@inproceedings{chundru-etal-2025-llms,
title = "Do {LLM}s Encode Frame Semantics? Evidence from Frame Identification",
author = "Chundru, Jayanth Krishna and
Poddar, Rudrashis and
Cao, Jie and
Jiang, Tianyu",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.1499/",
pages = "29476--29488",
ISBN = "979-8-89176-332-6",
abstract = "We investigate whether large language models encode latent knowledge of frame semantics, focusing on frame identification, a core challenge in frame semantic parsing that involves selecting the appropriate semantic frame for a target word in context. Using the FrameNet lexical resource, we evaluate models under prompt-based inference and observe that they can perform frame identification effectively even without explicit supervision. To assess the impact of task-specific training, we fine-tune the model on FrameNet data, which substantially improves in-domain accuracy while generalizing well to out-of-domain benchmarks. Further analysis shows that the models can generate semantically coherent frame definitions, highlighting the model{'}s internalized understanding of frame semantics."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chundru-etal-2025-llms">
<titleInfo>
<title>Do LLMs Encode Frame Semantics? Evidence from Frame Identification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jayanth</namePart>
<namePart type="given">Krishna</namePart>
<namePart type="family">Chundru</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rudrashis</namePart>
<namePart type="family">Poddar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jie</namePart>
<namePart type="family">Cao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tianyu</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>We investigate whether large language models encode latent knowledge of frame semantics, focusing on frame identification, a core challenge in frame semantic parsing that involves selecting the appropriate semantic frame for a target word in context. Using the FrameNet lexical resource, we evaluate models under prompt-based inference and observe that they can perform frame identification effectively even without explicit supervision. To assess the impact of task-specific training, we fine-tune the model on FrameNet data, which substantially improves in-domain accuracy while generalizing well to out-of-domain benchmarks. Further analysis shows that the models can generate semantically coherent frame definitions, highlighting the model’s internalized understanding of frame semantics.</abstract>
<identifier type="citekey">chundru-etal-2025-llms</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.1499/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>29476</start>
<end>29488</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Do LLMs Encode Frame Semantics? Evidence from Frame Identification
%A Chundru, Jayanth Krishna
%A Poddar, Rudrashis
%A Cao, Jie
%A Jiang, Tianyu
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F chundru-etal-2025-llms
%X We investigate whether large language models encode latent knowledge of frame semantics, focusing on frame identification, a core challenge in frame semantic parsing that involves selecting the appropriate semantic frame for a target word in context. Using the FrameNet lexical resource, we evaluate models under prompt-based inference and observe that they can perform frame identification effectively even without explicit supervision. To assess the impact of task-specific training, we fine-tune the model on FrameNet data, which substantially improves in-domain accuracy while generalizing well to out-of-domain benchmarks. Further analysis shows that the models can generate semantically coherent frame definitions, highlighting the model’s internalized understanding of frame semantics.
%U https://aclanthology.org/2025.emnlp-main.1499/
%P 29476-29488
Markdown (Informal)
[Do LLMs Encode Frame Semantics? Evidence from Frame Identification](https://aclanthology.org/2025.emnlp-main.1499/) (Chundru et al., EMNLP 2025)
ACL