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Abstract

Translating natural language into formal lan-
guage such as Lean 4 has gained attention for
its potential to automate formal proof develop-
ment. Automated methods provide a scalable
and cost-effective alternative to manual formal-
ization, driving increasing interest in this task.
However, existing LLMs mainly rely on instruc-
tion tuning and lack fine-grained structural and
semantic alignment, making it difficult to gen-
erate syntactically and logically sound formal
proofs. To address this, we propose a reinforce-
ment learning framework ReLean that enables
LLMs to generate high-quality Lean 4 state-
ments from natural language. We first fine-
tune a LLaMA3-8B model on NL–Lean 4 data
to obtain a base translator with basic transla-
tion ability. Then, we design a multi-aspect
dense reward mechanism covering four key
dimensions: semantic alignment, term-level
alignment, global-level alignment, and compile-
checking. Separate reward models are trained
via preference modeling, and their normalized
outputs are combined to guide optimization via
PPO. Finally, a curriculum learning strategy
based on multi-dimensional difficulty allows
the model to learn progressively from simple
to complex cases. Experiments on NL-to-Lean
4 tasks show that our method consistently out-
performs baseline models. Further analysis on
reward model and curriculum learning confirms
their effectiveness in enhancing model perfor-
mance.

1 Introduction

Recent advances in large language models (LLMs)
have shown strong performance in mathematical
reasoning tasks (Guo et al., 2025; Yang et al., 2024),
particularly through natural language-based infor-
mal reasoning. However, such informal reasoning
is difficult to verify automatically and lacks the
rigor required for formal mathematics. Meanwhile,
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with the growing complexity of mathematical do-
mains and increasing demand for formal correct-
ness, traditional peer review alone is no longer
sufficient for ensuring the validity of proofs. To ad-
dress these challenges, formal proof assistants such
as Lean (Moura and Ullrich, 2021; De Moura et al.,
2015), Isabelle (Paulson, 1994), and Coq (Barras
et al., 1999) have been developed. These formal
languages allow computers to verify proofs auto-
matically (Avigad, 2024), providing a clear and
rigorous standard for assessing correctness.

However, writing accurate formal language like
Lean 4 remains a significant burden for domain
experts. It requires deep familiarity with formal
syntax and logical rules, as well as considerable
manual effort to execute low-level, repetitive proof
steps (Jiang et al., 2022). Moreover, mathemati-
cians often face the additional challenge of navi-
gating unfamiliar theorem libraries and strict type
systems—an especially difficult task for those more
accustomed to expressing reasoning in high-level,
informal natural language. As a result, the gap
between informal and formal representations has
drawn growing attention to the challenge of trans-
lating natural language into formal proofs. To il-
lustrate this challenge, we present the following
example:
• Natural Language Sentence:

What is the sum of the smallest and second-
smallest positive integers a satisfying the con-
gruence 27a ≡ 17 (mod 40) ? Show that it is
62.

• Lean 4 Statement:
theorem numbertheory_modulo_min_sum :

(S : Set N) (u v : N)
(h0 : ∀a : N, a ∈ S ↔ 0 < a ∧ 27 ∗ a%40 = 17)

(h1 : IsLeast S u))

(h2 : IsLeast(S \{u}) v)
⇒ u+ v = 62 := by sorry

Recent efforts have leveraged large language
models (LLMs) to translate natural language into
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formal Lean 4 statements. For instance, Theorem-
Llama (Wang et al., 2024) employs instruction tun-
ing and transfer learning to build a long Chain-of-
Thought (CoT) translator for generating accurate
formal statements. FANS (Yao et al., 2025) adopts
a similar CoT-based approach but focuses on con-
verting math question-answer pairs into verifiable
Lean 4 propositions to facilitate formal answer se-
lection. HERALD (Gao et al., 2024) constructs a
large NL–Lean 4 dataset with hierarchical annota-
tions to support supervised fine-tuning. While these
methods improve generation quality, they rely on
static supervision and lack fine-grained semantic
feedback. This often results in Lean 4 outputs that
are logically incorrect or semantically misaligned
with the input natural language.

To address the limitations of instruction-tuned
LLMs in Lean 4 statement generation, we propose
ReLean, a reinforcement learning framework that
systematically improves the translation of natural
language into formal Lean 4 statements. The frame-
work consists of three components: initialization,
reward modeling, and curriculum-based optimiza-
tion. We begin by fine-tuning a LLaMA3-8B model
on a dataset of natural language and Lean 4 state-
ment pairs. This step yields a base generator with
the ability to translate natural language into Lean
4, forming the foundation for subsequent reinforce-
ment learning.

Next, we define four types of reward signals to
evaluate different aspects of statement quality. (1)
semantic alignment evaluates how well the gener-
ated statement preserves the intent of the natural
language input, using reverse translation and em-
bedding similarity; (2) term-level alignment com-
pares the generated subterm sequence with the ref-
erence using the normalized length of their longest
common subsequence (LCS); (3) global-level align-
ment computes edit distance between the generated
and reference Lean 4 statement to assess structural
resemblance; and (4) compile checking verifies
whether the generated statement can be compiled
successfully. Each signal is modeled by a separate
reward model trained through preference learning.
During reinforcement learning with Proximal Pol-
icy Optimization (PPO), the normalized outputs
of all reward models are aggregated into a unified
feedback signal.

Finally, to improve training stability and effi-
ciency, we apply a curriculum learning strategy
based on multi-dimensional difficulty. Difficulty
scores are computed per reward dimension, and a

joint ranking is used to schedule training examples.
The model is progressively trained on increasingly
difficult examples, thereby improving its general-
ization and robustness through a stable learning
process.

This framework enables the generation of Lean
4 statement that is not only syntactically correct
but also semantically aligned and logically sound.
Experiments on multiple NL-to-Lean 4 tasks show
consistent improvements over strong baselines, par-
ticularly in producing structurally accurate and for-
mally verifiable statements.

In general, our contributions are as follows:
• We propose a reinforcement learning frame-

work that directly optimizes LLMs for Lean 4
statements generation. Our framework intro-
duces a multi-aspect dense reward mechanism
to provide fine-grained feedback.

• We design a curriculum learning strategy that
organizes samples based on multi-aspect dif-
ficulty, enabling the model to learn progres-
sively from simple to complex examples.

• Extensive experiments on Lean Workbook
and ProofNet demonstrate that our ReLean
framework outperforms supervised baselines,
validating the effectiveness of multi-aspect re-
wards and curriculum learning.

2 Related Work

2.1 Automatic Formalization

Many researchers have explored the task of trans-
forming natural language (NL) into formal lan-
guages such as Mizar, Isabelle, and Lean (Wang
et al., 2018; Wu et al., 2022; Wang et al., 2024;
Gao et al., 2024). For example, Wang et al. (2018)
demonstrate the potential of neural machine trans-
formation models for converting informal mathe-
matics into formal Mizar statements. Later works
leveraged LLMs to perform few-shot or instruction-
tuned for transformation. For instance, Wu et al.
(2022) and Patel et al. (2023) explore LLM-based
autoformalization of mathematical problems, us-
ing staged or sketch-based pipelines. Zhou et al.
(2024) further improve consistency by validating
LLM-generated quantitative reasoning through aut-
oformalization. Agrawal et al. (2022) use Codex
with adaptive prompts to transform undergraduate-
level math into Lean, while Azerbayev et al. (2022)
constructed a benchmark for autoformalizing un-
dergraduate math, and proposed prompt-based and
backtranslation-based techniques. In addition, Gao
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et al. (2024) propose the HERALD dataset, which
provides hierarchical annotations for both state-
ments and proofs, enabling better fine-tuning on
Lean 4. For Lean 4 specifically, Wang et al. (2024)
introduce TheoremLlama, which combines dataset
bootstrapping, curriculum learning, and block train-
ing to support full proof synthesis with in-line NL
comments. FANS (Yao et al., 2025) further ex-
tends this idea to formalize math QA pairs into
verifiable Lean propositions using a CoT-based for-
mal reasoning process, enabling precise answer
selection. While these methods demonstrate signif-
icant progress, they often rely on static datasets and
coarse-grained supervision, lacking dense feedback
on semantic and structural alignment. To address
these limitations, we propose a reinforcement learn-
ing framework with multi-aspect feedback to im-
prove both the semantic fidelity and logical sound-
ness of Lean 4 formalization.

2.2 Reinforcement Learning for LLMs

With the rapid development of large language
models (LLMs), reinforcement learning (RL)
has become a widely adopted post-training tech-
nique (Ziegler et al., 2019; Christiano et al., 2017).
A representative paradigm is reinforcement learn-
ing from human feedback (RLHF) (Christiano
et al., 2017), which combines a learned reward
model with policy optimization algorithms such as
Proximal Policy Optimization (PPO) (Schulman
et al., 2017). However, RLHF often suffers from in-
stability due to sparse rewards. To address this, re-
cent studies have further enhanced RL effectiveness
by introducing multi-reward frameworks (Dann
et al., 2023), which evaluate outputs from com-
plementary perspectives. For example, Ryu et al.
(2024) balance quality dimensions in summariza-
tion, while Wang et al. (2025) integrate retrieval
and generation feedback in RAG. In parallel, Cur-
riculum Learning (CL) (Bengio et al., 2009; Graves
et al., 2017) has shown promise in organizing train-
ing from easy to hard, improving RL generaliza-
tion (Justesen et al., 2018; Wang et al., 2019; Li
et al., 2020). Methods like Kimi k1.5 (Team et al.,
2025) and LogicRL (Xie et al., 2025) adopt staged
curricula to stabilize training and improve perfor-
mance. In this work, we build on these insights by
proposing a reinforcement learning framework that
integrates multi-dimensional dense reward mod-
eling with curriculum scheduling to improve the
transformation of natural language into Lean 4.

3 Approach

In this section, we present our approach for translat-
ing natural language into formal Lean 4 statement
using a reinforcement learning framework. The
method incorporates multiple reward mechanisms
that provide fine-grained feedback across four key
aspects: semantic alignment, tactic-level alignment,
compile-checking and global structural similarity.
During reinforcement learning, we further apply
curriculum learning by organizing training exam-
ples based on their multi-aspect difficulty, as illus-
trated in Figure 1.

3.1 Problem Definition
Given a natural language instruction x =
{w1, . . . , wLx} ∈ X that describes a mathematical
statement or proof goal, the task is to generate a cor-
responding Lean 4 statement y = {z1, . . . , zLz} ∈
Y, where each yt is a token in the Lean 4 language.

The objective is to learn a mapping function fθ :
X → Y that produces correct Lean 4 statements
from natural language inputs.

3.2 Lean 4 Tanslator Initialization
We initialize a Lean 4 translator by fine-tuning
the LLaMA 3-8B model on the HERALD
dataset (Gao et al.), which contains approximately
580k NL–Lean 4 pairs. This pretraining step pro-
vides the model with basic capabilities for NL-to-
Lean 4 translation, serving as an initialization for
subsequent reinforcement learning.

3.3 Feedback Signal Construction
To mitigate common issues when translating natu-
ral language into Lean 4 statement, we design four
reward functions that serve as RL feedback. These
reward functions guide the model toward generat-
ing accurate, well-structured, and verifiable Lean4
statement.

Semantic Alignment Reward. LLMs often gener-
ate Lean 4 statement that deviate from the original
user intent. To address this issue, we introduce a
reward that evaluates how well the generated state-
ment ŷ preserves the semantics of the input natural
language sentence x.

Specifically, we reverse-map the generated Lean
4 output ŷ into a natural language representation
Rev(ŷ) via prompting as illustrated in Appendix 4,
making its semantic content comparable to the orig-
inal input x. Both Rev(ŷ) and x are then embedded
into a shared semantic space using a pre-trained
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Figure 1: The overall framework of ReLean. (a) illustrates that the input data is ordered based on curriculum sorting.
(b) shows that the multi-reward model evaluates Lean 4 outputs and provides feedback to the Lean 4 generator.

encoder, yielding vectors vRev(ŷ) and vx. The se-
mantic alignment reward is defined as the cosine
similarity between these vectors:

ms = cos
(
vRev(ŷ), vx

)
,

where cos denotes cosine similarity.

Term-Level Alignment Reward. We use subterm
to refer to any syntactic component of a Lean ex-
pression, for example constants or intermediate
goal formulas. In the NL-to-Lean 4 translation task,
subterm sequences serve as a structural bridge be-
tween natural language and formal language. To as-
sess whether the model captures the true trems, we
propose Term-Level Alignment Reward that mea-
sures the structural alignment between the gener-
ated and reference subterm sequences.

We first use a prompt-based extraction mecha-
nism as shown in Appendix 5 to extract the subterm
sequence used in the generated statement, yielding
T̂ = [t̂1, . . . , t̂r], and the reference subterm se-
quence T = [t1, . . . , tk], where t̂i or ti denotes the
subterm used in the i-th step.

Then, we define the reward function based on the
normalized length of the longest common subse-
quence (LCS) between the generated and reference
subterm sequences:

mt =
LCS(T̂ , T )

k
,

where T̂ = [t̂1, . . . , t̂r] is the generated subterm
sequence, T = [t1, . . . , tk] is the reference subterm

sequence, and LCS(T̂ , T ) denotes the length of
their longest common subsequence.

Complie-checking Reward. To ensure that the
generated Lean 4 ŷ is syntactically and type-
theoretically valid, we adopt a REPL (Read-Eval-
Print Loop) based framework to perform complie-
time verification within the Lean 4 environment.
The output is passed to the Lean 4 compiler, and
a binary reward is assigned based on whether it
compiles successfully:

mc =

{
1 if ŷ passes checking,
0 otherwise.

Global-Level Alignment Reward. To assess the
overall structural similarity between the generated
Lean 4 and the reference, we define a global reward
based on the edit distance between the generated
Lean 4 ŷ and the ground truth y. This metric cap-
tures token-level discrepancies such as omissions
and distortions.

The reward is defined as:

mg = −EditDist(ŷ, y),

where EditDist(·, ·) computes the unnormalized
token-level edit distance between the two Lean 4
programs. A smaller distance corresponds to better
global alignment, and the negative sign converts it
into a reward signal.

3.4 Reward Model Training
Given a natural language input x, we obtain two
generated Lean 4 candidates y1 and y2 from the
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initial generator, both corresponding to the same
instruction. Each pair is evaluated using the four
reward metrics introduced in Section 4.2: ms, mt,
mc, and mg. For a metric m∗, we compare the two
Lean 4 and label the one with the higher score as
chosen and the other as rejected, thereby forming a
preference pair. For example, under the semantic
reward ms, we record:

{ (chosen : [x, y1], rejected : [x, y2])

| ms(y1) > ms(y2) }

Reward Model Objective. We train a sepa-
rate reward model rψ for each metric using the
Bradley–Terry formulation. Given an input x with
chosen Lean 4 statementyc and rejected statement
yr, the preference likelihood is modeled as:

Pψ(yc ≻ yr | x) = σ
(
rψ(x, yc) − rψ(x, yr)

)
,

where σ(·) denotes the logistic function. The objec-
tive minimizes the negative log-likelihood across
the preference dataset Dp:

∆rψ := rψ(x, yc)− rψ(x, yr),

L = −E(x,yc,yr)∈Dp

[
log σ(∆rψ)

]
.

Model Architecture. Each reward model shares
the same architecture: it is initialized from the gen-
erator’s backbone and extended with a single linear
head atop the final Transformer layer to produce a
scalar score. We denote the reward models as: rsψ,
rtψ, rcψ, and rgψ. Given an input pair (x, ŷ), we
use the shorthand: rs(ŷ), rt(ŷ), rc(ŷ), and rg(ŷ).

Score Normalization. Because different reward
models may produce outputs on different scales, we
linearly normalize each reward to the [0, 1] range
before aggregation. The normalized scores are
then combined with weights λi to produce the final
scalar signal used in PPO fine-tuning.

3.5 Multi-Aspect Curriculum Learning
To improve the efficiency and stability of RL
fine-tuning, we incorporate curriculum learning by
organizing training examples from easier to more
challenging cases. We define separate curricula
based on our three reward metrics, capturing dis-
tinct dimensions of Lean 4 statement difficulty.

Semantic Alignment Curriculum. We reverse-
map the initial Lean 4 output ŷ0 into natural lan-
guage and compute its semantic similarity with the

input instruction x. Examples with lower similarity
are considered more challenging, as the initial gen-
erator struggles to capture the intended meaning,
and are scheduled later in the curriculum. High-
similarity examples are introduced earlier to help
the model first learn to preserve semantic align-
ment.

Diffs(x, ŷ0) = 1−ms(ŷ0),

Term Curriculum. We measure difficulty based
on the number of subterms in the reference state-
ment. Examples with fewer subterms are intro-
duced earlier, while those with longer subterm se-
quences are scheduled later in the curriculum.

Diff t(y) = |T (y)|,

where T (y) denotes the sequence of subterms in
the reference Lean 4 statement y, |T (y)| is the
number of subterms.

Global Alignment Curriculum. We assess diffi-
culty based on the global similarity between the
initial output ŷ0 and the reference statement y, mea-
sured using the ROUGE score. Examples with
higher ROUGE scores—indicating stronger struc-
tural alignment—are introduced earlier in training.
Lower-scoring examples, which reflect greater di-
vergence in global proof organization, are deferred
to later stages.

Diffg(ŷ0, y) = 1− Rouge(ŷ0, y).

Curriculum Scheduling. We compute an over-
all difficulty score for each example by aggregat-
ing its difficulty under three criteria. Let D =
{(x(j), y(j))}Nj=1 denote the full dataset, and define
the aggregated difficulty for each example as:

Diff
(j)
total =

1

3

3∑

i=1

Diffi(x
(j), ŷ

(j)
0 , y(j)).

We then sort all examples in D in ascending order
of their total difficulty:

Dsorted = Sortasc (D, Diff total) ,

where Sortasc denotes sorting the dataset in ascend-
ing order according to the total difficulty score.

3.6 Reinforcement Learning
To further improve the Lean 4 generator, we adopt
a policy-gradient reinforcement learning frame-
work. The NL-to-Lean 4 task is cast as a Markov
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decision process (MDP) defined by the 5-tuple
⟨S,A,P, r, γ⟩.

At decoding step t, the state st comprises the in-
put instruction x and the partial output ŷ<t, while
the action at selects the next token ŷt. After gener-
ation is complete, the full program ŷ is evaluated
using a weighted sum of the four reward signals
introduced in Section 4.2:

rRL(ŷ) = λsms(ŷ) + λtmt(ŷ) + λg mg(ŷ) + λcmc(ŷ).

Here, ms, mt, mg, and mc denote the semantic
alignment, tactic-level alignment, global alignment,
and compile-checking rewards, respectively. The
weights λ∗ are hyperparameters.

We optimize Gθ with proximal policy optimiza-
tion (PPO), maximizing expected reward while lim-
iting divergence from the initialization Gθ0 :

LPPO = E
[
rRL(ŷ)

]
− ηKL

(
Gθ ∥ Gθ0

)
, (1)

where η is a KL-penalty coefficient that stabilizes
training by discouraging overly large policy shifts.

4 Experiments

In this section, we conduct experiments on Lean
Workbook dataset (Ying et al., 2024a) and ProofNet
dataset (Azerbayev et al., 2022) to evaluate our
methods.

4.1 Experiment Settings
We first introduce our empirical settings, includ-
ing datasets, evaluation measures, baselines and
implementation details.
Datasets. We evaluate the translation ability of
ReLean using two public datasets: Lean Workbook
and ProofNet. Lean Workbook is a large-scale
Lean 4 dataset automatically constructed from nat-
ural language math problems. We sample 500 natu-
ral language–formal language (NL–FL) pairs from
the dataset to form an independent test set for per-
formance evaluation. ProofNet is a standard bench-
mark dataset for automated theorem proving at
the undergraduate level, containing Lean-formatted
problems across areas such as real analysis, com-
plex analysis, linear algebra, abstract algebra, and
topology. While the original dataset is written in
Lean 3, we adopt a converted version in Lean 4.9.0
provided by Xin et al. (2024) to ensure compatibil-
ity with model training and inference.
Evaluation Measures. Following the validation
approach of Ying et al. (2024a); Gao et al., we
first perform a compiler check on the generated

Lean 4 code to ensure its syntactic correctness.
Next, we apply InternLM2Math-Plus-7B to back-
translate the formal statements into natural lan-
guage. Finally, we use the DeepSeek Chat v2.5
model to compare the back-translated results with
the original informal statements, assessing whether
the mathematical semantics and intended meaning
have been accurately preserved. The automatic ac-
curacy is computed as the percentage of generated
Lean 4 statements that can be both compiled and
judged semantically correct.

For human evaluation, we randomly selected 50
NL-Lean 4 pairs from the test set of Lean Work-
book and ProofNet. Four annotators (all students
familiar with the syntax and semantics of Lean 4)
were asked to compare the outputs of our model
with those of baseline models. The annotators were
blind to the source of each Lean 4 formal statement
and did not know which ones were generated by our
model or by the baselines. To complement the auto-
matic evaluation and ensure fairness, we introduce
a human evaluation phase. For formal statements
that pass the automatic checks, human annotators
judge each statement as either: (1) Correct: The
formal statement clearly matches the meaning of
the original natural language sentence. (2) Incor-
rect: The formal statement contains major errors,
does not reflect the original meaning. The final
human evaluation accuracy is calculated as the per-
centage of samples labeled as "Correct" out of the
total number of evaluated samples.
Baselines. We select Six models with mathe-
matical reasoning capabilities as our baselines,
including LLaMA 3-8B-Instruct1, InternLM2-
Math (Ying et al., 2024b), GPT-4o2, DeepSeek-
v1 (Liu et al., 2024), TheoremLlama and Herald
Translator. These models are general or math-
oriented language models with varying levels of
mathematical reasoning ability. Specifically, The-
oremLlama is a fine-tuned model for Lean4 proof
writing. Herald Translator fine-tuned on the Herald
dataset, serves as a specialized model for translat-
ing natural language into Lean 4.
Implementation Details. Our experiments are con-
ducted on 8 NVIDIA GeForce RTX 4090 GPUs
(24GB VRAM each). We implement our frame-
work using PyTorch (Imambi et al., 2021) and Hug-
gingface Transformers (Wolf et al., 2019), with
LLaMA-Factory as the base for model customiza-

1https://huggingface.co/meta-llama/Meta-Llama-3-8B-
Instruct

2https://openai.com/index/hello-gpt-4o/
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Model Lean Workbook ProofNet

Llama3-instruct 14.51 ± 0.72% 7.26 ± 0.34%
InternLM2-Math 16.32 ± 1.65% 9.87 ± 0.98%
GPT-4o 19.78 ± 0.65% 11.85 ± 1.24%
DeepSeek-v1 19.95 ± 0.85% 12.84 ± 0.62%
TheoremLlama 20.86 ± 1.33% 13.88 ± 0.94%
Herald 22.36 ± 0.65% 14.67 ± 0.71%
ReLean (ours) 26.58 ± 0.52% 19.20 ± 0.31%

Table 1: Accuracy of ReLean and baseline models on
Lean Workbook and ProofNet.

tion. We select LLaMA 3-8B as the base Lean 4
translator and fine-tune it using PPO for 80,000
steps with a batch size of 32 and a learning rate
of 1.41e-5. Each reward model is fine-tuned on
LLaMA 3-8B with a linear value head for 5 epochs
using the Adam optimizer (Kingma, 2014), a learn-
ing rate of 5e-5, and a batch size of 16. The KL
penalty coefficient is set to η = 0.05. The final re-
ward signal is computed as a weighted sum of four
components, with weights λ1 = 0.2, λ2 = 0.25,
λ3 = 0.35, and λ4 = 0.2.

4.2 Experimental Results
In this section, we demonstrate our experiment
results on Lean Workbook and ProofNet datasets.

4.2.1 Automatic Evaluation
The evaluation results on Lean Workbook and
ProofNet datasets are shown in Table 1. All mod-
els are queried using few-shot prompting. It can
be observed that large models such as GPT-4o
and Llama3-Instruct still exhibit suboptimal per-
formance on formal language translation tasks,
which is consistent with findings from previous
studies (Wang et al., 2024; Yao et al., 2025).

Our ReLean model performs the best. ReLean
achieves 26.58% on Lean Workbook, which out-
performs the Herald model, i.e., 22.36%. From the
results on ProofNet, we can see that our model also
obtains the best performance. For example, our
ReLean achieves 19.2%, which again outperforms
Herald, i.e., 14.67%. In conclusion, our ReLean
model has the ability to generate more accurate
Lean 4 statements than baselines.

4.2.2 Human Evaluation
The results of human evaluation are shown in Ta-
ble 2. We adopt the percentage of correct outputs
as the evaluation metric to assess the semantic accu-
racy of generated Lean 4 formal statements. From
the results, it can be observed that annotators con-
sider our model to produce the highest proportion

Model
Accuracy (%)

Lean Workbook ProofNet

Llama3-instruct 13.2 7.6
InternLM2-Math 17.4 10.2
GPT-4o 18.8 12.6
DeepSeek-v1 22.4 16.8
TheoremLlama 22.6 14.2
Herald 22.4 14.8
ReLean (ours) 27.6 19.0

Table 2: Human evaluation results on Lean Workbook
and ProofNet.

Reward Lean Workbook ProofNet

Com. (%) Acc. (%) Com. (%) Acc. (%)

ms 17.3 16.8 17.1 15.3
mt 20.1 18.5 15.6 14.8
mc 19.3 15.6 18.9 14.3
mg 24.9 24.6 17.8 17.5
ReLean (all) 28.3 26.6 23.1 19.2

LLaMA3 (Finetuned) 15.9 14.7 11.2 9.8

Table 3: Performance of different reward signals for
translation. Com. indicates the percentage of generated
Lean 4 can be compiled. Acc. denotes the proportion of
statements that are both compiled judged semantically
faithful.

of correct Lean 4 code among all compared meth-
ods. For instance, on the Lean Workbook dataset,
our model achieves an accuracy of 27.6%, sig-
nificantly outperforming Herald at 22.4%, further
demonstrating the advantages of our approach in
semantic preservation and compilability.

4.3 Analysis
4.3.1 Ablation Study
As shown in Table 3, each single-reward vari-
ant outperforms the LLaMA3 (Finetuned) base-
line, confirming that even isolated signals pro-
vide effective supervision for Lean 4 code gen-
eration. Among these, the global-level alignment
reward (mg) achieves the highest accuracy among
all single-signal settings, reaching 24.6% on Lean
Workbook and 17.5% on ProofNet, which high-
lights its effectiveness. The semantic alignment
reward (ms) also shows consistent improvements
over the baseline, particularly in terms of seman-
tic alignment, indicating its strength in preserv-
ing the user’s intent. In contrast, although the
compile-checking reward (mc) achieves relatively
high compilation rates (19.3% and 18.9%), it con-
tributes only limited gains to semantic accuracy
(15.6% and 14.3%), suggesting that syntactic valid-
ity alone is not sufficient to guarantee meaningful
formalization. When integrating all four reward
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Reward Model Lean Workbook ProofNet Average

rs 74.6 72.8 74.6
rt 89.4 86.5 87.95
rc 79.8 80.1 79.95
rg 82.6 84.3 83.45

Table 4: The accuracy(%) of reward models.

Figure 2: RL performance under reward models and
metric-based reward on two datasets. Each curve repre-
sents the accuracy trend over training iterations when
using a specific reward model.

signals, the full ReLean model achieves the highest
overall performance, with a compile rate of 28.3%
and accuracy of 26.6% on Lean Workbook, and
23.1% and 19.2% on ProofNet, respectively. These
results demonstrate that combining multiple com-
plementary reward signals is crucial for generating
Lean 4 statements that are both formally correct
and semantically faithful.

4.3.2 Accuracy of Reward Model

Table 4 reports the pairwise classification accuracy
of each reward model on the Lean 4 preference
test set. All reward models achieve strong perfor-
mance, with classification accuracies exceeding
70% across both Lean Workbook and ProofNet
datasets. These results validate the quality of the
trained reward models and their suitability for guid-
ing downstream reinforcement learning via PPO.

4.3.3 Impact of Reward Feedback

As shown in Figure 2, both on Lean Workbook and
ProofNet datasets, using trained reward models as
feedback leads to more stable and steadily improv-
ing accuracy across training iterations. In contrast,
training directly with metric scores results in rel-
atively slower improvement and less consistency.
This indicates that reward models, learned from hu-
man or preference-based supervision, capture more
reliable optimization signals, which ultimately con-
tribute to better learning efficiency and semantic
fidelity during Lean 4 statements generation.

Figure 3: Comparison of Curriculum Learning Strate-
gies.

4.3.4 Impact of Curriculum Learning

To evaluate the effectiveness of each curriculum
component, we conduct controlled experiments in
which only a single curriculum dimension is ex-
plicitly applied, while the remaining dimensions
follow a default shuffled schedule (i.e., without cur-
riculum). As shown in Figure 2, we consider two
experimental configurations: (1) enabling only one
curriculum dimension while disabling all others
(Single-Aspect CL), and (2) reversing the training
order of a specific curriculum dimension, i.e., train-
ing from hard to easy (Single-Reverse CL).

The results reveal three findings. First, compared
to the full multi-aspect curriculum setting, training
with a single curriculum dimension consistently
underperforms in accuracy, indicating that multi-
aspect curriculum learning is effective for model
training. Second, reversing the training order in
any single dimension leads to noticeable perfor-
mance degradation, highlighting the importance of
the easy-to-hard progression in curriculum design.
Finally, all curriculum-based configurations out-
perform the baseline without curriculum learning,
further validating the effectiveness of curriculum
learning.

5 Conclusion

In this work, we present an RL-based framework,
ReLean, for translating natural languages into Lean
4. The results of both metric-based and human eval-
uations demonstrate that our approach significantly
improves transformation capabilities across two
datasets. Our approach facilitates the automatic
transformation of human-readable mathematical
statements into machine-checkable formal proofs,
contributing to more scalable and accessible formal
verification.
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Limitations

The limitation of our work lies in the evaluation
process, which still relies on human annotation to
assess the correctness and semantic alignment of
generated Lean 4 statements. Although manual
evaluation ensures high-quality assessment, it is
time-consuming, expensive, and difficult to scal,
especially when dealing with large datasets. In
future work, we plan to leverage automated eval-
uation metrics to enable reliable and fine-grained
assessment of formal proof generation, reducing
reliance on human effort.
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A Prompts input to Large Language
Models

In this section, we present the prompts designed to
guide large language models.

You are given a Lean 4 theorem statement written in formal syntax.
Please translate only the statement into a clear and concise natural 
language sentence that preserves its mathematical meaning.
Use plain mathematical English that captures the core logic and 
relationships described by the formal statement.
Avoid referring to Lean syntax or keywords.
Your explanation should be understandable to someone familiar with 
basic mathematics and logic, but not with Lean.
Do not include any information about how to prove the statement.

Lean 4 Statement-to-NL Prompt

Figure 4: Prompt used to generate natural language
translations of Lean 4 theorem statements.

You are given a Lean 4 theorem statement written in formal syntax.
Please extract all subterms that appear in the statement, including nested 
and repeated subterms, while preserving their original syntax.
Each subterm should be recorded exactly as written (e.g., x + y, f (g x), ∀ x : 
ℕ, x > 0 → P x).
Return the result as a list of strings, where each entry corresponds to a single 
subterm.
Do not include the theorem statement itself or any explanation and only 
extract the list of subterms in their original textual form.

Subterm Extraction Prompt

Figure 5: Prompt used to extract subterm sequences
from Lean 4 statement.

We show two representative prompts that are
used to extract structured feedback signals from
Lean 4 data. The prompts in Figure 4 instructs
the model to translate a formal Lean 4 theorem
statement into a natural language sentence. This fa-
cilitates the construction of the semantic alignment
reward, which measures whether the generated for-
mal statement preserves the intended mathematical
meaning. The prompts in Figure 5 asks the model
to extract the complete sequence of subterms from
a Lean 4 statement, including their arguments and
execution order. This serves as the basis for the
term alignment reward.

B Case Study

To illustrate the effectiveness of our approach, we
present two case studies comparing ReLean with a
finetuned LLaMA-3-8B model.

As shown in Figure 6, the task involves for-
malizing a topological separation property. Re-
Lean correctly assigns the predicates is_open
and is_closed to the appropriate set expressions,
while LLaMA-3-8B reverses the polarity, resulting
in a semantically incorrect statement.

In Figure 7, the goal is to express the connect-
edness of an infinite set in the cofinite topology.
The baseline fails to identify the correct set and

theorem open_minus_closed {X : Type*} [topological_space X] 
(U A : set X) (hU : is_open U) (hA : is_closed A) :
is_closed (U \ A) ∧ is_open (A \ U) :=

LLaMA 3-8B (Finetuned)

NL: Show that if U is open in X and A is closed in X, then U-A is open in 
X, and A-U is closed in X.

theorem open_minus_closed {X : Type*} [topological_space X]
(U A : set X) (hU : is_open U) (hA : is_closed A) :
is_open (U \ A) ∧ is_closed (A \ U) :=

ReLean

Figure 6: Comparison of formalization results for a
topological separation task.

theorem connected_of_infinite_wrong 
{X : Type*} [topological_space X] [cofinite_topology X] 
(s : set X) : set.infinite X → is_connected s :=

sorry

LLaMA 3-8B (Finetuned)

NL: Show that if X is an infinite set, it is connected in the finite 
complement topology.

theorem connected_of_infinite {X : Type*} 
[topological_space X] [cofinite_topology X] (s : set X) : 
set.infinite s → is_connected s :=

ReLean

Figure 7: Comparison of formalization results for a
connectedness property in topology.

leaves the statement incomplete, whereas ReLean
generates a valid and faithful Lean 4 theorem.

These examples demonstrate ReLean’s advan-
tage in capturing both the logical structure and
semantic intent of mathematical statements.
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