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Abstract

Large Language Models (LLMs) perform well
on reasoning benchmarks but often fail when
inputs alter slightly, raising concerns about the
extent to which their success relies on mem-
orization. This issue is especially acute in
Chain-of-Thought (CoT) reasoning, where spu-
rious memorized patterns can trigger interme-
diate errors that cascade into incorrect final an-
swers. We introduce STIM, a novel framework
for Source-aware Token-level Identification of
Memorization, which attributes each token in a
reasoning chain to one of multiple memoriza-
tion sources – local, mid-range, or long-range –
based on their statistical co-occurrence with the
token in the pretraining corpus. Our token-level
analysis across tasks and distributional settings
reveals that models rely more on memorization
in complex or long-tail cases, and that local
memorization is often the dominant driver of
errors, leading to up to 67% of wrong tokens.
We also show that memorization scores from
STIM can be effective in predicting the wrong
tokens in the wrong reasoning step. STIM
offers a powerful tool for diagnosing and im-
proving model reasoning and can generalize to
other structured step-wise generation tasks.1

1 Introduction

Large Language Models (LLMs) perform well on
reasoning tasks but often fail under slight input
changes, raising concerns about overreliance on
memorization (Hong et al., 2025; Lou et al., 2024;
Jin et al., 2024; Salido et al., 2025). Long Chain-
of-thought (CoT) (Wei et al., 2022) chains are
especially vulnerable, as spurious memorization
can introduce early errors that derail final answers.
As inference-time scaling encourages longer CoTs,
detecting token-level memorization is critical
for assessing reasoning reliability, particularly

*Equal Contribution
†Work done in Amazon AGI
1https://github.com/INK-USC/STIM

Model Reasoning Steps:

Rick killed 10 + 15 = 25 animals last night.

Today Rick killed 3 * 3 = 9 wolves.

Today Rick killed 15 - 3 = 12 cougars.

Today Rick killed 9 + 12 = 21 animals.

Total animals killed by Rick is 25 + 21 = 46.

So the answer is 46.

Input Question: Last night Rick killed ten wolves and 15 cougars while hunting. 
Today Rick killed three times as many wolves as cougars and three fewer cougars 
than the previous night. How many animals did Rick kill?

The initial mistake at token “3” 
leads to cascading errors in 
subsequent reasoning steps.

Wrong reasoning may be related to memorization; token-level memorization analysis instead of sequence level

Figure 1: Cascading errors in Chain-of-thought (CoT)
reasoning can stem from a single mis-predicted token,
often influenced by incorrect memorization of pretrain-
ing data. This motivates our study on the impact of
token-level memorization.

under distributional shifts from frequent to rare
inputs (Xie et al., 2024; Prabhakar et al., 2024).

We argue that memorization in long Chain-of-
thought generations must be identified at the token
level rather than the sequence level. A single faulty
step can cause cascading errors, often stemming
from a few erroneous tokens (Figure 1). Identi-
fying these tokens and whether they result from
memorization is essential. Moreover, we argue that
accurately measuring token-level memorization re-
quires accounting for multiple sources of influ-
ence, including both the input prompt and prior
output tokens, which jointly shape each token’s
generation (Table 1).

Prior approaches are insufficient for analyzing
token-level memorization and how memoriza-
tion patterns from different sources shift under
distributional change: existing metrics do not
target memorization at the level of individual
tokens, instead reporting a single score for the
entire sequence or final answer. Moreover, they
either focus solely on memorization in the output
sequence (McCoy et al., 2023; Merrill et al.,
2024; Lu et al., 2024) or assess the influence of
memorization from the input (Carlini et al., 2022;
Biderman et al., 2023; Li et al., 2025; Wang et al.,
2024), without accounting for multiple sources of
influence on token-level memorization.
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Examples of Simultaneous Memorization Sources of Different Strength

Question: Here is a list: [pitanga, pitanga, yumberry, yumberry, pitanga, yumberry, pitanga, yumberry, pitanga, pitanga].
How many times does ’pitanga’ appear on it?

Model Output:
1. The first element is ’pitanga’.
...
10. The tenth element is ’pitanga’.
Now, counting the occurrences of ’pitanga’: We have ’pitanga’ appearing 5 times at positions 1, 2, 5, 7, and 10.
So the answer is 5.

Analysis: Token 5 is incorrect and has the highest influence from local context, where the n-gram “appearing 5” has a high
pretraining frequency. STIM scores are: local = 0.81 , mid = 0.24, long = 0.03, suggesting that the model was influenced by
locally frequent patterns rather than actual counting.

Question: What is ( 100101100 - 100101100 * 0.1) * 111110100 + 100101100 * 1111 / 1100100 * 111110100 * 0.1 +
(100101100 - 100101100 * 0.1 - 100101100 * 1111 / 1100100) * 111110100 equal to? (base-2)

Model Output:
To solve this, we first handle the multiplication and division in base-2, converting to base-10 as necessary:
1. (100101100× 0.1base-2 = 10010110base-2) (which is 180 in base-10)
...
So the answer is 26807.536.

Analysis: Token 180 is incorrect and has the highest influence from input tokens, having higher pretraining co-occurrence
frequency with “111110100”, “*” and “100101100” in the input. STIM scores are local=-0.19, mid=0.09, long=0.156 ,
indicating long-range memorization being the primary influence.

Table 1: Each error token is affected simultaneously by different memorization sources, but some sources may be
stronger than others. Shown are examples with local context ( local ) and input prompt ( long ) having maximum
influence, with tokens associated with the source highlighted. How we obtain STIM scores for each source is
explained in Section 4.

To address these gaps, we propose STIM
(Source-aware Token-level Identification of
Memorization), a framework that captures token-
level memorization by tracing influences from
both the input and prior outputs on erroneous
reasoning steps. For each token, STIM computes
the strength of three memorization sources: (1)
local, from frequent continuations of immediately
preceding tokens; (2) long-range, from frequent
co-occurrence with prompt tokens; and (3)
mid-range, when the model generates the target
token when conditioned only on a prefix of the
generation, we identify tokens that frequently
co-occur with the target token in pretraining.
STIM offers a fine-grained view of multi-source
memorization and its strength at each token.

We begin our analysis by using STIM to uncover
broad memorization trends across tasks, input dis-
tributions, and correctness. As reasoning complex-
ity increases, models exhibit greater reliance on
memorization. Distribution shifts toward rare or
atypical inputs also lead to stronger memorization
signals. Interestingly, while memorization often
supports correct answers in base settings, it more

frequently contributes to errors in long-tail scenar-
ios, suggesting defective recall when faced with
unfamiliar contexts.

To demonstrate the utility of our framework, we
apply it to the task of identifying erroneous tokens
in erroneous reasoning steps. By tracing the dom-
inant source of memorization for each incorrect
token, we find that local memorization (continu-
ations driven by immediately preceding tokens) is
the most common cause of error (up to 67%). How-
ever, under distribution shift, complex tasks show
a marked decline in local memorization-driven
mistakes, implying reduced reliance on familiar pat-
terns. Finally, we assess the effectiveness of STIM
in pinpointing erroneous tokens via Precision@k
and Recall@k, showing that high memorization
scores are strong indicators of reasoning failures.

Our novel STIM framework is the first to enable
fine-grained, token-level memorization identifica-
tion in long reasoning chains, considering multiple
influence sources from both input and generated
context. Through systematic evaluation across di-
verse Chain-of-thought tasks, we demonstrate its
crucial role in pinpointing memorized content that

3160



Model Reasoning Steps:

Rick killed 10 + 15 = 25 animals last night.

Today Rick killed 3 * 3 = 9 wolves.

Today Rick killed 15 - 3 = 12 cougars.

Today Rick killed 9 + 12 = 21 animals.

Total animals killed by Rick is 25 + 21 = 46.

So the answer is 46.


Input Question: Last night Rick killed ten 
wolves and 15 cougars while hunting. Today 
Rick killed three times as many wolves as 
cougars and three fewer cougars than the 
previous night. How many animals did Rick kill?

Is “3” is a frequent continuation for its 
immediately preceding tokens “3 *”?

Local Context Memorization

0.30

-0.04

0.05

STIMmax: 0.30 (local)

Focus on wrong 
reasoning step

Detecting memorization 
at error token “3”

“3” can be generated from highlighted 
partial context alone; do influential tokens 
in this sequence frequently co-occur with 
“3” in pretraining?

Mid-range Memorization

Do influential tokens in input frequently 

co-occur with “3” in pretraining?

Long-range Memorization

Token-level & Multi-source 
Memorization Scores

Find strongest memorization 
source using maximum

STIMloc

STIMmid

STIMlong

Figure 2: STIM quantifies local, mid-range, and long-
range memorization at each token in a faulty reasoning
step and identifies the dominant source. STIM is helpful
for detecting error tokens.

leads to errors and reveal how different memoriza-
tion sources dominate across tasks and under distri-
butional shift. While focused on Chain-of-thought,
STIM is extendable to other long-form formats
such as dialogue or summarization. This frame-
work offers a powerful tool for diagnosing LLM
reasoning failures and advancing research into gen-
uine reasoning capabilities.

2 Related Works

Pretraining Data Memorization Metrics. A
growing body of work investigates how and when
large language models (LLMs) memorize their pre-
training data. Early approaches focused on mea-
suring extractability – the ease with which spe-
cific training data can be reproduced from the
model—highlighting risks to privacy and model
overfitting (Carlini et al., 2022; Biderman et al.,
2023). Other efforts have analyzed memorization
via novelty metrics, which assess the similarity of
model outputs to seen data (McCoy et al., 2023;
Merrill et al., 2024; Lu et al., 2024). Another
class of work quantifies memorization through n-
gram overlap or token-level attribution, often draw-
ing connections between model predictions and
local or distant pretraining contexts (Li et al., 2025;
Wang et al., 2024).

Distinguishing Memorization from Reasoning.
Beyond surface-level memorization, recent work
has aimed to disentangle genuine reasoning from

pattern recall. Xie et al. (2024) fine-tune mod-
els on controlled datasets to probe the boundary
between memorization and generalization in rea-
soning tasks. Complementary to this, Hong et al.
(2025) approach the problem from a mechanistic
interpretability perspective, identifying internal cir-
cuits associated with memorized versus reasoned
responses. On the modeling side, Lou et al. (2024)
propose methods for quantifying chaotic and foun-
dational memorization by analyzing in-context
learning dynamics at the logit level, while Jin et al.
(2024) focus on how training conditions shape
these behaviors. In multiple-choice settings, Salido
et al. (2025) introduce a technique to isolate reason-
ing by deliberately eliminating answer options that
could be matched through memorized heuristics.
Finally, Prabhakar et al. (2024) study the interplay
between probability calibration, memorization, and
noise in chain-of-thought prompting, revealing that
correct answers can arise from superficial token-
level cues rather than coherent reasoning.

3 Preliminary Analysis: CoT
Reasoning-Memorization Correlation

Recent work shows that language models struggle
to generalize to rare task formats or uncommon
input entities despite strong performance on fre-
quent patterns, suggesting that memorization sig-
nificantly influences model behavior (Wu et al.,
2024; Dziri et al., 2023; Li et al., 2024a). To inves-
tigate how memorization impacts CoT Reasoning,
we construct a controlled set of reasoning tasks and
introduce targeted long-tail transformations that ei-
ther decrease the frequency of input entities or alter
task formats to less common variants. This section
introduces our experimental setup and motivates
our framework by demonstrating how reasoning
performance changes under distributional shift.

3.1 Setup

Tasks. We evaluate memorization on four rea-
soning tasks of varying complexity: Applied Math,
Formula Calculation, Counting, and Capitaliza-
tion. All tasks require step-by-step reasoning under
a Chain-of-thought prompting setup as well as a di-
rect answer setup(full prompt in Appendix G). We
collect/construct each task as follows (more details
in Appendix A:

• Applied Math: GSM8K (Cobbe et al., 2021).
• Formula Calculation: Final equations ex-

tracted from GSM8K answer derivations.
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• Counting: Lists of fruit entities with con-
trolled frequency ranges (103 to 107) and vary-
ing lengths (10–50).

• Capitalization: Book titles sampled from the
Book Cover Dataset (Iwana et al., 2016).

These tasks involve different reasoning complex-
ity levels. Applied Math and Formula Calculation
involve multi-step deduction, where each interme-
diate step depends on correct synthesis of all prior
steps. In contrast, Counting and Capitalization are
more locally structured, where each step is rela-
tively independent, and the correct answer often
depends on a single, final decision. This distinction
allows us to examine how memorization interacts
with different reasoning dynamics, especially when
tracing errors in multi-step generation.

Long-tail Transformations. To evaluate memo-
rization under distributional shift, we apply long-
tail transformations to each task (Table 5). These
modifications reduce the frequency of input entities
or reformulate tasks in less common formats:

• Applied Math & Formula Calculation: Fre-
quency reduction via digit expansion or con-
verting integers to floats; task variation by ex-
pressing problems in base-2 (Li et al., 2024b).

• Counting: Lower-frequency countable entities
and increased list lengths.

• Capitalization: Atypical formulation requir-
ing capitalization of the last word’s first letter.

Each transformation is applied independently, and
the final long-tail set per task pools all variants.
The total number of base and long-tail examples
we collect is in Table 6.

Model and Pretraining Data. Our experiments
and analyses utilize OLMo 2(OLMo et al., 2024)
(OLMo-2-1124-13B-Instruct) under default Hug-
gingFace settings and greedy decoding. Its pretrain-
ing corpus, Dolma 1.7 (Soldaini et al., 2024), is
indexed via Infinigram (Liu et al.), allowing token
frequency lookup. To our knowledge, only OLMo
and Pythia offer fully open, indexed pretraining
data; however, Pythia underperforms on GSM8K
(<5%), limiting its use in CoT studies. To show
generalizability of our methodology, we replicate
all main analyses on olmo2-1124-7B-Instruct
in Appendix D.

3.2 Performance under Distribution Shift

OLMo 2’s performance across both direct answer
and CoT formats for all tasks is listed in Table 2.

(a) CoT Reasoning

Task Base Long-tail

Applied Math 82.0 25.6
Formula Calculation 89.8 39.3
Counting 43.1 19.2
Capitalization 26.7 53.1

(b) Direct Answer

Task Base Long-tail

Formula Calculation 33.3 11.3
Counting 40.5 21.4
Capitalization 87.5 47.8

Table 2: Model accuracy (%) on reasoning tasks under
base and long-tail input distributions. Direct Answer for
Applied Math is omitted due to poor accuracy.

Base Distribution Outperforms Long-tail For
Applied Math, Formula Calculation, and Count-
ing, performance in the base distribution setting
consistently outperforms that in the long-tail distri-
bution. This trend reinforces the notion that current
models rely heavily on memorization, benefiting
from high-frequency entities and familiar patterns
in the input. The observed performance degrada-
tion under long-tail input distributions reflects the
model’s difficulty generalizing to rare entities or
less common problem variations.

CoT Amplifies the Base vs. Long-tail Gap The
performance gap between base and long-tail distri-
butions is significantly larger under the CoT format
compared to direct answers. This suggests that
the extended generation sequences in CoT reason-
ing exacerbate the model’s reliance on memorized
patterns, increasing error probability when famil-
iar cues are absent. The phenomenon necessitates
deeper analysis of how CoT prompts may amplify
memorization-related errors.

Capitalization Highlights Token-level Fragility
An exception arises in the Capitalization task,
where CoT notably degrades performance in the
base setting. While the model can directly retrieve
correct answers for well-known book titles in the
direct answer format, CoT reasoning introduces
intermediate steps that expose the model to more
opportunities for spurious generations. This exam-
ple illustrates that while certain forms of memo-
rization (e.g., direct recall) can support accurate
performance, others (e.g., misplaced pattern match-
ing during reasoning) can introduce critical errors.
The discrepancy underscores the need for token-
level analysis to understand when memorization
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helps versus when it harms.
In summary, the results demonstrate that memo-

rization plays a central role in model behavior un-
der distribution shift, particularly under CoT, where
longer reasoning chains amplify its effects. This
motivates our fine-grained analysis of token-level
memorization dynamics in following sections.

4 Measuring Token-Level Memorization

In multi-step reasoning, token predictions are in-
fluenced by the local context, the input prompt,
and previously generated output. Each contributes
to memorization differently: local context drives
frequent continuations, while prompts and past out-
puts reflect longer-range associations from pretrain-
ing. Disentangling these sources enables more pre-
cise diagnosis of how memorization affects rea-
soning, especially under distributional shifts. We
introduce Source-aware Token-level Identification
of Memorization (STIM), a method for identifying
token-level memorization from local, mid-range,
and long-range sources.

4.1 Memorization from Distinct Contextual
Sources

We now describe how to quantify memorization
for a target token x, conditioned on the full context
p = [input; output<x], where output<x denotes all
preceding tokens in the generated answer before x.

Local Context Memorization (Local) This
score quantifies how much a token’s generation
is driven by frequent continuations in its immedi-
ate local context. For a target token x, we identify
w, the longest contiguous prefix such that the n-
gram [w;x] appears at least once in the pretraining
corpus. At decoding time, we extract the top-20
candidate tokens xi20i=1 with probabilities P (xi | p)
and retrieve their corresponding n-gram frequen-
cies f([w;xi]). The local memorization score is
computed as the Spearman correlation:

STIMloc(x) = ρ
(
{P (xi | p)}20i=1, {f([w;xi])}20i=1

)
(1)

Input-driven Memorization (Long-Range)
This score measures the influence of salient
input tokens that co-occurred with the target
token in pretraining. We identify the top-5 most
influential input tokens to the target token using
token saliency (Tuan et al., 2021)2, denoted
Sl = s1, . . . , s5. At decoding time, we obtain the

2Ablation see Appendix E.

top-20 candidates xi with probabilities P (xi | p)
and compute their co-occurrence frequencies
with Sl, denoted f(Sl, xi). The long-range
memorization score is defined as:

STIMlong(x) = ρ
(
P (xi | p)20i=1, f(Sl, xi)

20
i=1

)
(2)

Partial Output Memorization (Mid-Range)
This score captures how much a token’s genera-
tion is influenced by spurious associations within
the partially generated answer. For a target token
x, we find the shortest contiguous prefix of the
model’s generated answer (excluding input tokens)
that leads to the model generating x when condi-
tioned on that span. We then identify the top-5 most
salient tokens in this context Sm = {s1, . . . , s5}
using token saliency. We collect the top-20 candi-
date tokens {xi}20i=1 with probabilities P (xi | p).
For each candidate xi, we compute the average
co-occurrence frequency with the salient tokens S,
denoted f(Sm, xi). The mid-range memorization
score is defined as:

STIMmid(x) = ρ
(
P (xi | p)20i=1, f(Sm, xi)

20
i=1

)
(3)

Dominant Source Attribution To capture the
full extent of memorization effects at the token
level, we also introduce STIMmax, taking the max-
imum of local, long and mid-range memorization
scores. We identify the dominant source as the
memorization source with the highest score, indi-
cating which contextual factor most strongly influ-
enced the token’s generation.

5 Token-Level Memorization Analysis

In this section, we use STIM to perform fine-
grained token-level analysis. We begin by describ-
ing our experimental setup and how we select es-
sential reasoning steps to analyze. We then apply
STIM to compare token-level memorization pat-
terns across tasks, distributions (base vs. long-tail),
and correctness (correct vs. incorrect reasoning).

5.1 Experimental Setup and Step Selection

Our analyses aim to contrast the model’s token-
level memorization behavior between base and
long-tail input distributions, as well as between
correct and incorrect CoT reasoning chains.

In analyzing reasoning failures, we focus on the
first erroneous step in each flawed chain rather
than the entire output sequence. This design choice
is motivated by the observation that subsequent
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Figure 3: Comparison of STIMmax distribution between task reasoning complexity, distribution and correctness.

reasoning steps often suffer from cascading effects
caused by earlier mistakes, so such errors may not
be directly attributable to memorization. By iso-
lating the first incorrect step, we target the initial
point of failure where memorization-related influ-
ences are most likely to manifest. This approach
also aligns with recent practice in process super-
vision (Luo et al., 2024; Lightman et al., 2023),
where Process Reward Models (PRMs) are com-
monly trained to identify the earliest incorrect step.

For each task and for both the base and long-tail
settings, we uniformly sample 200 examples where
the model’s final answer is incorrect (the wrong
set) and 200 examples where the final answer is
correct (the correct set). To identify the reasoning
steps that lead to incorrect final answers, we ap-
ply VersaPRM (Zeng et al., 2025), a multi-domain
Process Reward Model trained across 14 diverse
domains. A step is classified as erroneous if its
PRM score (ranging from 0 to 1) below an em-
pirically determined threshold of 0.9. We exclude
non-substantive statements like “Let’s verify” or
“Let’s think step by step”. We focus on the first
one below the threshold as the first erroneous step
for analysis. In practice, PRMs are not always reli-
able. They may miss reasoning errors and assign
overly high scores even when the final answer is
wrong. To ensure error in the selected step, we
exclude such cases from our wrong set and retain
only examples containing at least one step with a
PRM score below 0.9. For each example in the
correct set, we select the reasoning step with the
lowest PRM score to provide a point of contrast.
All subsequent analyses are conducted on these se-
lected reasoning steps. We verify the reliability of
VersaPRM in Appendix E.

5.2 Analyzing Memorization Patterns by
Task, Distribution, and Correctness

Now we illustrate the presence of memorization
across tasks, distributions and correctness. While
each token may be predominantly influenced by

different sources, STIMmax, as the maximum of
all three sources of memorization, represents the
highest level of contextual influence at each token.
Therefore, we present our observations on the dis-
tribution of STIMmax.

More complex reasoning tasks have higher mem-
orization score. Across all four settings, Applied
Math and Formula Calculation consistently show
higher dominance scores compared to Capitaliza-
tion and Counting (Figure 4a). This pattern aligns
with the nature of the tasks: Applied Math and For-
mula Calculation involve more complex reasoning,
requiring the model to iteratively synthesize partial
solutions at each step. In contrast, Counting and
Capitalization demand relatively simple, local de-
cisions during intermediate steps, with synthesis
needed only at the final stage.

Memorization scores are higher in long-tail set-
tings. In 3 of 4 tasks, long-tail examples (brown)
show consistently higher memorization scores than
base examples (blue) (Figure 4b). This may seem
counterintuitive: base examples contain more fre-
quent entities, so one might expect greater reliance
on memorized content. Instead, the elevated scores
suggest that when faced with unfamiliar inputs, the
model often inappropriately falls back on spuri-
ous patterns memorized during pretraining, leading
to more errors. Additional evidence is provided
in Section 6.

The exception is Counting, where scores are
similar across settings. This likely stems from
the task’s rigid reasoning format (e.g., “The Xth
element is Y”). Despite longer lists in the long-tail
setting, the model typically makes its first mistake
around the 8th step in both cases. As a result, error
patterns remain structurally similar, leaving little
room for memorization differences to emerge.

Distribution Shift Reverses the Role of Memo-
rization. We observe a shift in the relationship
between memorization and correctness across dis-
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tributions (Figure 4c). In the base settings, correct
reasoning steps exhibit higher memorization scores
than incorrect ones, suggesting that memorized
content aligns well with the input and supports ac-
curate reasoning. This is especially evident in more
complex tasks like Applied Math and Formula Cal-
culation, where correct solutions may involve re-
trieving familiar mathematical equation patterns
seen during pretraining. In contrast, in the long-
tail setting , incorrect reasoning steps have higher
memorization scores, indicating that the model of-
ten falls back on memorized but ill-fitting patterns
when faced with less familiar inputs. This sug-
gests that memorization, while helpful in familiar
contexts, can hinder generalization under distri-
bution shift – especially when the model applies
high-frequency completions to novel or rare sce-
narios. The reversal in score patterns highlights
how the same underlying memorization behavior
can contribute to success or failure depending on
the alignment between the input and the model’s
pretraining data.

Task Dist. Local Mid Long

Applied
Math

Base 0.673 0.127 0.200
Long-tail 0.474 0.299 0.227

Formula
Calculation

Base 0.517 0.186 0.297
Long-tail 0.443 0.253 0.304

Counting Base 0.520 0.208 0.272
Long-tail 0.663 0.207 0.130

Capitalization Base 0.647 0.141 0.212
Long-tail 0.649 0.185 0.166

Table 3: Dominant memorization source (%) by task
and distribution type. Each row shows the percentage of
erroneous tokens where each source (Local, Mid, Long)
was the most influential.

6 Detecting the Wrong Token using STIM

With our framework for computing token-level
memorization scores across multiple sources, we
now explore a key application: identifying tokens
that cause reasoning failures. We assess whether
high memorization scores can pinpoint erroneous
tokens in flawed reasoning steps, so as to demon-
strate the framework’s value as a diagnostic tool
for understanding how memorized content drives
errors in long-form generation.

For each example that the model answers
wrongly, we use gpt4-o to identify the wrong
tokens in the erroneous reasoning step identified
by VersaPRM described in Section 4. The exact

prompt used for gpt4-o is in Appendix B.

Dominant Source of Erroneous Memorization.
We begin by identifying the most influential type
of memorization (local, mid-range, or long-range)
for each wrong token across tasks and distributional
settings. This analysis reveals which memorization
source most often drives the model’s reasoning in
cases where it generates incorrect outputs. The
percentages reported in Table 3 reflect the share of
all identified error tokens where a particular source
has the highest memorization score.

Across all tasks and distributions, local memo-
rization consistently emerges as the most frequent
driver of erroneous token generation, accounting
for as high as 67% of error tokens. This suggests
that models often fall for spurious short-range pat-
terns even in tasks requiring structured reasoning.

While this heavy reliance on local cues is gen-
erally undesirable, since local context carries min-
imal task-relevant information, its distributional
dynamics reveal an interesting trend. Under distri-
bution shift from base to long-tail, high-reasoning
tasks such as Applied Math and Formula Calcu-
lation show a notable decrease in the proportion
of errors attributable to local memorization. In
contrast, low-reasoning tasks like Counting and
Capitalization show little to no such reduction.

This suggests that when facing unfamiliar, long-
tail inputs, the model is forced to abandon brittle
local heuristics in high-reasoning tasks and may
instead attempt to engage more global or structured
reasoning strategies. However, for simpler tasks
where local patterns suffice even in the long-tail,
the model continues to rely on them.

Correspondence between high memorization
and token error. To further examine the align-
ment between high memorization and reasoning
error, we also report Precision@k and Recall@k
for k ∈ [1, 3], because we find that gpt-4o at most
identifies 3 wrong tokens in a reasoning step.

Precision@k measures whether the top-k tokens
with highest memorization scores are wrong tokens.
It is defined as:
W : Set of wrong tokens
S : Token set with top-k memorization score

Precision@k =

∑
token∈W I(token ∈ S)

min(|W|, k) (4)

The denominator handles cases where the num-
ber of wrong tokens is less than k, when we take
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(a) Precision@k

Task Level P@1 P@2 P@3

Applied
Math

STIMmax 45.5 45.2 57.2
Random 15.8 23.2 29.8

Formula
Calc.

STIMmax 41.0 49.2 60.5
Random 20.9 34.1 38.5

Counting STIMmax 21.0 28.8 41.7
Random 10.1 16.3 23.2

Capitalization STIMmax 17.2 32.0 42.7
Random 10.0 17.9 26.6

All Tasks STIMmax 31.2 38.8 50.5
Random 14.2 22.9 29.5

(b) Recall@k

Task Level R@1 R@2 R@3

Applied
Math

STIMmax 40.5 55.0 67.0
Random 12.8 24.8 35.2

Formula
Calc.

STIMmax 37.5 54.0 68.0
Random 15.5 29.2 40.7

Counting STIMmax 19.5 31.0 45.5
Random 13.0 25.5 37.7

Capitalization STIMmax 17.5 34.5 46.0
Random 11.4 27.4 40.1

All Tasks STIMmax 28.8 43.6 56.6
Random 13.2 26.7 38.4

Table 4: Precision and Recall @1–3 of STIMmax for identifying the wrong token in erroneous reasoning steps.

the minimum of the two. The final score is the av-
erage Precision@k across all evaluation examples
in each task and each distribution.

Recall@k measures whether the wrong tokens
appear within the top-k tokens with highest memo-
rization scores. It is defined as:

Recall@k =





1, if any of the wrong tokens exists in
top-k highest memorization tokens

0, otherwise
(5)

The final score is the average Recall@k across
all examples in each task and distribution.

In Table 4 we report Precision and Recall @1-3
(1 meaning the highest memorization score token
and 3 meaning the top 3 high memorization score
token) of each task using STIMmax, as well as
aggregated over all tasks. For Precision and Recall
of individual components (STIMlocal, STIMlong,
STIMmid) see Appendix F.

Token-level memorization scores meaningfully
correlate with erroneous tokens For all 4
tasks, Precision and Recall@1–3 scores are well
above random chance (calculation described
in Appendix C), especially in more complex
reasoning tasks like Applied Math and Formula
Calculation. This indicates that tokens with higher
memorization scores are indeed more likely to be
error-inducing.

Complex tasks show higher Precision and
Recall@k Applied Math and Formula Calcu-
lation consistently have higher precision and
recall across all levels compared to Counting
and Capitalization. This suggests that errors in
complex reasoning tasks are more likely to be
associated with memorization.

Computational Complexity of Wrong Token
Identification with STIM The overall complex-
ity of identifying wrong tokens using STIM is
O(mn), where m denotes the number of salient
tokens selected by the token saliency method, and
n is the number of alternative candidate tokens
considered for each target token.

Precision and recall improve with higher k.
Both precision and recall increase consistently
from k = 1 to k = 3 across tasks and levels, indi-
cating that while the top memorized token is not
always the erroneous one, the true error is often
among the top three. This suggests that our method
can serve as an effective first-pass filter, narrowing
down the set of candidate wrong tokens that require
further verification.

7 Conclusion

Our paper presented STIM, a novel diagnostic
framework for fine-grained, token-level identifica-
tion of memorization in Chain-of-thought reason-
ing, capturing multiple sources of memorization
by analyzing both the input prompt and generated
context. Our evaluation across diverse CoT tasks
shows that memorization intensifies with task com-
plexity and long-tail distribution shift, often leading
to errors – especially driven by local memorization.
Beyond aggregate trends, STIM reliably identi-
fies error-inducing tokens, with high memoriza-
tion scores correlating with incorrect tokens across
tasks. This predictive signal underscores the practi-
cal value of token-level memorization as a lens on
reasoning failures. STIM offers a foundation for
deeper insights into model behavior and toward de-
veloping more robust, genuinely reasoning-capable
LLMs.
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Limitations

One limitation of our framework lies in the choice
of token saliency method. We adopt LERG, a
perturbation-based approach, to identify influen-
tial tokens in mid- and long-range memorization
due to its favorable compute efficiency. However,
LERG may miss finer-grained influence patterns
compared to more computationally intensive alter-
natives, such as gradient-based methods or causal
tracing approaches, which could yield more precise
attributions.

Another constraint is the use of a pre-trained
PRM (Process Reward Model) as the step verifier
for detecting reasoning errors. While the verifier
achieves strong performance in practice, it is not
perfect and may occasionally mislabel erroneous
or correct steps. Incorporating stronger verification
models or ensemble-based approaches could fur-
ther improve the robustness of our identification
pipeline.

Finally, our analysis is limited by the availability
of open-source language models with fully indexed
pretraining corpora. Currently, only a few models,
such as OLMo and Pythia meet these requirements,
but Pythia is too weak to complete many tasks in
Chain-of-thought reasoning. Widely used models
either lack dataset transparency or are not fully
open, restricting broader applicability of our frame-
work across model scales in our work.

Risk

Tracing of proprietary, sensitive information
or PII. STIM might be used on mal-intentioned
tasks, where researchers may prompt models pro-
duce sensitive information and then apply STIM
to analyze which areas in the prompt contributes
most for retrieving such information.

Environmental tax. Another potential risk is in-
creasing environmental burdens because we exten-
sively ping infinigram API when searching through
pretraining corpora, leading to extra usage of elec-
tricity and power.

Use and Distribution

All data we collected through LLMs in our work
are released publicly for usage and have been duly
scrutinized by the authors. Our work does not
collect information that can be used to identify
individual people or contents that may be offensive.

Our framework STIM may only be used for
analysis and examinations of language models fol-
lowng the ethics guideline of the community. Using
STIM on mal-intentioned tasks is a potential threat,
but the authors strongly condemn doing so.
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A Head and Long-tail Data of each
reasoning task

Applied Math The head data is the original test
set of GSM8K (Cobbe et al., 2021). The Long-tail
transformation process includes identifying the nu-
merical entities in the original problems, shifting
the numerical entities, and recalculating the final
result. Following Varbench (Qian et al., 2024), we
get the extracted numerical variables that are iden-
tified by LLMs and verified by experts. Then we
apply digit-expansion, int-to-float-conversion, and
base-changing transformation to those entities. For
digit-expansion, we randomly sample two prime
numbers p1, p2 between 10 to 30, and convert the
number entity var into p1 × var + p2; for int-to-
float conversion, we divide the original variable by
100; for base-changing, we convert the numbers
into base-2, limiting 8 bits of precision for floating
numbers. Finally , we use the solution function in
Varbench to get the final result with shifted value
for each numeric variable.

Formula Calculation The head data is the for-
mulas extracted from GSM8K solutions. We com-
bine all the partial formulas in the step-by-step
solutions into the final compositional formula. Sim-
ilar to Applied Math long-tail transformation pro-
cess, we change each numerical variable of the
left expression into numbers with larger magnitude,
floating numbers and base-2 number, keeping them
be equal to the correspondent value in the applied
math problem.

Counting We use gpt4-o to generate multi-
ple fruits and then select the fruits with pre-
training frequency having order of magnitude
103, 104, 105, 106, 107. Then we randomly com-
bine them to form the counting list, with the length
ranging from 10, 20, 30, 40, 50. Each list only con-
tains two types of fruits.

Capitalization We first filter the book title
datasets (Iwana et al., 2016) by restricting the
length equal to 3, 5, 7, 9, 11 and then randomly
sample 300 examples for each length group. Fi-
nally, we lower the character in the titles to get the
original string and only capitalize the first letter of
the last word of the original string to acquire the
long-tail entity.

Number of examples for each reasoning task and
settings are shown in Table 6.
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Task Base Long-tail
Applied Math Question Prompt:

James gets 10 new CDs. Each CD cost $15. He
gets them for 40% off. He decides he doesn’t
like 5 of them and sells them for 40. How much
money was he out?
Decimal integers with small magnitude and
Base-10 calculation

Question Prompt:
James gets 1010 new CDs. Each CD cost $1111.
He gets them for 101000% off. He decides
he doesn’t like 101 of them and sells them for
101000. How much money was he out?
Decimal numbers with large magnitude; floating
number; Base-2 calculation

Formula Calculation Question Prompt:
What is 220 + 23 - 80 equal to?
Decimal integers with small magnitude and
Base-10 calculation

Question Prompt:
What is 2437 + 270 - 897 equal to?
Decimal numbers with large magnitude; floating
number; Base-2 calculation

Counting Question Prompt:
Here is a list: [apple, pear,· · · , pear]. How many
times does ‘apple’ appear on it?
Fruit’s pretraining frequency ≥ 105 and list
length ≤ 20

Question Prompt:
Here is a list: [keule, ugli,· · · , keule]. How
many times does ‘ugli’ appear on it?
Fruit’s pretraining frequency < 105 or list
length > 20

Capitalization Question Prompt:
Here is a string: “history and obstinacy”.
Change the format of the string so that it can be
a title.
Existing book titles and capitalize into title for-
mat

Question Prompt:
Here is a string: “reasons to live”. Change the
format of the string so that only the first letter
of the last word is capitalized.
Existing book titles and capitalize first letter of
last word

Table 5: Illustrative prompts contrasting standard (Base) and more complex (Long-tail) versions of reasoning tasks,
with grey annotations explaining the difference in difficulty.

Task Distribution # Examples

Applied
Math

Base (GSM8K) 1319
Long-tail (Digit Expansion) 1319
Long-tail (Integer to Float) 1319
Long-tail (Base 2) 1319

Formula
Calculation

Base (GSM8K) 1314
Long-tail (Digit Expansion) 1314
Long-tail (Integer to Float) 1314
Long-tail (Base 2) 1314

Counting
Base (Length ≤ 20 & frequent entities) 6000
Long-tail (Length > 20 & infrequent entities) 17500

Capitalization
Base (Cap Title) 1500
Long-tail (Cap Last Word) 1500

Table 6: Number of Examples Per Task and Distributional Setting

B Identifying Wrong Tokens with gpt4-o

We use gpt4-o to identify the wrong tokens in
model’s erroneous reasoning step for all tasks. The
detailed prompts are shown in Table 7.

C Calculating Random Chance Baseline
for Precision@k and Recall@k

For precision@k, we calculate all the possible k
tokens’ combinations from the wrong reasoning
steps, which forms Ck

n sets Si, where n is num-
ber of candidate tokens. Then we calculate the
proportion of wrong tokens in the Si for each com-
bination. Finally, we implement the average across

all combinations:

P@krandom =
1

Ck
n

Ck
n∑

i=1

∑
word∈W I( token ∈ Si)

min(|W|, k)
(6)

For recall@k, we calculate the proportion of
randomly selected k tokens in the wrong token set.
Denote n as the number of candidate tokens, m as
the number of wrong tokens, then R@krandom is
defined as:

R@krandom = 1− Ck
n−m

Ck
n

(7)
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Prompt Template for gpt4-o wrong token identification

System message:
You are a helpful reasoning agent that can identify wrong tokens in another
model’s reasoning steps, by first generating your reasoning and then giving
a final answer. You follow the examples given to you.
User message
Below you will see a reasoning question and a model’s partial step-wise
reasoning answer for it. The last step of the model’s answer is wrong.
Identify all the incorrect token(s) in that step that independently cause the
step to be wrong, in "token, it’s preceding token" format. Ignore the tokens
whose error is caused by previous input tokens. You must give your answer
from the given candidate tokens and choose at least one token. You will see
two examples:
Example 1
Question: Last night Rick killed 1010 wolves and 1111 cougars while hunting.
Today Rick killed 11 times as many wolves as cougars and 11 fewer cougars than
the previous night. How many animals did Rick kill? (Calculate in Base-2)
Step-wise Reasoning: Rick killed 11 * 1111 = 12221 wolves today.
Candidate tokens: "Rick", preceded by ""; "killed", preceded by "Rick"; "11",
preceded by "killed"; "*", preceded by "11"; "1111", preceded by "*"; "=",
preceded by "1111"; "12221", preceded by "="; "wolves", preceded by "12221";
"today", preceded by "wolves"
Reasoning: The token 1111 is semantically incorrect because at this step the
model first needs to calculate the number of cougars which is 1111 - 11 =
1100, which is the correct number here. The token 12221 is also semantically
incorrect. [...] Thus, 12221 is the incorrect token that directly causes the
step to be wrong.
Answer: "1111", preceded by "*"; "12221", preceded by "="

[...one more example]

Now it’s your turn:
Question: Here is a list: [orange, banana, orange, banana, banana, banana,
orange, orange, banana, orange]. How many times does ’orange’ appear on it?
Step-wise Reasoning: To determine how many times the symbol ’orange’ appears
in the list [orange, banana, orange, banana, banana, banana, orange, orange,
banana, orange], we can simply count each occurrence of ’orange’.
The first element is ’orange’.
The third element is ’orange’.
The seventh element is ’orange’.
The ninth element is ’orange’.
Candidate tokens: “ninth”, preceded by “The”; “element”, preceded by “is”;
“‘orange’”, preceded by ‘is’
Reasoning:

Table 7: Prompt of identifying wrong tokens for gpt4-o
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D Reproducing Main Results on OLMo2
7B Instruct
(olmo-2-1124-7b-instruct)

Although our model choice is constrained by avail-
able open-source models with fully indexed pre-
training corpora, we reproduce our analysis on
OLMo2 7B Instruct, a model trained on the same
data as OLMo2 13B Instruct but only smaller in
size. We select one task with high reasoning com-
plexity (Applied Math) and one task with low rea-
soning complexity (Capitalization). All generation
and evaluation settings remain the same.

In summary, our additional experiments in
OLMo2 7B Instruct show that all our findings and
performance of STIM are generalizable to new
models, at least of the same architecture and differ-
ent size.

D.1 Analyzing Memorization Patterns by
Task, Distribution and Correctness
(Section 5.2, Figure 3)

Figure 4 reproduces the original three findings of
Section 5.2.

Original Finding 1: More complex reasoning
tasks have higher memorization score The
mean of memorization score for Applied Math
(high complexity) is 0.463 while the mean of mem-
orization score for Capitalization (low complexity)
is 0.38.

Original Finding 2: Memorization scores are
higher in long-tail settings The mean of mem-
orization scores for base and long-tail tasks for
Applied Math are 0.43 and 0.482; the mean of
memorization scores for base and long-tail tasks
for Capitalization are 0.346 and 0.415. For both
tasks, the memorization scores are higher in long-
tail settings.

Original Finding 3: Distribution Shift Reverses
the Role of Memorization. The mean of memo-
rization scores for correct and wrong examples in
base tasks are 0.392 and 0.356, with correct exam-
ples higher; The mean of memorization scores for
correct and wrong examples in long-tail tasks are
0.443 and 0.468, with wrong examples higher.

D.2 Dominant Source of Erroneous
Memorization (Section 6, Table 3)

Table 8 shows the dominant memorization source
(%) by task and distribution type. The two findings

in the original papers both hold: 1) local memo-
rization consistently emerges as the most frequent
driver of erroneous token generation, although the
actual percentage decreases (from 67% to 57%);
this shows that smaller models may be less im-
pacted by spurious short-range patterns than larger
models 2) high reasoning task (Applied Math)
show a notable decrease in the proportion of errors
attributable to local memorization when shifting
from base to long-tail distribution; low reasoning
task (Capitalization) shows no reduction but rather
some increase.

Task Dist. Local Mid Long

Applied
Math

Base 0.571 0.242 0.187
Longtail 0.423 0.317 0.260

Capitalization
Base 0.476 0.169 0.355
Longtail 0.515 0.240 0.245

Table 8: Dominant memorization source (%) by task
and distribution type for OLMo2 7B Instruct. Each row
shows the percentage of erroneous tokens where each
source (Local, Mid, Long) was the most influential.

D.3 Correspondence between high
memorization and token error (Section 6,
Table 4)

Table 9 shows the Precision@k and Recall@k per-
formance for k=1,2,3.

Original Finding 1: Token-level memorization
scores meaningfully correlate with erroneous
tokens For both tasks, Precision and Recall @1-
3 are well above random chance. Compared to
the original result on OLMo2 13B Instruct, the
Precision@k scores and most of Recall@k scores
increase.

Original Finding 2: Complex tasks show higher
Precision and Recall@k This is true from the
results above across k=1,2,3.

Original Finding 3: Precision and recall im-
prove with higher k This is also true for both
Applied Math and Capitalization tasks.

E Ablation Studies on Process Reward
Models and Token Saliency Models

To further verify the reliability of VersaPRM in
identifying genuinely incorrect reasoning steps, we
calculated the proportion of examples where GPT-
4o did not detect any erroneous tokens within the
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Figure 4: Comparison of STIMmax distribution between task reasoning complexity, distribution and correctness for
OLMo2 7B Instruct.

Task Level 1 2 3

Applied
Math

STIMmax 0.460 0.513 0.574
Random 0.173 0.279 0.317

Capitalization STIMmax 0.225 0.318 0.465
Random 0.089 0.154 0.229

(a) Precision@k

Task Level 1 2 3

Applied
Math

STIMmax 0.385 0.580 0.645
Random 0.140 0.274 0.381

Capitalization STIMmax 0.215 0.340 0.505
Random 0.105 0.208 0.309

(b) Recall@k

Table 9: Precision and Recall @1–3 of STIMmax for identifying the wrong token in erroneous reasoning steps for
OLMo2 7B Instruct.

steps selected by VersaPRM (as described in Sec-
tion 6). These proportions were 2.0% for Applied
Math and Formula Calculation, 0.5% for Counting,
and 2.5% for Capitalization. Such low rates indi-
cate that VersaPRM’s selection of incorrect steps
is reasonably robust.

To assess the sensitivity of our wrong-token
prediction results to the choice of token saliency
method other than LERG, we conducted an abla-
tion study using an alternative approach based on
contrastive explanations (Yin and Neubig, 2022)
on 20 sampled incorrect examples per task. Con-
trastive explanations are valuable for highlighting
why a token was chosen over a specific alternative.
However, CE introduces instability due to challeng-
ing foil selection and incurs higher computational
costs for language generation. Overall, LERG of-
fers more consistent and efficient attribution in this
setting. For this particular ablation, we select foil
tokens using the alternative 5 tokens with highest
token probability, at the same decoding step of the
target token.

In Table 10 we report the Precision@k and Re-
call@k with each token saliency method.

For P@1, P@2, R@1, and R@2, STIMmax

(LERG) performs similarly to or better than
STIMmax (CE). For P@3 and R@3, the results are
mixed, but the differences remain modest. These
observations suggest that while the choice of token
saliency method can influence STIM’s predictive
performance, the impact is limited. Finally, we

would like to emphasize that the STIM framework
is independent of the particular choice of PRM
or token saliency method. Its overall predictive
capacity could be further improved as more accu-
rate PRMs for multi-domain reasoning and more
advanced token-saliency techniques become avail-
able.

F Individual Component Analysis:
STIMloc, STIMmid and STIMlong

Table 11 includes the predictive performance of
each individual STIM score (local, mid, long) on
wrong token identification and report their P@1
and R@1.

The results indicate that none of STIMlocal,
STIMmid, or STIMlong consistently achieve the
highest P@1 or R@1 across all three sources. For
Applied Math and Capitalization, STIMlocal shows
the best performance, while for Formula Only and
Counting, STIMlong performs best. This variation
in performance across individual scores suggests
that STIMmax is more robust overall. When ag-
gregated across all tasks, STIMmax achieves the
highest P@1 and R@1.

G Prompt for Direct Answer and
Chain-of-thought format of each
reasoning task

We use few-shot prompting methods for each task.
The prompt formats in COT and Direct settings are
shown in Table 12 to Table 25
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Task Method P@1 P@2 P@3

Applied
Math

STIMmax (CE) 0.400 0.450 0.583
STIMmax (LERG) 0.400 0.450 0.575
Random 0.225 0.318 0.317

Formula Only
STIMmax (CE) 0.350 0.475 0.533
STIMmax (LERG) 0.400 0.500 0.533
Random 0.256 0.442 0.445

Counting
STIMmax (CE) 0.100 0.325 0.325
STIMmax (LERG) 0.100 0.325 0.475
Random 0.082 0.156 0.235

Capitalization
STIMmax (CE) 0.200 0.300 0.500
STIMmax (LERG) 0.250 0.350 0.450
Random 0.096 0.179 0.268

(a) P@k

Task Method R@1 R@2 R@3

Applied
Math

STIMmax (CE) 0.350 0.550 0.700
STIMmax (LERG) 0.350 0.550 0.700
Random 0.159 0.301 0.417

Formula Only
STIMmax (CE) 0.350 0.500 0.550
STIMmax (LERG) 0.400 0.550 0.600
Random 0.211 0.369 0.500

Counting
STIMmax (CE) 0.100 0.350 0.350
STIMmax (LERG) 0.100 0.350 0.500
Random 0.082 0.163 0.244

Capitalization
STIMmax (CE) 0.200 0.300 0.500
STIMmax (LERG) 0.250 0.350 0.450
Random 0.121 0.241 0.357

(b) R@k

Table 10: Precision (P@k) and Recall (R@k) at rank k across tasks and methods, ablating on CE and LERG.

Task Method P@1

Applied
Math

Local 0.440
Mid 0.355
Long 0.410
STIMmax 0.455
Random 0.158

Formula Only

Local 0.375
Mid 0.400
Long 0.435
STIMmax 0.410
Random 0.209

Counting

Local 0.195
Mid 0.240
Long 0.240
STIMmax 0.215
Random 0.103

Capitalization

Local 0.180
Mid 0.155
Long 0.150
STIMmax 0.175
Random 0.100

All Tasks

Local 0.298
Mid 0.288
Long 0.309
STIMmax 0.314
Random 0.143

(a) P@1

Task Method R@1

Applied
Math

Local 0.400
Mid 0.305
Long 0.350
STIMmax 0.405
Random 0.129

Formula Only

Local 0.345
Mid 0.375
Long 0.400
STIMmax 0.375
Random 0.155

Counting

Local 0.185
Mid 0.220
Long 0.220
STIMmax 0.200
Random 0.130

Capitalization

Local 0.180
Mid 0.155
Long 0.145
STIMmax 0.175
Random 0.110

All Tasks

Local 0.278
Mid 0.264
Long 0.279
STIMmax 0.289
Random 0.131

(b) R@1

Table 11: Precision (P@1) and Recall (R@1) across tasks and methods.
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Prompt Template for Applied Math, Base, CoT

Instruction: Answer the given question. You will end your response with a
sentence in the format of ‘So the answer is <number>.’
Question: There are 15 trees in the grove. Grove workers will plant trees
in the grove today. After they are done, there will be 21 trees. How many
trees did the grove workers plant today?
Answer: There are 15 trees originally. Then there were 21 trees after some
more were planted. So there must have been 21 - 15 = 6. So the answer is
6.

[...7 more examples]

Instruction: Answer the given question. You will end your response with a
sentence in the format of ‘So the answer is <number>.’
Question: John drives for 3 hours at a speed of 60 mph and then turns
around because he realizes he forgot something very important at home. He
tries to get home in 4 hours but spends the first 2 hours in standstill
traffic. He spends the next half-hour driving at a speed of 30mph, before
being able to drive the remaining time of the 4 hours going at 80 mph. How
far is he from home at the end of those 4 hours?
Answer:

Table 12: Prompt of calculating math word problems (CoT setting)

Prompt Template for Applied Math, Longtail, CoT

Instruction: Assuming that all numbers are in base-2 where the digits
are "01". Answer the given question. You will end your response with a
sentence in the format of ‘So the answer is <number>.’
Question: There are 1111 trees in the grove. Grove workers will plant
trees in the grove today. After they are done, there will be 10101 trees.
How many trees did the grove workers plant today?
Answer: There are 1111 trees originally. Then there were 10101 trees after
some more were planted. So there must have been 10101 - 1111 = 110. So
the answer is 110.

[...7 more examples]

Instruction: Assuming that all numbers are in base-2 where the digits
are "01". Answer the given question. You will end your response with a
sentence in the format of ‘So the answer is <number>.’
Question: John drives for 11 hours at a speed of 111100 mph and then turns
around because he realizes he forgot something very important at home. He
tries to get home in 100 hours but spends the first 10 hours in standstill
traffic. He spends the next half-hour driving at a speed of 11110mph,
before being able to drive the remaining time of the 100 hours going at
1010000 mph. How far is he from home at the end of those 100 hours?
Answer:

Table 13: Prompt of implementing base-2 calculation in math word problems (CoT setting)
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Prompt Template for Formula Calculation, Base, Direct

Instruction: Answer the given question. You will end your
response with a sentence in the format of ‘So the answer is
<number>.’
Question: What is 32 + 42 - 35 equal to?
Answer: So the answer is 39.

[...7 more examples]

Instruction: Answer the given question. You will end your
response with a sentence in the format of ‘So the answer is
<number>.’
Question: What is (16 - 3 - 4) * 2 equal to?
Answer:

Table 14: Prompt of formula calculation for base-10 (Direct setting)

Prompt Template for Formula Calculation, Longtail, Direct

Instruction: Assuming that all numbers are in base-2 where the digits
are "01". Answer the given question. You will end your response with a
sentence in the format of ‘So the answer is <number>.’
Question: What is 100000 + 101010 - 100011 equal to?
Answer: So the answer is 100111.

[...7 more examples]

Instruction: Assuming that all numbers are in base-2 where the digits
are "01". Answer the given question. You will end your response with a
sentence in the format of ‘So the answer is <number>.’
Question: What is (10010110 - 111100 / 1100100 * 10010110) * 110 equal to?
Answer:

Table 15: Prompt of formula calculation in base-2 (Direct setting)

Prompt Template for Formula Calculation, Base, CoT

Instruction: Answer the given question. You will end your
response with a sentence in the format of ‘So the answer is
<number>.’
Question: What is 32 + 42 - 35 equal to?
Answer: To calculate 32 + 42 - 35, we need to first calculate
32 + 42. 32 + 42 = 74. Then we need to calculate 74 - 35. 74 -
35 = 39. So the answer is 39.

[...7 more examples]

Instruction: Answer the given question. You will end your
response with a sentence in the format of ‘So the answer is
<number>.’
Question: What is (16 - 3 - 4) * 2 equal to?
Answer:

Table 16: Prompt of formula calculation in base-10 (CoT setting)
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Prompt Template for Formula Calculation, Longtail, CoT

Instruction: Assuming that all numbers are in base-2 where the digits
are "01". Answer the given question. You will end your response with a
sentence in the format of ‘So the answer is <number>.’
Question: What is 100000 + 101010 - 100011 equal to?
Answer: To calculate 100000 + 101010 - 100011, we need to first calculate
100000 + 101010. 100000 + 101010 = 1001010. Then we need to calculate
1001010 - 100011. 1001010 - 100011 = 100111. So the answer is 100111.

[...7 more examples]

Instruction: Assuming that all numbers are in base-2 where the digits
are "01". Answer the given question. You will end your response with a
sentence in the format of ‘So the answer is <number>.’
Question: What is (10010110 - 111100 / 1100100 * 10010110) * 110 equal to?
Answer:

Table 17: Prompt of formula calculation in base-2 (CoT setting)

Prompt Template for Counting, Base, Direct

Instruction: Answer the given question. You will end your
response with a sentence in the format of ’So the answer is
<number>.’
Question: Here is a list: [orange, orange, orange, orange,
orange, orange, orange, apple, orange, orange]. How many times
does ’apple’ appear on it?
Answer: So the answer is 1.

[...7 more examples]

Instruction: Answer the given question. You will end your
response with a sentence in the format of ’So the answer is
<number>.’
Question: Here is a list: [pear, pear, pear, pear, pear, pear,
pear, apple, pear, pear]. How many times does ’apple’ appear on
it?
Answer:

Table 18: Prompt of counting common fruits (Direct setting)
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Prompt Template for Counting, Longtail, Direct

Instruction: Answer the given question. You will end your
response with a sentence in the format of ’So the answer is
<number>.’
Question: Here is a list: [pitanga, pitanga, pitanga, pitanga,
pitanga, pitanga, pitanga, ugli, pitanga, pitanga]. How many
times does ’ugli’ appear on it?
Answer: So the answer is 1.

[...7 more examples]

Instruction: Answer the given question. You will end your
response with a sentence in the format of ’So the answer is
<number>.’
Question: Here is a list: [ugli, ugli, ugli, pitanga, pitanga,
pitanga, ugli, ugli, pitanga, pitanga]. How many times does
’ugli’ appear on it?
Answer:

Table 19: Prompt of counting uncommon fruits (Direct setting)

Prompt for Counting, Base, CoT

Instruction: Answer the given question. You will end your response with a
sentence in the format of ’So the answer is <number>.’
Question: Here is a list: [orange, orange, orange, orange, orange, orange,
orange, apple, orange, orange]. How many times does ’apple’ appear on it?
Answer: Let’s think step by step. To determine how many times the symbol
’apple’ appears in the list [orange, orange, orange, orange, orange, orange,
orange, apple, orange, orange], we can simply count the occurrences of
’apple’ within the list. Looking at the list, we see: - There are eight
’orange’ symbols. - There is one ’apple’ symbol. So, ’apple’ appears once
in the list. So the answer is 1.

[...7 more examples]

Instruction: Answer the given question. You will end your response with a
sentence in the format of ’So the answer is <number>.’
Question: Here is a list: [apple, apple, apple, orange, orange, orange,
orange, apple, orange, orange]. How many times does ’apple’ appear on it?
Answer:

Table 20: Prompt of counting common fruits (CoT setting)
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Prompt Template for Counting, Longtail, COT

Instruction: Answer the given question. You will end your response with a
sentence in the format of ’So the answer is <number>.’
Question: Here is a list: [pequi, pequi, pequi, pequi, pequi, pequi, pequi,
keule, pequi, pequi]. How many times does ’keule’ appear on it?
Answer: Let’s think step by step. To determine how many times the symbol
’keule’ appears in the list [pequi, pequi, pequi, pequi, pequi, pequi,
pequi, keule, pequi, pequi], we can simply count the occurrences of ’keule’
within the list. Looking at the list, we see: - There are eight ’pequi’
symbols. - There is one ’keule’ symbol. So, ’keule’ appears once in the
list. So the answer is 1.

[...7 more examples]

Instruction: Answer the given question. You will end your response with a
sentence in the format of ’So the answer is <number>.’
Question: Here is a list: [keule, pequi, pequi, keule, pequi, keule, keule,
pequi, keule, pequi]. How many times does ’keule’ appear on it?
Answer:

Table 21: Prompt of counting uncommon fruits (CoT setting)

Prompt Template for Capitalization, Base, Direct

Instruction: Answer the given question. You will end your
response with a sentence in the format of ‘So the answer is
<string>.’
Question: Here is a string: "cartoons for victory". Change the
format of the string so that it can be a title.
Answer: So the answer is Cartoons for Victory.

[...Four more examples]

Instruction: Answer the given question. You will end your
response with a sentence in the format of ‘So the answer is
<string>.’
Question: Here is a string: "simple explanation of work ideas".
Change the format of the string so that it can be a title.
Answer:

Table 22: Prompt of changing title in capitalization task (Direct setting)
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Prompt Template for Capitalization, Longtail, Direct

Instruction: Answer the given question. You will end your
response with a sentence in the format of ‘So the answer is
<string>.’
Question: Here is a string: "cartoons for victory". Change the
format of the string so that only the first letter of the last
word is capitalized.
Answer: So the answer is cartoons for Victory.

[...Four more examples]

Instruction: Answer the given question. You will end your
response with a sentence in the format of ‘So the answer is
<string>.’
Question: Here is a string: "simple explanation of work ideas".
Change the format of the string so that only the first letter
of the last word is capitalized.
Answer:

Table 23: Prompt of capitalizing the first letter of the last word in the string (Direct setting)

Prompt Template for Capitalization, Base, CoT

Instruction: Answer the given question. You will end your
response with a sentence in the format of ‘So the answer is
<string>.’
Question: Here is a string: ‘cartoons for victory’. Change the
format of the string so that it can be a title.
Answer: Let’s think step by step. To convert the string into a
proper title, we need to capitalize the major words, but do not
capitalize short conjunctions unless they are the first or last
word. We can traverse each word iteratively. ‘cartoons’ becomes
‘Cartoons’. ‘for’ becomes ‘for’. ‘victory’ becomes ‘Victory’.
So the answer is Cartoons for Victory.

[...Four more examples]

Instruction: Answer the given question. You will end your
response with a sentence in the format of ‘So the answer is
<string>.’
Question: Here is a string: the roots of hinduism: the early
aryans and the indus civilization’. Change the format of the
string so that it can be a title.
Answer:

Table 24: Prompt of changing title in capitalization task (CoT setting)
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Prompt Template for Capitalization, Longtail, CoT

Instruction: Answer the given question. You will end your
response with a sentence in the format of ‘So the answer is
<string>.’
Question: Here is a string: "cartoons for victory". Change the
format of the string so that only the first letter of the last
word is capitalized.
Answer: Let’s think step by step. The last word in the string
is ’victory’, so we capitalize the first letter of it and it
becomes ’Victory’. So the answer is cartoons for Victory.

[...Four more examples]

Instruction: Answer the given question. You will end your
response with a sentence in the format of ‘So the answer is
<string>.’
Question: Here is a string: "the roots of hinduism: the early
aryans and the indus civilization". Change the format of the
string so that only the first letter of the last word is
capitalized.
Answer:

Table 25: Prompt of capitalizing the first letter of the last word in the string (CoT setting)
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