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Abstract

Systematic reviews in medicine play a critical
role in evidence-based decision-making by ag-
gregating findings from multiple studies. A
central bottleneck in automating this process is
extracting numeric evidence and determining
study-level conclusions for specific outcomes
and comparisons. Prior work has framed this
problem as a textual inference task by retriev-
ing relevant content fragments and inferring
conclusions from them. However, such ap-
proaches often rely on shallow textual cues and
fail to capture the underlying numeric reason-
ing behind expert assessments. In this work,
we conceptualise the problem as one of quan-
titative reasoning. Rather than inferring con-
clusions from surface text, we extract struc-
tured numerical evidence (e.g., event counts or
standard deviations) and apply domain knowl-
edge informed logic to derive outcome-specific
conclusions. We develop a numeric reasoning
system composed of a numeric data extraction
model and an effect estimate component, en-
abling more accurate and interpretable infer-
ence aligned with the domain expert principles.
We train the numeric data extraction model us-
ing different strategies, including supervised
fine-tuning (SFT), and reinforcement learning
(RL) with a new value reward model. When
evaluated on the COCHRANEFOREST bench-
mark, our best-performing approach – using RL
to train a small-scale number extraction model –
yields up to a 21% absolute improvement in F1
score over retrieval-based systems and outper-
forms general-purpose LLMs of over 400B pa-
rameters by up to 9%. Our results demonstrate
the promise of reasoning-driven approaches for
automating systematic evidence synthesis.

1 Introduction

Systematic reviews are the cornerstone of evidence-
based medicine, offering rigorous syntheses
of available studies to guide clinical decision-
making (Murad et al., 2016). A critical component
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Figure 1: Example of estimating the intervention effect
based on the extracted outcome data for a clinical study.

of systematic reviews is the extraction of study-
level numeric evidence (e.g., event counts or stan-
dard deviations) from one or multiple correspond-
ing clinical trial papers and derive the conclusions
for each outcome and comparison under assess-
ment. However, automating this extraction remains
an open challenge. As illustrated in Figure 1 (prior
work), previous studies (Pronesti et al., 2025) have
primarily framed this task as a retrieval-based ques-
tion answering problem: given a query about an
outcome, systems retrieve relevant study fragments
and infer conclusions based on the retrieved text.

Despite progress, such approaches fundamen-
tally rely on surface-level textual cues, limiting
their effectiveness. To illustrate these limitations,
we plot in Figure 2 the relationship between evi-
dence retrieval precision (x-axis) and the answer F1
score (y-axis) on 30 manually annotated instances
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Figure 2: F1 score for predicting the correct answers
on 30 instances from COCHRANEFOREST on different
retrieval precision using 4 state-of-the-art LLMs.

(Appendix C) from the COCHRANEFOREST bench-
mark (Pronesti et al., 2025) across four state-of-the-
art large language models (LLMs). Each instance
consists of a trial study comprising one or more
papers, a research question, its corresponding cate-
gorical answer, and an exhaustive annotation of all
supporting textual evidence drawn from the entire
paper. In general, while better retrieval precision
correlates with improved performance, even perfect
retrieval (100% precision) results in a modest max-
imum F1 score of 68%. Moreover, performance
gains plateau quickly: increasing retrieval preci-
sion from 50% to 100% yields only 3-4% absolute
improvement. This suggests that textual informa-
tion alone is often insufficient to determine study
conclusions, particularly when studies address mul-
tiple outcomes or consist of multiple publications.

These findings motivate a shift in perspective –
from relying on surface-level textual cues to ex-
plicitly modelling the quantitative reasoning that
underpins expert assessments in systematic reviews.
A natural alternative is to adopt domain expert prin-
ciples by extracting and interpreting the numerical
evidence (e.g., effect sizes and confidence inter-
vals) that supports each study’s conclusion. This
reframes the task from semantic retrieval to struc-
tured statistical inference. Recent work by Yun
et al., 2024 has explored this direction by lever-
aging pretrained LLMs through prompting to ex-
tract quantitative results. While promising, this
approach has so far been limited to individual tri-
als and has not addressed the challenges posed by
longer, heterogeneous full-text studies included in
systematic reviews. Furthermore, the potential of
custom-trained models optimised specifically for
numerical reasoning and alignment with expert con-
clusions remains largely unexplored in this setting.

Concurrently, advances in supervised fine-tuning
(SFT) and reinforcement learning (RL) have shown

significant improvements in aligning model be-
haviour with complex reasoning objectives (Wei
et al., 2022; Guo et al., 2025). Building on these
insights, as shown in Figure 1 (this work), we pro-
pose a structured pipeline that extracts interpretable
numerical evidence from full-text studies via a nu-
meric data extraction model, and infers study-level
conclusions using transparent rules through an ef-
fect estimate component—eschewing reliance on
implicit textual signals. We train compact numeric
data extraction models using a wide range of strate-
gies, including SFT, SFT with intermediate reason-
ing traces, and RL with a novel value-based reward
model. On two different datasets, our models out-
perform the prompting-based approaches based on
big models proposed in Yun et al. (2024).

In addition, compared to the implicit text evi-
dence reasoning approach (Pronesti et al., 2025),
our models allow one to automatically generate the
corresponding row of a forest plot (Section 2.2)
from a full text study by directly extracting numeri-
cal evidence for each outcome measure. This repre-
sents a key step toward full automation of the sys-
tematic review process, bridging the gap between
primary study reporting and meta-analytic synthe-
sis (Wallace et al., 2010; Tsafnat et al., 2014).

In summary, our contributions are as follows: (1)
we propose a novel pipeline that predicts study con-
clusions by extracting and statistically analysing
numerical outcomes, instead of relying purely on
textual retrieval; (2) we explore how different train-
ing strategies—standard SFT, SFT with interme-
diate reasoning traces, and RL—affect the reason-
ing abilities of compact language models on this
task; (3) we develop custom models trained for this
task, achieving up to 21% absolute improvement
in F1 score compared to retrieval-based systems on
COCHRANEFOREST.

2 Preliminaries

2.1 Systematic Reviews

A systematic review is a rigorous method of synthe-
sising evidence from multiple studies that address
a clearly formulated research question (Chandler
et al., 2019). It follows a structured protocol for
identifying, selecting, and appraising relevant re-
search to minimise bias and yield reliable findings.

2.2 Forest Plots

Forest plots are visual tools commonly used in sys-
tematic reviews to display the estimated effects
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from multiple studies on a common scale. Each
study is typically represented as a point estimate
(e.g., mean difference, odds ratio) with a confi-
dence interval, and a vertical line indicating a null
effect (e.g., 0 for differences, 1 for ratios). Forest
plots help in assessing consistency across studies
and interpreting the overall effect direction and
magnitude. Examples are shown in Appendix A.

2.3 Data Extraction from Biomedical Studies

Biomedical studies, particularly randomised con-
trolled trials (RCTs), typically report numerical out-
come data for different treatments or interventions.
These results—such as event or group size—may
appear in tables, figures, or embedded within nar-
rative text. Extracting this information is essential
for downstream tasks such as study-level evidence
synthesis and across-study meta-analysis.

Following Yun et al. (2024), we categorise ex-
tracted numerical data into two main outcome
types: binary outcomes, which include the number
of events and group sizes for both the intervention
and comparator arms; and continuous outcomes,
which consist of means, standard deviations, and
group sizes for intervention and comparator groups.

Once extracted, these values can be used in stan-
dard meta-analytic methods to estimate treatment
effects—such as mean differences, risk ratios, or
odds ratios—along with their corresponding con-
fidence intervals, forming the basis for deriving
study-level conclusions. An example of estimating
treatment effects is provided in Appendix A.

3 Methodology

As shown in Figure 1, our system consists of a
fine-tuned numeric extraction model grounded in
reasoning, alongside a rule-based effect size esti-
mation component. In the following, we describe
each part in detail.

3.1 Training Dataset Creation

Training Data Collection. The initial phase of
our methodology involved the acquisition of high-
quality, human-annotated data to train our models.
Following the methodology described in Pronesti
et al. (2025), we processed the Cochrane Database
of Systematic Reviews (CDSR)1 to identify sys-
tematic reviews containing non-paywalled full-text
studies and at least one forest plot available in SVG
format. Each forest plot was parsed to extract

1https://www.cochranelibrary.com/cdsr/reviews

Dataset Train Test Total Avg tokens

COCHRANEFORESTEXT 1864 208 2072 12109.2
COCHRANEFOREST – 725 725 11688.7
RCTS – 413 413 4364.9

Table 1: Datasets statistics. Train/test split only applies
to COCHRANEFORESTEXT. COCHRANEFOREST and
RCTs are used for testing.

the underlying numerical data (i.e. the number
of events and total participants in each group for
binary outcomes, or the mean, standard deviation,
and sample size for continuous outcomes), along
with the point estimate, 95% confidence interval,
and textual conclusion for each included study.

To increase dataset size and training diversity, we
relaxed one of the constraints imposed in the origi-
nal COCHRANEFOREST benchmark. Specifically,
we no longer require that each forest plot contain at
least two studies with differing conclusions. This
change allows us to include more reviews while
still preserving outcome-level heterogeneity across
the dataset. In addition, to prevent data leakage, we
explicitly excluded any study in COCHRANEFOR-
EST from our training set.

The final training dataset consists of 2,072 exam-
ples, spanning 104 systematic reviews and 25.9 M
tokens of full-text biomedical content. Each data
point contains: (1) the full text of a study, (2) the
outcome type (i.e., binary or continuous) as defined
in the corresponding forest plot, (3) the set of nu-
merical values to be extracted (e.g., group means or
event counts), (4) the computed point estimate, (5)
the 95% CI, and (6) the final conclusion assigned
to the outcome in the forest plot. We refer to this
dataset as COCHRANEFORESTEXT.

Synthetic Data Annotation. To enrich the
dataset with reasoning traces for SFT, we used
Llama 3.1 405B (Grattafiori et al., 2024) with the
system prompt shown in Figure 6 (Appendix), tem-
perature of 0.7 and 2,048 tokens generation limit.
An example data instance is provided in Table 6
(Appendix).

3.2 Numeric Data Extraction Model

3.2.1 SFT with CoT
We first adapt a pretrained language model to our
task via supervised fine-tuning (SFT), which adapts
a pretrained language model πθ to reflect a domain-
specific distribution P . This is achieved by min-
imising the negative log-likelihood over a dataset
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of example sequences, encouraging the model to
increase the probability of desired outputs. In our
context, the goal is to enable the model to map
free-text descriptions of study results to structured
outputs that capture outcome information in a stan-
dardised schema. Each training example consists
of a biomedical study, paired with the correspond-
ing outcome of interest (Table 6). The output is
represented in YAML format and encodes either
binary outcomes (with event counts and totals for
intervention and comparator groups) or continu-
ous outcomes (with group-wise means, standard
deviations, and sample sizes). The model learns to
generate these structured summaries conditioned
on the corresponding textual evidence. That is,
given prompt-target pairs (x,y) ∼ P , the loss is
computed as:

Lcond(θ) = −E(x,y)∼P

[
m∑

t=1

log πθ(yt | x, y<t)

]

This focus helps the model better learn task-
relevant outputs without overfitting to input to-
kens (Wang et al., 2023; Chiang et al., 2023; Yu
et al., 2024).

3.2.2 RL with Fine-grained Rewards
As an alternative to SFT, we explore Reinforcement
Learning, which further refines LLMs by aligning
model outputs with human preferences or reward
signals. We adopt Group-Relative Policy Optimisa-
tion (GRPO) (Shao et al., 2024), which computes
normalised rewards over a group of responses and
reduces variance in learning.

In our setup, the model acts as a policy πθ that
takes as input a textual passage describing clini-
cal study results and outputs a structured response.
Each response consists of a thought process en-
closed in a <think> tag, followed by a YAML ob-
ject encoding outcome data, using the same schema
adopted in SFT. For each passage x, G candidate
completions {yi}Gi=1 ∼ πold(· | x) are sampled
from the reference policy πold to encourage robust-
ness and diversity. These completions are scored
using rule-based reward functions that evaluate fac-
tual correctness and adherence to format. The raw
rewards Ri are then normalised across the group:

Ai =
Ri − E[Rj ]√

V[Rj ]
, j ∈ {i, ..., G}

where E[Rj ] and V[Rj ] are respectively the mean
and variance of the rewards for the group of re-
sponses. The policy is optimised using a clipped,

KL-regularised objective that encourages agree-
ment with high-reward behaviours while maintain-
ing proximity to a reference model πref :

LGRPO(θ) = E
[
1

G

G∑

i=1

1

|yi|

|yi|∑

t=1

min
(
pi,t(θ)Ai,

clip(pi,t(θ), 1− ε, 1 + ε)Ai

)
− β KL[πθ ∥πref]

]

where β governs the regularisation strength and
pi,t(θ) is the token-level probability ratio defined
as follows:

pi,t(θ) =
πθ(yi,t | x, yi,<t)

πθold(yi,t | x, yi,<t)

Reward Functions. In our setting, the model
produces structured YAML outputs representing
binary or continuous outcomes. To evaluate these
outputs during RL, we define three rule-based re-
ward functions based on format validity and numer-
ical correctness. Let Ci be the model output, Ei

the expected answer.

Correctness Reward (CR). This reward com-
pares numerical values in Ci and Ei when the out-
come type is correct. Let Vi = {v1, . . . , vn} and
V̂i = {v̂1, . . . , v̂n} be the parsed numerical fields.
Then:

RCR =
1 +

∑n
j=1 1{vj ≈ v̂j}
1 + n

where vj ≈ v̂j means exact match for integers and
absolute difference < 10−3 for floats. If parsing
fails or types mismatch, we set RCR = 0.

Format Reward (FR). This reward checks
whether Ci follows the expected structure. Let
F denote the set of all valid formats (Appendix B),
including required keys and outcome type. We
define:

RFR =

{
1 if πθ(x) ∈ F
0 otherwise

This reward ensures that the output adheres to a
valid YAML schema for the predicted outcome
type.

Thought Format Reward (TFR). The TFR in-
centivises the model to adhere to a predefined out-
put structure, such as the use of <think> tag.

RTFR =

{
1 if πθ(x) matches thought pattern
0 otherwise
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Final Reward. The final reward is a weighted
combination of format and correctness compo-
nents:

R = 0.8 ·RCR + 0.1 ·RFR + 0.1 ·RTFR

The weights prioritise factual accuracy while still
incentivising structural correctness and robustness
to formatting issues with proper reasoning traces.
More details are provided in Appendix E.

3.3 Effect Estimate Component
After extracting the relevant numerical data, we
compute standardised fixed-effect estimates based
on the type of outcome (Hedges and Vevea, 1998).

Binary Outcomes. For event-based outcomes,
we compute the risk ratio (RR) as RR = a/(a+b)

c/(c+d) ,
where a, b are the numbers of events and non-
events in the treatment group, and c, d in the con-
trol group. To quantify uncertainty, we compute
the 95% confidence interval on the log scale as

log(RR)± 1.96 ·
√

1
a − 1

a+b +
1
c − 1

c+d , which is
then exponentiated to return to the RR scale (see
Appendix A for an example calculation).

Continuous Outcomes. For outcomes measured
on a continuous scale, we compute the mean dif-
ference (MD) as x̄T − x̄C , where x̄T and x̄C are
the group means in the treatment and control arms,
respectively. The 95% CI is then computed as

MD±1.96 ·
√

s2T
nT

+
s2C
nC

, where sT , sC and nT , nC

are respectively the standard deviations and sam-
ples sizes of the two groups (see Appendix A for
an example calculation).

Deriving Study Conclusions. Study conclusions
are determined directly from the 95% confidence
interval of the effect estimate (Chang et al., 2022).
For binary outcomes, if the confidence interval for
the odds ratio lies entirely above 1, the study is
classified as supporting the intervention; if it lies
entirely below 1, it favors the control; and if it
includes 1, the result is considered inconclusive.
For continuous outcomes, the same logic applies
with respect to the null value 0.

4 Experiments

4.1 Experimental setup
Training and Evaluation Datasets. For train-
ing, we use the dataset created as described in Sec-
tion 3.1, with the reasoning traces for SFT, using
1864 samples for training and 208 for validation.

For evaluation, we use two datasets. The first is
COCHRANEFOREST (Pronesti et al., 2025), which
consists of 725 instances derived from 48 Cochrane
Systematic Reviews and 220 forest plots. The sec-
ond, introduced by Yun et al. (2024), contains 413
complete, human-annotated instances derived from
120 RCTs. Dataset statistics are reported in Table 1.

Evaluation Metrics. We report a range of met-
rics to assess both end-to-end performance and in-
termediate reasoning accuracy. For the end-to-end
task of predicting the final conclusion label of each
study, we report accuracy and F1 score. Following
Yun et al. (2024), we also evaluate the quality of nu-
merical extraction using exact match (EM), EM@1
(at least one positional match), as well as the mean
squared error (MSE) of the computed point esti-
mate derived from the extracted values. In addition,
we measure the Error Impact Rate (EIR), defined
as the ratio between the number of extraction errors
that lead to a flipped conclusion and the number of
total extraction errors at the study level.

EIR =
#errors that flip the conclusion

#extraction errors

This metric provides an insight into how often
extraction mistakes materially affect downstream
decision-making. A high EIR indicates that even a
few extraction errors can substantially alter the fi-
nal prediction, whereas a low EIR suggests that the
model’s conclusions are more robust to imperfect
inputs. Thus, EIR serves as a proxy for understand-
ing the correlation between intermediate numerical
accuracy and end-to-end reliability.

Training Setup. We conduct our training using
the Qwen2.5 model family (Yang et al., 2025),
specifically the 7B variant. Two distinct training
regimes are explored: SFT and RL. In the results
section, models are labelled with subscripts corre-
sponding to the respective training strategy.

SFT is performed for 5 epochs with a batch
size of 1 using a learning rate of 5 × 10−5 and
the AdamW optimiser (Loshchilov and Hutter,
2017). For the RL setup, we adopt the GRPO algo-
rithm (Shao et al., 2024), training for 3 epochs with
a learning rate of 1 × 10−6, batch size 1, and 16
sampled generations per batch. Additional details
are provided in Appendix E.

Model Baselines. To validate our results, we
compare a range of open- and closed-source mod-
els, with and without reasoning capabilities. All
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Model Think COCHRANEFOREST RCTs (Yun et al., 2024)
Acc F1 EM EM@1 MSE↓ EIR↓ Acc F1 EM EM@1 MSE↓ EIR↓

Pretrained LLMs
GPT-4-0125 ✗ 71.4 73.7 28.4 72.1 0.88 0.31 71.2 65.3 34.5 70.3 0.69 0.44
Qwen2.5-7B ✗ 69.7 65.4 14.9 66.4 1.40 0.39 63.2 59.7 20.3 73.8 1.19 0.50
Qwen2.5-14B ✗ 76.2 73.7 27.4 73.6 0.72 0.30 69.8 66.4 28.6 75.8 0.91 0.44
Qwen2.5-72B ✗ 82.2 80.3 42.5 81.7 0.63 0.26 75.3 72.8 35.1 81.1 0.68 0.39
Llama-3.1-8B ✗ 68.7 66.6 15.9 62.2 2.16 0.33 62.7 54.7 14.8 66.5 1.30 0.47
Llama-3.1-70B ✗ 79.4 78.3 31.5 78.7 0.59 0.28 65.5 60.8 30.0 74.2 1.45 0.44
Llama-3.1-405B ✗ 82.4 80.8 44.3 82.4 0.43 0.23 70.3 66.5 33.6 76.7 0.80 0.41
DeepSeek-Qwen-7B ✓ 59.7 54.3 11.2 58.3 2.83 0.50 53.8 45.7 9.4 53.8 3.68 0.61
DeepSeek-Qwen-14B ✓ 65.4 61.2 19.9 66.4 1.29 0.44 60.2 55.1 11.2 60.3 2.41 0.58
DeepSeek-Qwen-32B ✓ 74.0 71.6 28.6 73.5 0.58 0.28 68.8 65.0 29.1 78.2 0.72 0.43

Our Models
Qwen2.5-7B-SFT ✓ 74.5 70.1 28.4 79.1 0.51 0.29 71.5 68.4 30.2 80.0 0.64 0.36
Qwen2.5-7B-RL ✓ 81.6 80.1 42.2 81.4 0.40 0.24 79.3 76.4 41.2 89.7 0.49 0.28

Table 2: Evaluation results across models on two datasets. We report Accuracy and F1 (label prediction), EM,
EM@1, EIR and MSE (numerical extraction).

models are evaluated in zero-shot settings with
prompt and hyperparameters shown in Appendix B.

We include two main model families: Qwen
2.5 (Yang et al., 2025) and Llama 3.1 (Grattafiori
et al., 2024). In addition, we benchmark DeepSeek-
R1 and the distilled Qwen models derived from it.
We exclude distilled models afferent to the Llama
family because of their limited context size. For
closed-source models, we use GPT-4-0125.

In addition, we compare performances on the
end-to-end task against the two best RAG baselines
for this task: URCA (Pronesti et al., 2025), which
clusters retrieved passages based on their embed-
ding vectors and filters relevant information from
each cluster given the query; and GraphRAG (Edge
et al., 2024), which builds a graph-based text index
by summarising closely related entities from the
source documents.

4.2 Main Results

Comparison with Pretrained Baselines. Ta-
ble 2 presents a performance comparison of pre-
trained and fine-tuned language models on the
COCHRANEFOREST and RCTs datasets. Mod-
els vary in size, architecture, and training ap-
proach, allowing us to examine the relationship
between model scale, reasoning capability, and
task-specific performance. Among the pretrained
baselines, Llama-3.1-405B achieves the best per-
formance on COCHRANEFOREST, closely fol-
lowed by Qwen2.5-72B, which performs compet-
itively on both datasets, topping the RCTs bench-

mark on several metrics. Llama-3.1-70B and
Qwen2.5-14B also rank highly, while Qwen2.5-7B
and Llama-3.1-8B underperform relative to their
larger variants.

Fine-tuning improves performance significantly.
Qwen2.5-7B-SFT outperforms all pretrained mod-
els of similar or larger size. The Qwen2.5-7B-RL
model establishes a new state-of-the-art on both
datasets, surpassing all baselines—including the
405B model—in nearly every metric on RCTs and
closely matching it on COCHRANEFOREST, de-
spite being nearly 58x smaller. In addition, when
compared directly to its pretrained counterpart,
Qwen2.5-7B-RL shows large gains in EM (+20.9),
accuracy (+16.1), and F1 (+16.7) on the RCTs
dataset, highlighting the effectiveness of RL.

Notably, we observe that reasoning capabilities
do not always lead to improved performance. In
fact, all the distilled DeepSeek models with rea-
soning perform worse than their non-reasoning
counterparts. These results suggest that general
reasoning ability alone is insufficient for complex
domain-specific tasks. Instead, explicit task su-
pervision and structured reasoning training appear
necessary to guide models in applying reasoning
capabilities effectively.

Comparison with RAG Baselines. Table 3 com-
pares the best-performing numbers-based models
with two strong retrieval-augmented generation
(RAG) baselines —URCA and GraphRAG—on the
COCHRANEFOREST dataset. Both RAG methods
underperform compared to direct numerical rea-
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soning. The fine-tuned Qwen2.5-7B-RL achieves
an absolute gain of over 20 F1 points compared
to the best RAG baseline, highlighting the limita-
tions of retrieval in settings where precise numeri-
cal grounding and structured inference are required.
Even the zero-shot numbers-based approach out-
performs the RAG methods, suggesting that factual
retrieval alone is insufficient without robust reason-
ing over structured content.

Method F1 Acc

RAG baselines
URCA (Pronesti et al., 2025) 60.2 58.8
GraphRAG (Edge et al., 2024) 59.6 57.5

Numerical baselines
Qwen2.5-7B (zero-shot) 69.7 65.4
Qwen2.5-7B-SFT 74.5 70.1
Qwen2.5-7B-RL 81.6 80.1

Table 3: Performance comparison between RAG-based
and numbers-based approaches on COCHRANEFOREST
using Qwen2.5-7B-Instruct.

4.3 Ablation Studies
To assess the impact of different input modalities
and training strategies, we conduct a series of ab-
lation experiments (Table 4) on the RL- and SFT-
trained models. These include both data ablations
and training ablations.

In the data ablations, we isolate the contribution
of different components of the input. We evaluate
model performance when provided with: (i) only
textual context, where all tables are removed; (ii)
only tables, where we exclude surrounding text and
provide the model with structured numerical con-
tent; and (iii) only the top retrieved chunks obtained
with URCA (Pronesti et al., 2025), restricting ac-
cess to 10 evidence passages per query.

In the training ablations, we analyse the effect
of intermediate reasoning and reward design. To
evaluate the role of reasoning traces, we compare
the SFT model to a version trained without Chain-
of-Thought (CoT), which predicts the final answer
directly without intermediate steps. To assess the
impact of the reward function, we compare the
RL model to another version trained using the EX
reward, which only provides a positive signal when
all predicted values are correct.

REX = 1

{∧n
j=1 (vj ≈ v̂j)

}

We observe that among the data ablations, the
models trained only on tables achieve the best per-

Model Input F1 Acc

Input Data Ablations

Qwen2.5-7B-SFT
text 62.3 60.1
tables 70.4 66.5
urca 56.7 54.0

Qwen2.5-7B-RL
text 65.8 63.2
tables 73.1 71.6
urca 59.2 56.8

Training Ablations
Qwen2.5-7B text + tables 69.7 65.4
+ SFT-no-CoT text + tables 71.2 68.3
+ SFT (ours) text + tables 74.5 70.1
+ RL-EX text + tables 79.7 78.8
+ RL (ours) text + tables 81.6 80.1

Table 4: Ablation study on model inputs and training
supervision on COCHRANEFOREST. urca refers to the
top 10 chunks retrieved by its namesake RAG approach.

formance, confirming the importance of structured
numerical evidence in this task. However, there is
a consistent drop in performance across all settings
when models only have access to a single input
type compared to the full input (text + tables), indi-
cating that both textual and tabular information are
necessary for accurate reasoning. The URCA setting,
which corresponds to the output of a retrieval-based
pipeline, yields the lowest scores. This aligns with
the findings in Table 3 and further highlights the
limitations of existing retrieval-augmented gener-
ation approaches in this setting, primarily due to
their inability to recover the precise numerical con-
tent required for grounded inference.

In the training ablations, removing CoT super-
vision during SFT (SFT-no-CoT) results in lower
performance compared to full SFT, showing that in-
termediate reasoning traces help guide the model’s
learning process. When using RL, we find that
the dense reward signal (RCR) significantly out-
performs the variant trained with the EX reward
(REX). This confirms that sparse rewards are less
effective at shaping model behaviour than denser,
fine-grained signals.

4.4 Analyses

Impact of the Thought Process. We want to
evaluate whether the reasoning processes generated
by our trained models (RL and SFT) are logically
sound, provide meaningful explanations for the ex-
tracted numbers, and enable traceability back to
the input papers. To this end, we manually anno-
tate the outputs of both models on 30 biomedical
studies, for which human annotators had previously
identified the sources of the correct numbers (see
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Thought Process Reasoning Label Qwen2.5-7B-RL Qwen2.5-7B-SFT

Count Fraction Count Fraction

✓ Correct reasoning with traceability 42 31.82% 34 25.76%
✓ Correct reasoning without traceability 39 29.55% 24 18.18%
✓ Correct reasoning, incorrect number 37 28.03% 41 31.06%
✗ Correct number, incorrect reasoning 3 2.72% 13 9.85%
✗ Copy without reasoning 6 4.55% 0 0.00%
✗ Hallucinated 5 3.79% 20 15.15%
✗ Missing reasoning 0 0.00% 0 0.00%

Total 132 100% 132 100%

Table 5: Distribution of annotated reasoning labels for Qwen2.5-7B-RL and and Qwen2.5-7B-SFT. ✓ indicates
correct reasoning. ✗ indicates incorrect reasoning.

Appendix C), assigning a single label to each rea-
soning process. Labels distinguish whether the
reasoning correctly supports the individual num-
ber, whether it enables traceability to the source,
and whether it hallucinates or lacks explanation.
A complete list of labels and annotation criteria is
provided in Appendix D.

Results (Table 5) show that the RL model pro-
duces a higher fraction of correct reasoning pro-
cesses overall compared to the SFT model (61.37%
vs 43.94%, summing the first two rows). This
suggests that reinforcement learning improves the
model’s ability to provide plausible and well-
structured explanations for numerical outputs. No-
tably, the RL model achieves a substantially lower
rate of hallucinated reasoning (3.79% vs 15.15%),
highlighting a significant improvement in factual
grounding. It also shows a reduced frequency of
incorrect reasoning behind correct numbers (2.72%
vs 9.85%), indicating better alignment between the
generated explanations and the numerical outputs.

These findings suggest that reinforcement learn-
ing not only improves the factual accuracy of model
outputs, but also enhances the traceability and reli-
ability of the underlying reasoning process.

Reward Dynamics. Figure 3 shows the reward
dynamics during RL training. Thought Format
Reward (TFR) and Format Reward (FR) increase
rapidly and plateau early, indicating that the model
quickly learns the reasoning scaffold and YAML
schema. This behaviour also suggests that the
model inherently learns to predict the correct out-
come type at an early stage. By contrast, Cor-
rectness Reward (CR) improves more gradually
and continues rising after TFR/FR have stabilised,
showing that numerical correctness requires longer
training. These dynamics are consistent with our
main results and design choices: structural aspects
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Figure 3: Rewards dynamics. Format rewards plateau
quickly during training, whereas the correctness reward
improves more gradually, suggesting that LLMs natu-
rally learn to follow structural patterns while still im-
proving on quality rewards.

are mastered quickly, whereas correctness is more
demanding and depends on the model’s ability to
apply reasoning across each component of the fi-
nal output. Overall, the reward dynamics illustrate
how reinforcement signals guide the model from
surface-level alignment toward substantive reason-
ing ability.

Qualitative Example. We present a qualitative
example from COCHRANEFOREST (Figure 9, in
appendix), comparing the reasoning and outputs of
Qwen2.5-7B-SFT and Qwen2.5-7B-RL on a chal-
lenging case where the exact values for the com-
parator and outcome are not explicitly reported
in the biomedical study. While the SFT model
fails to extract the relevant information, the RL
model demonstrates stronger reasoning capabili-
ties: it identifies population percentages from one
of the study’s tables and correctly maps them to the
total number of participants previously extracted,
thereby analytically inferring the desired values.
Notably, even our human annotators initially strug-
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gled to locate the correct numbers in this scenario.

5 Related work

Biomedical Information Extraction. Recent ef-
forts in biomedical information extraction have
made significant advances. Wadhwa et al. (2023)
introduced a generative approach for extracting in-
terventions, comparing and outcomes from RCTs.
While effective, we extend this by focusing on nu-
merical evidence and reasoning.

Lehman et al. (2019) demonstrated that accu-
rately extracting evidence is the primary bottleneck
for determining treatment efficacy. O’Doherty et al.
(2024) showed using abstracts alone rather than
structured PICO data can worsen synthesis quality,
underscoring the importance of data representation.
Our model processes the full content of the paper,
providing a more comprehensive basis. Our work
can be seen as an example of scientific argument
mining at the global discourse level (Al Khatib
et al., 2021) and contributes to the broader agenda
of AI for Science (Eger et al., 2025).

LLMs for Evidence Synthesis and Numerical
Reasoning. While LLMs have shown promise in
biomedical text mining, they face challenges syn-
thesising complex evidence and numerical reason-
ing. Shaib et al. (2023) found that GPT-3 struggled
with multi-document synthesis and biased effect
reporting. Nye et al. (2020) introduced a frame-
work to map evidence and infer conclusions. Yun
et al. (2024) assessed how effectively LLMs can
extract numerical data, noting challenges with con-
tinuous outcomes and distinguishing similar mea-
sures. Wang et al. (2025) introduced a method that
integrates LLMs with code generation to extract
clinical study outcomes. However, their evaluation
was restricted to selected cancer-related reviews,
and the reliance on structured prompts and domain-
specific heuristics raises questions about scalability
to broader therapeutic areas. Lai et al. (2025) eval-
uated LLMs for data extraction and risk of bias
assessment in complementary medicine, reporting
high performance, but their focus on a relatively
narrow and domain-specific set of trials limits the
generalizability of the findings. Similarly, Sun et al.
(2024) assessed LLMs for automated data extrac-
tion from randomized trials, finding encouraging
results, yet performance was uneven across out-
come types, with continuous measures proving par-
ticularly challenging. These studies highlight that
while LLMs show high potential, existing work

focuses on narrow domains, curated benchmarks,
or simplified tasks, leaving open the question of
how well they generalise to the diverse evidence
encountered in real-world systematic reviews.

Reinforcement Learning for Numerical Evi-
dence Extraction. Previous work has proven that
SFT can be used to improve models such as BERT
(Devlin et al., 2019) for biomedical text mining
(Lee et al., 2019; Xie et al., 2022). Reinforce-
ment learning has improved model alignment for
complex reasoning objectives (Wei et al., 2022;
Lambert et al., 2024; Guo et al., 2025). Recent
work (Lin et al., 2025) demonstrates that RL with
verifiable rewards can improve model performance
on clinical reasoning tasks like EHR-based cal-
culations and trial matching. To the best of our
knowledge, we are the first to design and apply
RL-based approaches specifically to the extraction
of numerical evidence from biomedical studies for
use in systematic reviews.

6 Conclusion

In this paper we presented a quantitative reason-
ing framework for automating evidence extraction
in systematic reviews, shifting away from shallow
textual inference toward structured numeric under-
standing. By directly modelling the process domain
experts follow, we move closer to automating a key
step in evidence-based medicine. Our proposed
system, combining SFT and RL numeric extrac-
tion models with reasoning over effect estimates,
significantly outperforms retrieval-based baselines
and even large-scale language models on both the
COCHRANEFOREST and the RCTs benchmarks.
These results affirm the value of reasoning-driven
supervision for complex scientific tasks and point
to RL as a promising avenue for developing re-
liable and domain-aligned extraction systems in
evidence-based medicine.

Beyond improving performance, our approach
highlights the importance of aligning machine
reasoning with expert workflows, ensuring inter-
pretability and trustworthiness. Looking forward,
this work opens opportunities for integrating au-
tomated evidence extraction into clinical decision
support pipelines, ultimately reducing the manual
burden on researchers and accelerating the trans-
lation of medical knowledge into practice. Future
research may extend this framework to other scien-
tific domains where quantitative reasoning is core.
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7 Limitations

While this work makes meaningful contributions
toward reasoning-based evidence extraction, sev-
eral limitations remain. First, the system assumes
that all relevant numerical evidence is explicitly or
implicitly reported and cleanly extractable, which
is often not the case in real-world clinical studies.
Missing values and inconsistent formats can hin-
der reliable extraction. At present, the model does
not attempt to identify or flag missing informa-
tion, which limits its utility in incomplete or noisy
settings. Training models to detect and explicitly
report missing or uncertain values is a critical di-
rection for future development. Additionally, our
approach currently focuses on a limited set of out-
come types and uses predefined logical rules, which
may constrain generalisation to more complex or
diverse clinical scenarios. Addressing these limi-
tations will be key to deploying robust systems for
real-world systematic review automation.
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A Forest Plots and Effect Size Estimation

Forest plots are a standard way to visualise the re-
sults of individual studies and their synthesis in a
meta-analysis. Each row typically represents one
study, showing its estimated treatment effect and
the corresponding 95% confidence interval (CI).
The point estimate is usually plotted as a square
(with size proportional to the study’s weight), and
the CI as a horizontal line. The vertical line repre-
sents the line of no effect: 1 for ratios (e.g., risk ra-
tio or odds ratio), and 0 for differences (e.g., mean
difference).

At the bottom of the plot, a diamond often repre-
sents the pooled effect estimate from all included
studies. This visualisation helps readers assess not
only the overall direction and magnitude of the ef-
fect but also the consistency (heterogeneity) across
studies.

Below we illustrate how to interpret and compute
effect estimates and confidence intervals for the two
common outcome types: binary outcomes with risk
ratios (Figure 4), and continuous outcomes with
mean differences (Figure 5).

Figure 4: A forest plot assessing clinical remission (bi-
nary outcome) in patients affected by medically refrac-
tory Crohn’s disease treated with stem cells versus con-
trol.

Figure 5: A forest plot comparing GnRH agonist ver-
sus no agonist (placebo) in women with endometriosis,
assessing a continuous outcome (average number of
oocytes per woman).

Binary Outcomes and Risk Ratios. Binary out-
comes refer to variables with two possible states,
such as event/no event. A commonly used effect

measure in this context is the risk ratio (RR), which
compares the proportion of events in the interven-
tion group to that in the comparator group:

RR =
a/n1

c/n2

where a and n1 are the number of events and
total participants in the intervention group, and c
and n2 are those in the comparator group.

Example. In the Hawkey 2015 study (Figure 4):

• Intervention (stem cells): 8 events out of 23
participants

• Comparator (placebo): 2 events out of 22 par-
ticipants

The point estimate is:

RR =
8/23

2/22
≈ 0.3478

0.0909
≈ 3.83

To compute the 95% confidence interval, we use
the standard error of log:

SE =

√
1

8
− 1

23
+

1

2
− 1

22
≈

√
0.536 ≈ 0.732

The CI on the log scale is:

log(3.83)± 1.96 · 0.732 ≈ (−0.091, 2.777)

Exponentiating the bounds gives the 95% CI for
the RR:

95% CI ≈ (e−0.091, e2.777) ≈ (0.91, 16.07)

Continuous Outcomes and Mean Differences.
Continuous outcomes are measured on a numerical
scale, such as a score or a lab value. The typical
effect measure is the mean difference (MD), which
is the arithmetic difference in average outcome
values between groups:

MD = x̄1 − x̄2

where x̄1 and x̄2 are the group means.

Example. In the Dicker 1992 study (Figure 5):

• Intervention (GnRH agonist): mean = 5.22,
SD = 2.22, n = 48

• Comparator (control): mean = 3.08, SD =
1.81, n = 51
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The point estimate is:

MD = 5.22− 3.08 = 2.14

The standard error is computed as:

SE =

√
2.222

48
+

1.812

51
≈ 0.408

Then, the 95% confidence interval is:

2.14± 1.96 · 0.408 ≈ 2.14± 0.80 = (1.34, 2.94)

B Prompts

The prompts used for synthetic data annotation and
for training are shown in Figure 6 and 7, respec-
tively. For training, a temperature of 0.7 and 2,048
tokens as maximum output length are used.

C Manual Annotations Identifying
Number Sources

Annotation Instances. Two master’s degree stu-
dents in NLP and co-authors of this work anno-
tated 30 studies paired with outcomes from the
COCHRANEFOREST dataset. These studies were
randomly sampled from the whole dataset, and
each student annotated fifteen studies with an over-
lap of five studies for cross-comparison. For each
study, the annotators were instructed to locate and
mark all textual or tabular spans that contained the
numerical evidence supporting the reported out-
comes. In the case of binary outcomes, this in-
volved identifying four values: the event count and
total group size for both the intervention and com-
parator arms. For continuous outcomes, six values
were annotated: the mean, standard deviation, and
group size for each group. Each annotated num-
ber was linked to one or more corresponding spans
from the original study, enabling fine-grained trace-
ability. An example annotation instance is shown
in Figure 8.

Inter-annotator Agreement. To assess anno-
tation consistency, we computed inter-annotator
agreement (IAA) on the five studies annotated by
both annotators. Agreement was evaluated at the
span level: a match was counted when both annota-
tors identified overlapping text spans referring to
the same numerical value (e.g., intervention group
size or mean outcome). We report a span-level
F1 score of 0.70, indicating substantial agreement.
Disagreements were primarily due to differences
in span boundaries or the inclusion of surrounding
contextual phrases.

Prompt for synthetic data annotation

{study_content}

The above is a study from a medical system-
atic review. Your task is to produce a reasoning to
explain how to extract the relevant numbers for the
following intervention, comparator and outcome:

intervention: {intervention}
comparator: {comparator}
outcome: {outcome}

The expected output is:

{target_value}

You need to first explain how to infer the out-
come type. Then, which numbers to extract and why.
Finally, point to where these numbers appear in the
study.

Figure 6: Prompt for the synthetic data annotation with
reasoning traces.

Prompt for training and inference

Articles: {articles}

Question: Based on the given trial articles,
what is the outcome type and corresponding numer-
ical data for the following Comparison and Outcome?

Comparison: {comparison}
Outcome: {outcome}

First, determine and output the outcome_type
as either: binary or continuous

Then, provide the extracted data in format as
follows:
If the outcome is binary, use this format:

outcome_type: binary
intervention:
events: NUMBER total: NUMBER
comparator:
events: NUMBER total: NUMBER

If the outcome is continuous, use this format:

outcome_type: continuous
intervention:
mean: NUMBER standard_deviation: NUMBER
group_size: NUMBER
comparator:
mean: NUMBER standard_deviation: NUMBER
group_size: NUMBER

Use post-intervention data when both pre and
post are available. If multiple timepoints are reported,
choose the one closest to the timepoint of interest, or
the latest available. Think about it step by step.

Figure 7: Prompt for training and inference.
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D Manual Annotations for Extraction
Model Outputs

After some pilot studies, we use the following la-
bels to categorize a model’s thinking process:

1. Correct reasoning with traceability, the rea-
soning correctly supports the generated num-
bers and provides sufficient clues to identify
their location in the input papers;

2. Correct reasoning without traceability, the
reasoning correctly supports the generated
numbers, but the source of the number cannot
be located based on the explanation;

3. Correct reasoning, incorrect number, the ex-
tracted number is incorrect, but the reasoning
is sensible and supports the outcome.

4. Correct number, incorrect reasoning, the ex-
tracted number is correct, but the reasoning
process is incorrect, misleading, or does not
support the outcome;

5. Copy without reasoning, the numbers are
copied from the input papers with no under-
standing or reasoning steps leading to the final
answer;

6. Hallucinated, the reasoning process refers to
data, methods, or results not present in the
input papers;

7. Missing reasoning, no reasoning process is
generated.

E Hyperparameters and APIs

We executed all the experiments either via API or
on our own cluster. We used the paid-for OpenAI
API to access GPT-3.5-turbo and GPT-4. On the
other hand, we hosted and trained the open-source
models used in this paper on a distributed cluster.

SFT is performed for 5 epochs with a batch size
of 1 (due to the large size of the input data) using
a learning rate of 5× 10−5 and the AdamW opti-
miser (Loshchilov and Hutter, 2017). For the RL
setup, we adopt the GRPO algorithm (Shao et al.,
2024), training for 3 epochs with a learning rate
of 1 × 10−6, batch size 1, and 16 sampled gener-
ations per batch. Both training protocols leverage
gradient accumulation with 8 accumulation steps.
All experiments are conducted using the Open-R1
framework (Hugging Face, 2025) on 8 NVIDIA

A100 GPUs, each equipped with 80GB of memory.
Models have been served for inference with the
vllm framework (Kwon et al., 2023).

The weights of the final reward model have been
set to maximise the importance of the correctness
reward (0.8) while still ensuring the model follows
the YAML format reward (0.1) and the already
learnt thought format reward present in the base
model (0.1). A tuning of such weights revealed that
assigning equal weights to the 3 components leads
to a degradation of the performance.

F Scientific Artefacts and Licensing

In this work, we used the following scientific arte-
facts. LLaMa 3.1 is licensed under a commercial
license2. GPT-4 is licensed under a commercial
license3. Qwen2.5 is licensed under the Apache
2.0 license4. DeepSeek models are licensed under
the MIT license5. Mining text and data from the
Cochrane library is permitted for non-commercial
research through the Wiley API.6. The usage of the
listed artefacts is consistent with their licenses.

2https://llama.meta.com/doc/overview
3https://openai.com/policies/terms-of-use
4https://qwenlm.github.io/blog/qwen3
5https://api-docs.deepseek.com/news/

news250120
6https://www.cochranelibrary.com/help/access
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Figure 8: Example of multi-span numerical data annotations for a given study
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Figure 9: Example of a complex example from COCHRANEFOREST. The SFT model fails at inferring the correct
numerical information, and its thought mismatches its structured output. On the other hand, the model trained with
GRPO correctly infers the number of events, reasoning on the previously extracted total number of participants.
Interestingly, even our human annotators initially struggled to extract the right numbers.
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Hawkey 2015

Text Importance Case reports and series suggest hematopoietic stem cell
transplantation (HSCT) may benefit some patients with Crohn
disease.Objective To evaluate the effect of autologous HSCT on refractory
Crohn disease. ...

Outcome Clinical remission
Comparison Stem cells versus Control
Outcome type Binary
Intervention events 8
Intervertion total 23
Comparator events 2
Comparator total 22
Point estimate 3.83
95% CI [0.91, 16.07]

Target value outcome_type: binary
intervention:
events: 8 total: 23
comparator:
events: 2 total: 22

Thought To extract the relevant numbers, we first infer the outcome type as
"binary" because the outcome "Clinical remission" is a yes/no or
present/absent type of outcome.
The relevant numbers for this outcome are found in Table 2: "Final
Assessments", under the outcome "CDAI <150 last 3 mo". Specifically,
for the intervention group (Stem cells), we have 8 events (patients in
clinical remission) out of 23 total patients (34.8%). For the comparator
group (Control), we have 2 events out of 22 total patients (9.1%).

Table 6: The corresponding entry in COCHRANEFORESTEXT for Hawekey 2015 in Figure 4. Thought and target
value are contatenated for SFT as follows: <think>{thought}</think>{target_value}.
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