@inproceedings{fu-etal-2025-pachat,
title = "{PACHAT}: Persona-Aware Speech Assistant for Multi-party Dialogue",
author = "Fu, Dongjie and
Cheng, Xize and
Li, Linjun and
Yang, Xiaoda and
Yang, Lujia and
Jin, Tao",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.1492/",
pages = "29313--29330",
ISBN = "979-8-89176-332-6",
abstract = "Extensive research on LLM-based spoken dialogue systems has significantly advanced the development of intelligent voice assistants. However, the integration of role information within speech remains an underexplored area, limiting its application in real-world scenarios, particularly in multi-party dialogue settings. With the growing demand for personalization, voice assistants that can recognize and remember users establish a deeper connection with them. We focus on enabling LLMs with speaker-awareness capabilities and enhancing their understanding of character settings through synthetic data to generate contextually appropriate responses. We introduce Persona-Dialogue, the first large-scale multi-party spoken dialogue dataset that incorporates speaker profiles. Based on this dataset, we propose PAChat, an architecture that simultaneously models both linguistic content and speaker features, allowing LLMs to map character settings to speaker identities in speech. Through extensive experiments, we demonstrate that PAChat successfully achieves speaker-specific responses, character understanding, and the generation of targeted replies in multi-party dialogue scenarios, surpassing existing spoken dialogue systems."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="fu-etal-2025-pachat">
<titleInfo>
<title>PACHAT: Persona-Aware Speech Assistant for Multi-party Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dongjie</namePart>
<namePart type="family">Fu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xize</namePart>
<namePart type="family">Cheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Linjun</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaoda</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lujia</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tao</namePart>
<namePart type="family">Jin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Extensive research on LLM-based spoken dialogue systems has significantly advanced the development of intelligent voice assistants. However, the integration of role information within speech remains an underexplored area, limiting its application in real-world scenarios, particularly in multi-party dialogue settings. With the growing demand for personalization, voice assistants that can recognize and remember users establish a deeper connection with them. We focus on enabling LLMs with speaker-awareness capabilities and enhancing their understanding of character settings through synthetic data to generate contextually appropriate responses. We introduce Persona-Dialogue, the first large-scale multi-party spoken dialogue dataset that incorporates speaker profiles. Based on this dataset, we propose PAChat, an architecture that simultaneously models both linguistic content and speaker features, allowing LLMs to map character settings to speaker identities in speech. Through extensive experiments, we demonstrate that PAChat successfully achieves speaker-specific responses, character understanding, and the generation of targeted replies in multi-party dialogue scenarios, surpassing existing spoken dialogue systems.</abstract>
<identifier type="citekey">fu-etal-2025-pachat</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.1492/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>29313</start>
<end>29330</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T PACHAT: Persona-Aware Speech Assistant for Multi-party Dialogue
%A Fu, Dongjie
%A Cheng, Xize
%A Li, Linjun
%A Yang, Xiaoda
%A Yang, Lujia
%A Jin, Tao
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F fu-etal-2025-pachat
%X Extensive research on LLM-based spoken dialogue systems has significantly advanced the development of intelligent voice assistants. However, the integration of role information within speech remains an underexplored area, limiting its application in real-world scenarios, particularly in multi-party dialogue settings. With the growing demand for personalization, voice assistants that can recognize and remember users establish a deeper connection with them. We focus on enabling LLMs with speaker-awareness capabilities and enhancing their understanding of character settings through synthetic data to generate contextually appropriate responses. We introduce Persona-Dialogue, the first large-scale multi-party spoken dialogue dataset that incorporates speaker profiles. Based on this dataset, we propose PAChat, an architecture that simultaneously models both linguistic content and speaker features, allowing LLMs to map character settings to speaker identities in speech. Through extensive experiments, we demonstrate that PAChat successfully achieves speaker-specific responses, character understanding, and the generation of targeted replies in multi-party dialogue scenarios, surpassing existing spoken dialogue systems.
%U https://aclanthology.org/2025.emnlp-main.1492/
%P 29313-29330
Markdown (Informal)
[PACHAT: Persona-Aware Speech Assistant for Multi-party Dialogue](https://aclanthology.org/2025.emnlp-main.1492/) (Fu et al., EMNLP 2025)
ACL