@inproceedings{zhu-etal-2025-reasoning,
title = "Reasoning-to-Defend: Safety-Aware Reasoning Can Defend Large Language Models from Jailbreaking",
author = "Zhu, Junda and
Yan, Lingyong and
Wang, Shuaiqiang and
Yin, Dawei and
Sha, Lei",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.1493/",
pages = "29331--29349",
ISBN = "979-8-89176-332-6",
abstract = "Large Reasoning Models (LRMs) have recently demonstrated impressive performances across diverse domains. However, how the safety of Large Language Models (LLMs) benefits from enhanced reasoning capabilities against jailbreak queries remains unexplored. To bridge this gap, in this paper, we propose Reasoning-to-Defend (R2D), a novel training paradigm that integrates a safety-aware reasoning mechanism into LLMs' generation process. This enables self-evaluation at each step of the reasoning process, forming safety pivot tokens as indicators of the safety status of responses. Furthermore, in order to improve the accuracy of predicting pivot tokens, we propose Contrastive Pivot Optimization (CPO), which enhances the model{'}s perception of the safety status of given dialogues. LLMs dynamically adjust their response strategies during reasoning, significantly enhancing their safety capabilities defending jailbreak attacks. Extensive experiments demonstrate that R2D effectively mitigates various attacks and improves overall safety, while maintaining the original performances. This highlights the substantial potential of safety-aware reasoning in improving robustness of LRMs and LLMs against various jailbreaks."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhu-etal-2025-reasoning">
<titleInfo>
<title>Reasoning-to-Defend: Safety-Aware Reasoning Can Defend Large Language Models from Jailbreaking</title>
</titleInfo>
<name type="personal">
<namePart type="given">Junda</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lingyong</namePart>
<namePart type="family">Yan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shuaiqiang</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dawei</namePart>
<namePart type="family">Yin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lei</namePart>
<namePart type="family">Sha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Large Reasoning Models (LRMs) have recently demonstrated impressive performances across diverse domains. However, how the safety of Large Language Models (LLMs) benefits from enhanced reasoning capabilities against jailbreak queries remains unexplored. To bridge this gap, in this paper, we propose Reasoning-to-Defend (R2D), a novel training paradigm that integrates a safety-aware reasoning mechanism into LLMs’ generation process. This enables self-evaluation at each step of the reasoning process, forming safety pivot tokens as indicators of the safety status of responses. Furthermore, in order to improve the accuracy of predicting pivot tokens, we propose Contrastive Pivot Optimization (CPO), which enhances the model’s perception of the safety status of given dialogues. LLMs dynamically adjust their response strategies during reasoning, significantly enhancing their safety capabilities defending jailbreak attacks. Extensive experiments demonstrate that R2D effectively mitigates various attacks and improves overall safety, while maintaining the original performances. This highlights the substantial potential of safety-aware reasoning in improving robustness of LRMs and LLMs against various jailbreaks.</abstract>
<identifier type="citekey">zhu-etal-2025-reasoning</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.1493/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>29331</start>
<end>29349</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Reasoning-to-Defend: Safety-Aware Reasoning Can Defend Large Language Models from Jailbreaking
%A Zhu, Junda
%A Yan, Lingyong
%A Wang, Shuaiqiang
%A Yin, Dawei
%A Sha, Lei
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F zhu-etal-2025-reasoning
%X Large Reasoning Models (LRMs) have recently demonstrated impressive performances across diverse domains. However, how the safety of Large Language Models (LLMs) benefits from enhanced reasoning capabilities against jailbreak queries remains unexplored. To bridge this gap, in this paper, we propose Reasoning-to-Defend (R2D), a novel training paradigm that integrates a safety-aware reasoning mechanism into LLMs’ generation process. This enables self-evaluation at each step of the reasoning process, forming safety pivot tokens as indicators of the safety status of responses. Furthermore, in order to improve the accuracy of predicting pivot tokens, we propose Contrastive Pivot Optimization (CPO), which enhances the model’s perception of the safety status of given dialogues. LLMs dynamically adjust their response strategies during reasoning, significantly enhancing their safety capabilities defending jailbreak attacks. Extensive experiments demonstrate that R2D effectively mitigates various attacks and improves overall safety, while maintaining the original performances. This highlights the substantial potential of safety-aware reasoning in improving robustness of LRMs and LLMs against various jailbreaks.
%U https://aclanthology.org/2025.emnlp-main.1493/
%P 29331-29349
Markdown (Informal)
[Reasoning-to-Defend: Safety-Aware Reasoning Can Defend Large Language Models from Jailbreaking](https://aclanthology.org/2025.emnlp-main.1493/) (Zhu et al., EMNLP 2025)
ACL