand the target topic

Age Gender How often do you 
struggle in a course?

MOOC Experience Education Level

Figure 18: Demographics of study participants (age,
gender, course struggles, MOOC Experience, and edu-
cational background)

gate form to prevent identifying any
individual participant.

• You may withdraw at any time. Any
data you have provided up to that point
will be destroyed.

• All data will be collected, stored se-
curely, and reported in accordance with
Swiss Federal law on data protection
(Loi fédérale sur la protection des don-
nées – RS 235.1).

• Only anonymized or aggregated data
may be used in future research (subject
to ethics approval) and made available
to other researchers for further analysis
and verification.

• Only the principal investigator and the
designated researchers will have access
to the original data under strict con-
fidentiality. Results from the project
may be published in conference papers
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and/or journal articles, but no personal
data will be shared.

• Personal data will be stored for 5 years
from the date of collection. During this
period, participants have the right to
access their data and inquire about its
processing. To exercise this right, con-
tact the Principal Investigator.

By participating in this survey, you agree
that your data may be used for scientific
purposes.
In the following study, you will read three
progress feedback reports and interact
with a chatbot designed to answer your ques-
tions about each report. You will be ex-
pected to ask three questions per report.
The study should take approximately 30
minutes. Please ensure you have sufficient
time to complete it in full, as incomplete
submissions will not be considered.
We ask that you approach the questions se-
riously and complete them to the best of
your ability. Responses will be reviewed for
quality, and submissions that appear unseri-
ous may be discarded. If you encounter any
issues or would like to provide additional
feedback or request more information, feel
free to contact us.

Context

You are a student enrolled in three online
courses (MOOCs): Digital Signal Process-
ing, Elements of Geometry, and Launching
New Ventures. These courses are known for
their challenging content and typically low
passing rates. To better support students, the
teaching team has implemented a system
that provides personalized feedback based
on each student’s learning behavior.
We used a highly accurate predictive model
(over 90% accuracy) to forecast student suc-
cess or risk of failure early in the course, us-
ing weekly behavioral data (e.g., number of
video views, quiz performance, engagement
metrics). Based on these predictions, each
student received a personalized feedback re-
port explaining the factors influencing their
predicted performance and offering tailored
advice to improve or maintain success.

This study explores how students can inter-
act with these feedback reports using a lan-
guage model assistant. This assistant allows
you to ask questions about your feedback re-
port, clarify details, seek advice, and better
understand the factors affecting your learn-
ing progress. To ensure accuracy, the as-
sistant uses deterministic tools to retrieve
precise information needed to answer your
questions.
You will receive three feedback reports
and are expected to ask three to five clari-
fying questions for each report. Questions
must focus only on the feedback content.
For the same report, you may ask different
questions or a sequence of follow-ups.

Evaluation Criteria
We will assess the assistant’s responses
based on the following criteria:

• Relevance: The response directly ad-
dresses the question without veering
off-topic.

• Usefulness: The response provides
meaningful insights that enhance learn-
ing or deepen understanding.

• Actionability: The response includes
clear, practical steps or guidance rele-
vant to the question.

• Coverage: The response thoroughly
addresses all parts of the question, in-
cluding sub-questions.

• Conciseness: The response is clear and
complete, using the fewest words nec-
essary while avoiding repetition or un-
necessary detail.

F.3 User Study Ratings Analysis

Table 7 shows results of ANOVA test. For all
criteria, we failed to reject the null hypothesis
(p > 0.05), indicating no significant difference
in perceived response quality.

G Question Category Annotation Rubric

In this section, we provide the rubric used to cat-
egorize the question categories. They are adapted
from (Mandouit and Hattie, 2023).
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Table 7: One-way ANOVA comparing average ratings
across models for each evaluation criterion. All p-values
> 0.05 indicate no statistically significant difference.

Actionability Conciseness Coverage Relevance Usefulness

F-value 0.204 0.366 0.619 0.408 0.061
Degrees of freedom (2, 321) (2, 321) (2, 321) (2, 321) (2, 321)
p-value 0.816 0.694 0.539 0.665 0.941

Question Category Annotation Rubric – how
can I improve?

"How to improve?” relates to how to correct
certain errors or what strategies students can
follow to rectify their problems. It should
be related to current progress and how to
fix current issues. Example: How can I do
better in the weeks 3,4,5?

Question Category Annotation Rubric –
where to improve?

“Where to improve?” Indicates where errors
have occurred, and what needs to be fixed.
This category includes questions that ask for
elaboration on specific tasks or weaknesses
in certain weeks or topics. Example: Why
did my performance drop?

Question Category Annotation Rubric –
what to do next time?

“What to do next time?” relates to future di-
rections, events or tasks that will be carried
out in the future. This also encompasses
self-regulation or questions regarding devel-
oping the capacity to self-monitor. Example:
What is the best way to start reviewing for
the next week’s material?

Question Category Annotation Rubric –
course evaluation

Relates to course evaluation criteria and non-
improvement or feedback questions. Exam-
ple: How is the evaluation of the course
done?

H Inference Prompts

We report an example of the self-reflection prompt
used to correct errors in tool calling. We addi-
tionally provide prompts used for inference for the
initial reasoning stage and the multiple reasoning
stages.

Self Reflection Prompt Example for Error
Correction

You encountered an error during reasoning
or tool invocation.

Error Message

I encountered an error: {str(e)}. Please
fix your reasoning or calls so we can reach
a final answer.
Remember to use the correct tokens for tool
call and final answer: [TOOL_CALL] and
[FINAL_ANSWER].
Terminate them using:
[END_OF_TOOL_CALL] and
[END_OF_FINAL_ANSWER].
Note: Without [END_OF_TOOL_CALL] and
[END_OF_FINAL_ANSWER], your answer
cannot be parsed.

<|start_header_id|> user
<|end_header_id|>
[ERROR_NOTICE]{error_message}
[/ERROR_NOTICE]
<|eot_id|><|start_header_id|>
assistant<|end_header_id|>
[REASONING]

Initial Stage Prompt

You are a reasoning tool-calling agent
tasked with analyzing a student’s question
about the personalized feedback they re-
ceived. Students are enrolled in MOOC
courses and have received individualized
feedback on their learning progress and per-
formance.
You do not know anything about the
MOOCs or the student and are not allowed
to give any advice or information that is not
in the feedback report or the tool outputs.

Context

• Course Name: {course_name}

• Student Feedback Report:
{feedback_report}

Available Tools

{tool_schemas}
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Your Task

• Analyze the student’s question in relation
to their feedback report.

• Think about the best tool to use to answer
the student’s question.

– Use tools for behavior analysis when
the question is about the student’s
behavior.

– Use
impact_of_student_behaviors
for hypothetical or general be-
havioral questions (like time
management, catching up, or study
strategies). It does not provide
personalized information about the
student’s specific activity.

– Use tools for course content when the
question is about the course content.

– Use tools for course evaluation when
the question is about the course eval-
uation.

– Use tools for student performance
when the question is about the stu-
dent’s performance.

• Provide a reasoning to determine the
first tool needed to answer the stu-
dent’s question. Wrap your reasoning in
[REASONING] and [END_OF_REASONING]
tokens.

• Determine the single best tool from the
tools above to retrieve that information.

Multi Stage Prompt

You are a reasoning tool-calling agent talk-
ing to a student and responsible for ana-
lyzing the student’s question in relation to
their personalized feedback. Students are en-
rolled in MOOC courses and receive individ-
ualized feedback on their learning progress
and performance.
You will be talking to the student and you
need to provide them with the best answer
possible.
You do not know anything about the
MOOCs or the student and are not allowed
to give any advice or information that is not

in the feedback report or the tool outputs.

Context

• Course Name: {course_name}

• Student Feedback Report:
{feedback_report}

Available Tools

{tool_schemas}

Task

• Given the student’s question, previous
reasoning, tool calls, and tool outputs,
determine whether another tool call is
needed or if a final answer can be pro-
vided.

• If a tool call is needed:

– Explain why the tool call is required.
– Generate the structured tool call.

• If the final answer can be provided:

– Explain why no further tool calls are
needed.

– Generate the structured final an-
swer.

Response Format

• Always wrap reasoning in [REASONING]
... [END_OF_REASONING].

• If making a tool call, follow
reasoning with [TOOL_CALL] ...
[END_OF_TOOL_CALL].

• If providing the final answer, fol-
low reasoning with [FINAL_ANSWER] ...
[END_OF_FINAL_ANSWER].

• Stop after the tool call or final answer.
Do not generate tool outputs or explana-
tions beyond the required response.

• Do not use your own knowledge, only use
the feedback report and the tool schemas.

I Tool contribution analysis

To understand how the original toolset contributed
during inference, we examined usage frequen-

29298



cies of all tools in ToolACE-8B SCRIBE on the
DSP, GEO, and VA evaluation dataset. Table 8
reports the percentage of calls per tool. Every
tool was invoked at least once, with the most fre-
quently used being map_week_to_topic (28.84%)
and impact_of_student_behaviors (26.22%).
Other tools were used less often but still con-
tributed, indicating that the model relied on the full
set of tools when responding to student questions.

Tool Percentage Use (%)

dsp_textbook_exercise_search 0.75
get_course_syllabus 7.12
get_dependant_topics 14.23
get_feature_description 5.99
grade_calculator 1.12
impact_of_student_behaviors 26.22
map_week_to_topic 28.84
sort_student_features_with_importance 12.73
textbook_search 3.00

Table 8: Tool usage patterns for ToolACE-8B SCRIBE
on the DSP, GEO, and VA evaluation dataset.

29299


