@inproceedings{rad-etal-2025-graid,
title = "{GRAID}: Synthetic Data Generation with Geometric Constraints and Multi-Agentic Reflection for Harmful Content Detection",
author = "Rad, Melissa Kazemi and
Purpura, Alberto and
Kumar, Himanshu and
Chen, Emily and
Sorower, Mohammad Shahed",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.1528/",
pages = "30047--30065",
ISBN = "979-8-89176-332-6",
abstract = "We address the problem of data scarcity in harmful text classification for guardrailing applications and introduce GRAID (Geometric and Reflective AI-Driven Data Augmentation), a novel pipeline that leverages Large Language Models (LLMs) for dataset augmentation. GRAID consists of two stages: (i) generation of geometrically controlled examples using a constrained LLM, and (ii) augmentation through a multi-agentic reflective process that promotes stylistic diversity and uncovers edge cases. This combination enables both reliable coverage of the input space and nuanced exploration of harmful content. Using two benchmark data sets, we demonstrate that augmenting a harmful text classification dataset with GRAID leads to significant improvements in downstream guardrail model performance."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rad-etal-2025-graid">
<titleInfo>
<title>GRAID: Synthetic Data Generation with Geometric Constraints and Multi-Agentic Reflection for Harmful Content Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Melissa</namePart>
<namePart type="given">Kazemi</namePart>
<namePart type="family">Rad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alberto</namePart>
<namePart type="family">Purpura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Himanshu</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Shahed</namePart>
<namePart type="family">Sorower</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>We address the problem of data scarcity in harmful text classification for guardrailing applications and introduce GRAID (Geometric and Reflective AI-Driven Data Augmentation), a novel pipeline that leverages Large Language Models (LLMs) for dataset augmentation. GRAID consists of two stages: (i) generation of geometrically controlled examples using a constrained LLM, and (ii) augmentation through a multi-agentic reflective process that promotes stylistic diversity and uncovers edge cases. This combination enables both reliable coverage of the input space and nuanced exploration of harmful content. Using two benchmark data sets, we demonstrate that augmenting a harmful text classification dataset with GRAID leads to significant improvements in downstream guardrail model performance.</abstract>
<identifier type="citekey">rad-etal-2025-graid</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.1528/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>30047</start>
<end>30065</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T GRAID: Synthetic Data Generation with Geometric Constraints and Multi-Agentic Reflection for Harmful Content Detection
%A Rad, Melissa Kazemi
%A Purpura, Alberto
%A Kumar, Himanshu
%A Chen, Emily
%A Sorower, Mohammad Shahed
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F rad-etal-2025-graid
%X We address the problem of data scarcity in harmful text classification for guardrailing applications and introduce GRAID (Geometric and Reflective AI-Driven Data Augmentation), a novel pipeline that leverages Large Language Models (LLMs) for dataset augmentation. GRAID consists of two stages: (i) generation of geometrically controlled examples using a constrained LLM, and (ii) augmentation through a multi-agentic reflective process that promotes stylistic diversity and uncovers edge cases. This combination enables both reliable coverage of the input space and nuanced exploration of harmful content. Using two benchmark data sets, we demonstrate that augmenting a harmful text classification dataset with GRAID leads to significant improvements in downstream guardrail model performance.
%U https://aclanthology.org/2025.emnlp-main.1528/
%P 30047-30065
Markdown (Informal)
[GRAID: Synthetic Data Generation with Geometric Constraints and Multi-Agentic Reflection for Harmful Content Detection](https://aclanthology.org/2025.emnlp-main.1528/) (Rad et al., EMNLP 2025)
ACL