@inproceedings{song-etal-2025-accelerated,
title = "Accelerated Test-Time Scaling with Model-Free Speculative Sampling",
author = "Song, Woomin and
Dingliwal, Saket and
Jayanthi, Sai Muralidhar and
Ganesh, Bhavana and
Shin, Jinwoo and
Galstyan, Aram and
Bodapati, Sravan Babu",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.1558/",
pages = "30611--30624",
ISBN = "979-8-89176-332-6",
abstract = "Language models have demonstrated remarkable capabilities in reasoning tasks through test-time scaling techniques like best-of-N sampling and tree search. However, these approaches often demand substantial computational resources, creating a critical trade-off between performance and efficiency. We introduce STAND (STochastic Adaptive N-gram Drafting), a novel model-free speculative decoding approach that exploits the inherent redundancy in reasoning trajectories to achieve significant acceleration without compromising accuracy. Our analysis shows that reasoning paths frequently reuse similar reasoning patterns, enabling efficient model-free token prediction without requiring separate draft models. By introducing stochastic drafting and preserving probabilistic information through a memory-efficient logit-based N-gram module, combined with optimized Gumbel-Top-K sampling and data-driven tree construction, STAND significantly improves token acceptance rates. Extensive evaluations across multiple models and reasoning tasks (AIME-2024, GPQA-Diamond, and LiveCodeBench) demonstrate that STAND reduces inference latency by 60-65{\%} compared to standard autoregressive decoding while maintaining accuracy. Furthermore, STAND consistently outperforms state-of-the-art speculative decoding methods across diverse inference patterns, including single-trajectory decoding, batch decoding, and test-time tree search. As a model-free approach, STAND can be applied to any existing language model without additional training, making it a powerful plug-and-play solution for accelerating language model reasoning."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="song-etal-2025-accelerated">
<titleInfo>
<title>Accelerated Test-Time Scaling with Model-Free Speculative Sampling</title>
</titleInfo>
<name type="personal">
<namePart type="given">Woomin</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saket</namePart>
<namePart type="family">Dingliwal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sai</namePart>
<namePart type="given">Muralidhar</namePart>
<namePart type="family">Jayanthi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bhavana</namePart>
<namePart type="family">Ganesh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jinwoo</namePart>
<namePart type="family">Shin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aram</namePart>
<namePart type="family">Galstyan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sravan</namePart>
<namePart type="given">Babu</namePart>
<namePart type="family">Bodapati</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Language models have demonstrated remarkable capabilities in reasoning tasks through test-time scaling techniques like best-of-N sampling and tree search. However, these approaches often demand substantial computational resources, creating a critical trade-off between performance and efficiency. We introduce STAND (STochastic Adaptive N-gram Drafting), a novel model-free speculative decoding approach that exploits the inherent redundancy in reasoning trajectories to achieve significant acceleration without compromising accuracy. Our analysis shows that reasoning paths frequently reuse similar reasoning patterns, enabling efficient model-free token prediction without requiring separate draft models. By introducing stochastic drafting and preserving probabilistic information through a memory-efficient logit-based N-gram module, combined with optimized Gumbel-Top-K sampling and data-driven tree construction, STAND significantly improves token acceptance rates. Extensive evaluations across multiple models and reasoning tasks (AIME-2024, GPQA-Diamond, and LiveCodeBench) demonstrate that STAND reduces inference latency by 60-65% compared to standard autoregressive decoding while maintaining accuracy. Furthermore, STAND consistently outperforms state-of-the-art speculative decoding methods across diverse inference patterns, including single-trajectory decoding, batch decoding, and test-time tree search. As a model-free approach, STAND can be applied to any existing language model without additional training, making it a powerful plug-and-play solution for accelerating language model reasoning.</abstract>
<identifier type="citekey">song-etal-2025-accelerated</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.1558/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>30611</start>
<end>30624</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Accelerated Test-Time Scaling with Model-Free Speculative Sampling
%A Song, Woomin
%A Dingliwal, Saket
%A Jayanthi, Sai Muralidhar
%A Ganesh, Bhavana
%A Shin, Jinwoo
%A Galstyan, Aram
%A Bodapati, Sravan Babu
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F song-etal-2025-accelerated
%X Language models have demonstrated remarkable capabilities in reasoning tasks through test-time scaling techniques like best-of-N sampling and tree search. However, these approaches often demand substantial computational resources, creating a critical trade-off between performance and efficiency. We introduce STAND (STochastic Adaptive N-gram Drafting), a novel model-free speculative decoding approach that exploits the inherent redundancy in reasoning trajectories to achieve significant acceleration without compromising accuracy. Our analysis shows that reasoning paths frequently reuse similar reasoning patterns, enabling efficient model-free token prediction without requiring separate draft models. By introducing stochastic drafting and preserving probabilistic information through a memory-efficient logit-based N-gram module, combined with optimized Gumbel-Top-K sampling and data-driven tree construction, STAND significantly improves token acceptance rates. Extensive evaluations across multiple models and reasoning tasks (AIME-2024, GPQA-Diamond, and LiveCodeBench) demonstrate that STAND reduces inference latency by 60-65% compared to standard autoregressive decoding while maintaining accuracy. Furthermore, STAND consistently outperforms state-of-the-art speculative decoding methods across diverse inference patterns, including single-trajectory decoding, batch decoding, and test-time tree search. As a model-free approach, STAND can be applied to any existing language model without additional training, making it a powerful plug-and-play solution for accelerating language model reasoning.
%U https://aclanthology.org/2025.emnlp-main.1558/
%P 30611-30624
Markdown (Informal)
[Accelerated Test-Time Scaling with Model-Free Speculative Sampling](https://aclanthology.org/2025.emnlp-main.1558/) (Song et al., EMNLP 2025)
ACL
- Woomin Song, Saket Dingliwal, Sai Muralidhar Jayanthi, Bhavana Ganesh, Jinwoo Shin, Aram Galstyan, and Sravan Babu Bodapati. 2025. Accelerated Test-Time Scaling with Model-Free Speculative Sampling. In Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 30611–30624, Suzhou, China. Association for Computational Linguistics.