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Abstract

Video-guided Machine Translation (VMT)
aims to improve translation quality by integrat-
ing contextual information from paired short
video clips. Mainstream VMT approaches
typically incorporate multimodal information
by uniformly sampling frames from the input
videos. However, this paradigm frequently in-
curs significant computational overhead and in-
troduces redundant multimodal content, which
degrades both efficiency and translation qual-
ity. To tackle these challenges, we propose
SHIFT (Selected Helpful Informative Frame
for Translation). It is a lightweight, plug-and-
play framework designed for VMT with Mul-
timodal Large Language Models (MLLMs).
SHIFT adaptively selects a single informative
key frame when visual context is necessary;
otherwise, it relies solely on textual input. This
process is guided by a dedicated clustering
module and a selector module. Experimen-
tal results demonstrate that SHIFT enhances
the performance of MLLMs on the VMT task
while simultaneously reducing computational
cost, without sacrificing generalization ability.

1 Introduction

Video-guided Machine Translation (VMT) is an
emerging subtask of multimodal translation that
has attracted growing research interest. The in-
put to the VMT task consists of an approximately
10-second video clip paired with a text, typically
derived from subtitles or descriptions of the video.
The objective is to improve the translation of the
input text by leveraging the accompanying video’s
multimodal context (Wang et al., 2019; Li et al.,
2022b; Shen et al., 2024; Hou and Guo, 2024;
Zhang et al., 2025b).

The predominant VMT paradigm uniformly sam-
ples frames from video clips, extracts visual and
textual features, and processes them jointly through

*Equal corresponding authors.
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Figure 1: Comparison of the conventional VMT
paradigm (top) and our SHIFT framework (bottom).
The conventional VMT paradigm translates the subtitle
text by jointly processing uniformly sampled frames.
In contrast, SHIFT employs text-only inputs for simple
cases and selects one key video frame when visual con-
text is required (e.g., ambiguous word “bug”). Blue/red
indicate correct/incorrect translations.

Transformer-based (Vaswani et al., 2017) transla-
tion models (Li et al., 2023c; Kang et al., 2023;
Shurtz et al., 2024). However, based on our experi-
mental analysis (Section 5) and recent advances in
Multimodal Large Language Models (MLLM) for
translation (Chen et al., 2025a; Liu et al., 2025), we
identify two critical limitations in the current VMT
paradigm: (1) Excessive multimodal information
redundancy increases computational overhead
and degrades translation quality; and (2) Insuf-
ficient exploration and integration of MLLM-
based methodologies within VMT research.

Figure 1 illustrates two representative scenarios
for MLLM inputs in VMT. When the source text is
simple and clear (e.g., “Yeah, I agree.”), the robust
linguistic capabilities of MLLMs suffice for accu-
rate translation without additional visual context.
Conversely, when textual information alone lacks
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sufficient contextual cues (e.g., for disambiguat-
ing the term “bugs”), incorporating visual context
becomes essential. Our experiments (Section 5.1
and 5.4) demonstrate that, in most cases, choosing
a single, sufficiently informative frame—such as
an outdoor beach scene—can adequately guide the
model toward the correct interpretation. For exam-
ple, this frame can bias the model to favor “insects”
over “errors” by reinforcing contextually relevant
associations. Including unnecessary frames not
only substantially increases computational over-
head but also introduces multimodal redundancy
that can degrade translation quality (Yang et al.,
2022; Xiao et al., 2023; Long et al., 2024).

Motivated by these insights, we introduce
SHIFT (Selected Helpful Informative Frame for
Translation), a novel, lightweight, model-agnostic
VMT framework for MLLMs. The framework com-
prises a clustering module and a selector module.
The clustering module groups video frames into
K clusters based on visual features and selects the
clearest frame from each cluster as the correspond-
ing key frame, resulting in K key frames. Paired
with the source sentence, the K key frames yield
K image–text pairs; combined with the text-only
input, this results in K+1 candidate inputs. The
selector module assigns a score to each candidate,
and the highest-scoring one is selected as the final
input to the MLLM. This allows SHIFT to adap-
tively determine per sample whether to use multi-
modal input: if not needed, only the source text is
used; otherwise, the most informative key frame is
paired with the text.

Experimental evaluations were conducted on the
video subtitle VMT dataset TriFine (Guan et al.,
2025) and the video description VMT dataset VA-
TEX (Wang et al., 2019). Results demonstrate that
SHIFT consistently outperforms traditional VMT
methods across both automatic evaluation metrics
and human preference evaluations, while consider-
ably boosting inference speed. Meanwhile, due to
its plug-and-play, model-agnostic design, SHIFT
effectively prevents the catastrophic forgetting and
generalization degradation commonly associated
with fine-tuning in translation tasks (Luo et al.,
2023; Alves et al., 2023; Stap et al., 2024).

Our primary contributions can be summarized
as follows:

• We propose SHIFT, the first VMT framework
designed to harness the advanced multimodal
and linguistic capabilities of MLLMs for im-
proving translation performance.

• We introduce a novel VMT input paradigm
that adaptively uses either source text alone or
pairs it with the most informative frame based
on the need for visual context.

• We empirically validate SHIFT across various
MLLMs and datasets, achieving consistently
superior performance compared to existing
methods.

• All code for SHIFT has been publicly released
at https://github.com/BoyuGuan/SHIFT.

2 Related Works

Video-guided Machine Translation. Multimodal
machine translation enhances translation by in-
tegrating visual modalities with text (Wang and
Xiong, 2021; Futeral et al., 2023; Shen et al., 2024).
With the introduction of the Multi30K dataset (El-
liott et al., 2016), image-guided machine transla-
tion has rapidly advanced by leveraging visual cues
from input images to enhance translation quality
and contextual relevance (Lin et al., 2020; Wu et al.,
2021; Fang and Feng, 2022; Liang et al., 2022; Fei
et al., 2023; Liang et al., 2024; Yang et al., 2024b;
Wang et al., 2024b; Cheng et al., 2024; Liang et al.,
2025; Zhang et al., 2025c; Futeral et al., 2025).
In recent years, video-guided machine translation,
where video serves as the source of multimodal
information, has attracted increasing interest from
researchers (Gu et al., 2021; Li et al., 2023b; Kang
et al., 2023; Shurtz et al., 2024; Guan et al., 2025;
Lv et al., 2025). Compared to image-guided ma-
chine translation, video can provide more diverse
and richer multimodal information. However, it
also inevitably introduces challenges such as re-
dundant information and high computational costs
(Yang et al., 2022; Guan et al., 2025).

Video Question Answering. Video Question
Answering has become a key benchmark for evalu-
ating multimodal comprehension, with the reduc-
tion of frame-level redundancy posing an impor-
tant challenge (Zhong et al., 2022; Wang et al.,
2024a; Jian et al., 2024; Guo et al., 2025). Tradi-
tional uniform sampling methods frequently over-
look critical content, prompting recent studies to
explore targeted frame selection strategies that en-
hance both relevance and efficiency (Yu et al.,
2023; Nuthalapati and Tunga, 2023; Park et al.,
2024; Jian et al., 2025; Yu et al., 2025; Chen et al.,
2025c). However, existing frame-selection meth-
ods for video question answering are primarily de-
signed for long-duration videos (minutes to tens of
minutes), whereas VMT typically involves much
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Figure 2: Overview of the SHIFT framework, consisting of a clustering module and a selector module. The
clustering module groups frames into K clusters (e.g., K=3 in the figure) based on visual features, and selects the
clearest frame from each cluster as a key frame. The selector module scores K key frame–text pairs and a text-only
input; the top-scoring input is used for inference. Only the modality fusion layer and scoring head is trainable
(indicated by ), while all other components remain frozen (denoted by ).

shorter clips (~10 seconds). Moreover, while prior
approaches focus on selecting and combining multi-
ple frames, most VMT instances can be effectively
handled by MLLMs using only a single frame or
even solely textual input (more detailed discussion
in Section 5.4 and Appendix G).

3 SHIFT Framework

SHIFT is a lightweight, plug-and-play framework
that enhances MLLM performance on VMT. As
shown in Figure 2, SHIFT comprises a cluster-
ing module (Section 3.1) and a selection module
(Section 3.2). They jointly enable adaptive in-
put selection—choosing text alone or with a key
frame—based on the video and source text.

3.1 Clustering Module

The clustering module groups frames by visual
features and selects the clearest frame from each
cluster as key frames. This allows the selector
module to operate solely on key frames, reducing
overhead from redundant or blurred frames.

Given a VMT sample {V,X, Y }, the video V
has a duration of T seconds and comprises N
frames. Due to the high similarity of tempo-
rally adjacent frames, the video frames are ini-
tially downsampled at a rate r to reduce compu-
tational cost. This yields a sampled frame set
Vsampled = {f1, . . . , fn}, where n = ⌈T · r⌉ < N .
Each sampled frame fi ∈ Vsampled is processed
by a frozen, lightweight visual feature extractor
Vϕ, yielding a feature vector ϕi. Aggregating all

features forms the matrix Φ.

ϕi = Vϕ(fi), i = 1, . . . , n (1)

Φ = [ϕ1, . . . ,ϕn]
⊤ (2)

K-means clustering (MacQueen, 1967; Lloyd,
1982) is applied to frame features Φ, forming K =
T · rk clusters, where rk is the clustering ratio and
K ≪ N reduces computational overhead. The
clustering minimizes intra-cluster variance:

J ({µk}, {ℓt}) =
n∑

t=1

∥∥ϕt − µℓt

∥∥2

2
(3)

where ℓt ∈ {1, . . . ,K} is the cluster assignment
and µk is the centroid of cluster k. After con-
vergence, the label vector ℓ = [ℓ1, . . . , ℓn]

⊤ ∈
{1, . . . ,K}n defines the cluster membership of all
frames. Full details are provided in Appendix A.

The cluster center is not always the clearest
frame within its cluster. Since high-clarity frames
supply more distinct and precise semantic cues to
an MLLM in VMT tasks1, a clarity score is com-
puted for each frame fi using the Laplacian op-
erator (Pech-Pacheco et al., 2000). The detailed
calculations are provided in Appendix C.

Clarity(fi) = LaplacianVar(fi) (4)

For each cluster k, the frame with the highest
clarity score is designated as the key frame of that
cluster:

îk = arg max
i∈{i|ℓi=k}

Clarity(fi), k = 1, . . . ,K (5)

resulting in a key frames set F = {fîk | k =
1, . . . ,K}.

1A detailed discussion is provided in Appendix B.
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3.2 Selector Module
The selector module processes K+1 candidate in-
puts: K key frame–text pairs from clustering mod-
ule and the source sentence alone. For each candi-
date, a fused representation is extracted and subse-
quently assigned a score. The candidate with the
highest score is selected as the input to the MLLM.

A source-language sentence X is embedded by a
frozen text embedding Etext into eX = Etext(X).
Each key frame fk ∈ F is encoded by a frozen
pretrained visual encoder Evis and projected by a
projector P into vk.

vk = P
(
Evis(fk)

)
, k = 1, . . . ,K (6)

Candidate set C = {c1, . . . , cK+1} is formed by
fusing each vk with the sentence embedding eX
via a commutative operator ⊕, along with a text-
only candidate.

ck =

{
vk ⊕ eX , for k = 1, . . . ,K

eX , for k = K+1
(7)

Each candidate input ck ∈ C is processed by the
modality fusion layer Mfusion, followed by a feed-
forward scoring head S that outputs a scalar score
sk ∈ [0, 1].

sk = S(Mfusion(ck)), k = 1, . . . ,K+1 (8)

The modality fusion layer Mfusion comprises the
bottom four decoder layers of the MLLM, which
have been shown to be more effective in visual
token utilization and multimodal integration (Chen
et al., 2024; Zhang et al., 2025a). The parameters
of both the modality fusion layer Mfusion and the
scoring head S are learnable during training.

3.3 Training
3.3.1 Collection of Training Data
To generate supervision data for training SHIFT,
we leverage a powerful MLLM A to automatically
annotate reference scores. The annotation model
A offers strong multimodal and multilingual capa-
bilities. For each instance, K key frames are ex-
tracted via the clustering module. These K frames,
together with the source text X , constitute K+1
candidate inputs—including a text-only input. By
evaluating the quality of the translations generated
by the annotation model A for each candidate in-
put, the relative contribution of different inputs to
the VMT task can be quantified. This further en-
ables the assignment of reference scores to each
candidate input.

The reference score ŝk is computed from the
COMET score tk ∈ [0, 100], which is calculated
between A’s translation Ŷk for the k-th candidate
input and the reference translation Y .

Ŷk =

{
A(fk, X), k = 1, . . . ,K

A(X), k = K+1
(9)

tk = COMET
(
X, Ŷk, Y

)
(10)

To enhance data quality and accelerate training
convergence, we apply quality control by retaining
only samples meeting two criteria: (1) the maxi-
mum candidate score max(tk) must exceed a qual-
ity threshold τq, ensuring the presence of a high-
quality translation; and (2) the score range must
exceed a variation threshold τv, promoting suffi-
cient distinction among candidates.





max
k

tk > τq

max
k

tk −min
k

tk > τv
⇒ retain (11)

To encourage lower-cost inference without de-
grading translation quality, a simple data-level re-
finement is introduced. When the text-only can-
didate ties for the highest score, its score is incre-
mented by 1 (capped at 100) to promote its se-
lection over multimodal counterparts. Finally, the
value is scaled by 1/100 to match the range of sk.

Ik =

{
1, k = K+1 ∧ tK+1 = max1≤j≤K+1 tj
0, otherwise

(12)

ŝk =
1

100
min(tk + Ik, 100) k = 1, . . . ,K+1 (13)

3.3.2 Loss Function
To jointly achieve accurate absolute score calibra-
tion and robust relative ranking across the K+1
candidates, a hybrid loss function is adopted. It
combines absolute and pairwise ranking objectives
within a unified optimization framework.

The overall loss Loverall is formulated based on
cosine similarity to minimize the discrepancy be-
tween the predicted scores and the corresponding
reference scores. For each sample, let sk and ŝk
denote the predicted score and reference score of
the k-th input candidate (k = 1, . . . ,K+1), re-
spectively. The Loverall is defined as:

Loverall = 1 − 1

∥s∥2 ∥ŝ∥2

K+1∑

k=1

sk ŝk (14)

where ∥ · ∥2 denotes the Euclidean norm.
To effectively model fine-grained relative prefer-

ences among candidates, we adopt the RankNet
loss (Burges et al., 2005) as the relative loss
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Lrelative, which is specifically designed to optimize
the alignment between predicted scores and refer-
ence pairwise rankings. Let P = {(j, k) | 1 ≤ j <
k ≤ C, ŝj ̸= ŝk} denote index pairs with distinct
reference scores. For each (j, k) ∈ P , we compute
the score difference ∆sjk = sj − sk and binary
label yjk = 1[ŝj > ŝk]. The predicted preference
probability is pjk = σ(∆sjk), where σ is the sig-
moid function (Rumelhart et al., 1986; Cybenko,
1989). The relative loss Lrelative is computed as
follows:

ℓjk = −
[
yjk log pjk + (1− yjk) log(1− pjk)

]
(15)

Lrelative =
1

|P|
∑

(j,k)∈P
ℓjk (16)

The final loss is formulated as a weighted sum
of two components:

L = Loverall + α · Lrelative (17)

Where α > 0 is a hyperparameter that balances
the contribution between absolute score calibration
and relative ranking fidelity.

4 Experiments

4.1 Data

We constructed a training set comprising 10K
zh→en and 10K en→zh training samples from the
training split of the TriFine dataset (Guan et al.,
2025). The method is evaluated on the TriFine (gen-
eral and ambiguity) and VATEX test sets (Wang
et al., 2019). TriFine is a large-scale video subtitle
VMT dataset comprising 1.2M en→zh and 1.18M
zh→en training samples, each with aligned en-zh
subtitles and a 10-second video clip. TriFine’s gen-
eral test sets consist of 7,000 en→zh and 7,000
zh→en samples; its ambiguity test set adds 1,001
cases requiring video context. VATEX is a English-
Chinese video description VMT dataset, containing
25,991 videos in its training set and 3,000 videos
in its validation set. Each video is accompanied by
ten English–Chinese description pairs: five are di-
rect translations suitable for translation tasks, while
the other five are non-parallel and thus inappropri-
ate for VMT. Since the test set of VATEX is not
publicly available, we follow the approach of Kang
et al. (2023) by evenly splitting the validation set
to serve as our validation and test sets in the exper-
iments.

4.2 Settings

In our experiments, the downsampling rate r and
the clustering ratio rk of the clustering module
are set to 5 and 0.5, respectively. The clustering
module’s lightweight visual feature extractor Vϕ is
a pre-trained ResNet-50 model (He et al., 2016).
The selector module components—text embedding
layer Etext, visual encoder Evis, projector P , and
modality fusion layer Mfusion—are initialized with
Qwen2.5-VL-7B parameters. This leverages its
strong pretrained multimodal and multilingual ca-
pabilities to accelerate convergence. Qwen2.5-VL-
32B was used as the annotation model A during
data collection to balance quality and efficiency. In
Equation 11, quality thresholds τq and τv are set
to 60 and 2, respectively. The hyperparameter α in
Equation 17 is set to 0.8. We randomly sampled 5%
(i.e., 1,000 samples) from the constructed training
data to serve as the validation set. Each experiment
was conducted three times with different random
seeds, and the average results are reported. We
used the AdamW (Loshchilov and Hutter, 2019)
optimizer, with the learning rate was set to 5e-4.
More details can be found in Appendix F.

4.3 Evaluation

We adopt BLEU2 (Papineni et al., 2002; Post,
2018), COMET3 (Rei et al., 2022) and BLEURT4

(Sellam et al., 2020) as automatic evaluation met-
rics to assess translation quality, aligning with cur-
rent standards in LLM-based translation research
(Chen et al., 2025a; Liu et al., 2025). Additionally,
we conducted human preference evaluations.

4.4 Baselines

For comparison, we categorize our baselines into
three distinct groups.

(i) Traditional VMT systems. Including TVE,
CVE (Shurtz et al., 2024), FIAT (Guan et al.,
2025), and a text-only Transformer (Vaswani et al.,
2017), encompass both coarse- and fine-grained
video–text fusion approaches, as well as a non-
visual baseline.

(ii) Open-source text-only LLM. We adopt
several widely used open-source text-only
LLMs—Llama-3-8B, its multilingual variant
Llama-3.1-8B (Grattafiori et al., 2024), and
Qwen-2.5-7B (Yang et al., 2024a).

2https://github.com/mjpost/sacrebleu
3https://huggingface.co/Unbabel/wmt22-comet-da
4https://github.com/lucadiliello/bleurt-pytorch

3254



TriFine VATEX Speed
General (zh→en) General (en→zh) Ambiguity (en→zh) Test (en→zh)

# Method BLEU ↑ / COMET ↑ / BLEURT ↑ SPS ↑

Traditional VMT Methods

1 Transformer 23.58/71.86/56.65 36.55/75.40/54.49 29.85/74.39/52.47 29.70/73.02/—— 75.32
2 TVE 23.85/72.58/57.20 36.55/75.64/54.98 30.37/74.45/55.55 30.30/73.37/—— 1.30
3 CVE 23.97/72.60/57.19 36.43/75.58/55.29 30.28/74.39/55.55 29.40/73.44/—— 1.28
4 FIAT 25.51/73.59/57.89 38.06/76.48/56.15 31.24/75.93/56.32 30.75/73.92/55.43 0.71

Open-source LLMs based on Text

5 Llama-3-8B 14.12/72.48/57.08 25.00/75.65/55.57 22.50/76.65/56.85 25.11/75.33/54.94 9.25
6 Llama-3.1-8B 16.68/72.54/55.78 25.11/77.66/57.39 24.95/77.14/58.91 27.81/78.15/57.95 9.21
7 Qwen2.5-7B 16.63/74.24/57.93 28.87/78.11/58.17 29.13/79.33/60.20 28.76/77.00/55.78 9.36

Open-source MLLMs based on Text & Video

8 LLaVA-Next-Video 12.38/68.65/55.18 23.63/73.63/57.26 23.66/76.35/58.22 25.62/75.45/55.10 0.65
9 InternVideo2.5-8B 19.60/75.55/60.18 30.28/77.59/57.85 31.49/80.25/61.41 30.09/78.25/58.04 0.72

MiniCPM-V 2.6
10 + Uniform Frames 18.25/74.70/58.62 30.94/78.16/59.07 32.06/80.15/61.43 29.95/78.35/58.14 0.42
11 + Video 20.46/75.26/59.34 31.16/78.29/58.04 31.51/80.57/61.50 29.78/78.33/58.12 0.21
12 + Self-reasoning Frame 19.42/74.42/58.94 30.84/78.20/58.89 31.79/80.43/61.45 30.15/78.41/58.26 0.39
13 + SHIFT (Ours) 21.53/76.23/60.91 31.95/79.21/59.78 33.27/81.39/62.64 31.27/79.06/58.76 1.02

Qwen2.5-VL-7B
14 + Uniform Frames 20.87/75.37/60.16 32.04/78.21/59.00 32.48/80.20/60.84 32.46/79.04/58.91 0.37
15 + Video 20.69/75.52/60.13 32.90/79.03/60.07 33.83/81.59/63.01 32.87/79.02/58.95 0.73
16 + Self-reasoning Frame 21.13/75.42/60.28 32.20/78.65/59.52 33.67/81.49/62.45 33.10/79.16/59.00 0.35
17 + SHIFT (Ours) 22.09/76.61/61.01 33.74/79.83/61.08 35.06/82.65/64.10 33.86/79.82/59.73 0.96

Table 1: Results of methods on the TriFine en-zh general test sets, the ambiguity test set, and VATEX test set,
averaged over three random seeds. SPS (Samples Per Second) denotes the average inference speed. The best value
for each metric on each test set is highlighted in bold. Additional data are provided in Appendix B.

(iii) Open-source multimodal LLMs that
jointly process text and video. Qwen-2.5-VL-
7B (Bai et al., 2025), LLaVA-Next-Video (Zhang
et al., 2024), InternVideo-2.5-Chat-8B (Wang et al.,
2025), and MiniCPM-V 2.6 (Yao et al., 2024) are
selected as baselines due to their strong perfor-
mance on a range of video-related tasks.

The instruct versions of available LLMs were
used. All prompts are listed in Appendix D, with
baseline details in Appendix E.

5 Results and Analysis

5.1 Main Results

Table 1 reports the results of all methods on the
TriFine English→Chinese and Chinese→English
general test sets, the ambiguity test set, and the
VATEX test set. Our method SHIFT consistently
improved performance on two MLLMs, achieving
multiple best results on three evaluation metrics.
Moreover, it achieved the fastest inference speed
among all video-text MLLM methods.

Compared to the strongest traditional VMT
method (row 4), the SHIFT framework (row 17)
achieves average gains of 4.75 COMET and 5.03

BLEURT across four test sets, while also improv-
ing inference speed by 35%. Although the average
BLEU score dropped slightly by 0.20, considering
the BLEU scores of all LLMs on the general test
sets and prior research (Glushkova et al., 2023; He
et al., 2024; Chen et al., 2025b) suggesting that the
decline in BLEU scores for LLM-based methods
reflects more flexible lexical choices rather than a
deterioration in translation quality.

A comparison between rows 7 and 17 reveals
that, relative to the same text-only foundational
LLM, our SHIFT framework achieves average
gains of 5.34 BLEU points, 2.56 COMET points,
and 3.46 BLEURT points. Experimental results un-
derscore the importance of effective multimodal in-
tegration for enhancing LLM performance in VMT.

Comparison of results in rows 8, 9, 11, 13,
15, and 17 reveals that, while directly inputting
video–text pairs into the MLLM introduces richer
multimodal information, it does not improve VMT
performance. On the contrary, the redundancy of
multimodal inputs impair translation quality and
significantly increase computational cost.

Comparison of rows 10/13 and 14/17 reveals that
the conventional VMT input paradigm—uniform
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frame sampling—performs worse than the adap-
tive input strategy in our SHIFT framework, yield-
ing average improvements of +1.72 BLEU, +1.33
COMET, and +1.48 BLEURT across four test sets.

We further evaluate a self-reasoning paradigm
where the MLLM autonomously selects the most
relevant frame based on video and text inputs, with
results in rows 12 and 16. Compared to this base-
line, our SHIFT framework improves performance
by 1.31 BLEU, 1.08 COMET, and 1.15 BLEURT,
indicating superior guidance in multimodal selec-
tion for VMT. A more detailed analysis is presented
in Section 5.5.

5.2 Comparison with other frame selection
methods

Method General (zh→en) General (en→zh)

BLEU ↑ / COMET ↑ / BLEURT ↑
Qwen2.5-VL-7B

+ Random 19.07/74.88/59.31 32.69/79.00/60.13
+ Middle 20.88/75.48/60.24 32.72/78.98/60.02
+ CLIP 19.36/75.03/59.52 32.81/79.03/60.09
+ BLIP 18.70/74.79/59.13 32.78/79.01/60.00
+ BLIP2 19.24/74.99/59.46 32.77/78.98/60.08
+ SigLIP 19.72/75.11/59.64 32.74/78.97/60.06
+ SigLIP2 20.54/75.27/59.99 32.70/79.02/60.03
+ SHIFT 22.09/76.61/61.01 33.74/79.83/61.08

Table 2: Comparison of the SHIFT framework and com-
monly adopted frame-selection methods.

To evaluate SHIFT’s frame selection efficacy, we
compared it with commonly used frame-selection
methods—random selection, middle-frame, CLIP
(Radford et al., 2021), BLIP (Li et al., 2022a),
BLIP2 (Li et al., 2023a), SigLIP (Zhai et al.,
2023), and SigLIP 2 (Tschannen et al., 2025)—on
the TriFine general test sets based on Qwen2.5-
VL-7B. The results are reported in Table 2. Al-
though widely adopted in other multimodal tasks,
these methods demonstrate limited effectiveness on
VMT, often yielding results almost indiscernible
from random selection. This may stem from the
monolingual nature of models like CLIP, which
struggle with VMT’s multilingual demands.

5.3 Ablation experiments

We performed ablation studies on the SHIFT frame-
work’s clustering and selector modules using the
TriFine general test set and Qwen2.5-VL-7B (Ta-
ble 3). Employing only the selector (i.e., select-
ing from all frames) expands the candidate pool
but introduces frame redundancy, impeding con-
vergence and increasing computational cost. In

Module General (zh→en) General (en→zh) Speed

MC MS BLEU ↑ / COMET ↑ / BLEURT ↑ SPS↑

✗ ✗ 20.69/75.52/60.13 32.90/78.65/59.52 0.73
✗ ✓ 21.65/75.87/60.45 33.10/79.04/60.25 0.54
✓ ✗ 21.31/75.76/60.24 32.98/78.91/59.90 0.71
✓ ✓ 22.09/76.61/61.01 33.74/79.83/61.08 0.96

Table 3: The ablation study results for the SHIFT frame-
work’s two modules: clustering (MC) and selector
(MS). Experiments were conducted using Qwen2.5-
VL-7B. SPS denotes “samples per second.”

contrast, SHIFT achieves improvements of +0.54
BLEU, +0.76 COMET, and +0.70 BLEURT, with a
77.78% speed-up, confirming the necessity of clus-
tering module. Using only the clustering module
(inputting all key frames and text) is more efficient
than full-video input, yet SHIFT further improves
BLEU/COMET/BLEURT by 0.77/0.89/0.98 and
accelerates processing by 35.21%. These results
suggest that redundancy persists even among clus-
tered key frames, underscoring the selector’s im-
portance.

Module General (zh→en) General (en→zh)

Loverall Lrelative BLEU ↑ / COMET ↑ / BLEURT ↑

✗ ✓ 21.26/75.73/60.10 33.22/79.51/60.54
✓ ✗ 19.39/75.21/59.72 32.07/79.24/60.35
✓ ✓ 22.09/76.61/61.01 33.74/79.83/61.08

Table 4: Ablation results for the training loss subcompo-
nents: overall loss (Loverall) and relative loss (Lrelative).

We perform an ablation study on Loverall and
Lrelative using Qwen2.5-VL-7B on the TriFine
en-zh general test sets (Table 4). Removing
either component results in consistent perfor-
mance drops—1.42 BLEU, 0.80 COMET, and 0.87
BLEURT on average—and slower convergence,
demonstrating the necessity of both terms.

5.4 Number of Selected Frames
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Figure 3: BLEU and COMET scores of Qwen2.5-VL-
7B and MiniCPM-V2.6 with different frame counts on
the TriFine en→zh general test set. The detailed data
are provided in Appendix B.

Figure 3 presents the performance of Qwen2.5-
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VL-7B and MiniCPM-V2.6 on the TriFine en→zh
test set with varying numbers of selected frames.
The results indicate that increasing the number of
selected frames does not enhance translation qual-
ity; on the contrary, it leads to a consistent decline
in performance. This finding confirms our hypoth-
esis that redundant multimodal input not only in-
creases computational overhead but also degrades
translation quality in VMT.

5.5 Inefficacy of MLLM’s Self-Reasoning
Frame Selection in VMT
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Figure 4: The self-reasoning frame selection statistics of
Qwen2.5-VL-7B on the VMT task under both original
and rotated input orders. A detailed description of the
experiments and data is available in Appendix B.

To further investigate the MLLM’s self-
reasoning–based frame selection behavior in
VMT, we sampled 1,000 examples and uni-
formly extracted ten frames per video. Using
Qwen2.5-VL-7B, we conducted self-reasoning to
select the most translation-relevant frame from two
frames input orders: (1) the original order and (2) a
new order generated by rotating the original indices
by +5 (mod 10). The selection statistics for the two
input orders are presented in Figure 4.

Despite altered frame positions, selection pat-
terns remained highly consistent (Spearman’s ρ =
0.9152, p = 0.0002). This suggests that the
MLLM relies more on positional biases than on
true multimodal reasoning in VMT.

5.6 Human Evaluation

From the outputs of the SHIFT framework paired
with Qwen2.5-VL-7B and MiniCPM-V2.6 on each
of the three test sets, we randomly sampled 50
examples per model for human evaluation. As
shown in Figure 5, compared to uniform sampling,
SHIFT consistently received higher human prefer-
ence across both models and all three test sets. It
also outperformed the direct video-text input base-
line (Appendix H).
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Figure 5: Human preference evaluation across two
MLLMs and three test sets between the SHIFT frame-
work and uniform sampling.

5.7 Case Study

We have another 
guest bedroom.

Source 
Sentence:

Video 
Clip:

Reference 
Sentence:

Video-text
Methods’ 
Output:

SHIFT 
Output:

我们还有另一间客房。

我们还有另一间客房。

SHIFT 
Selected
Frame :

This is called, the 
Quad Bowl.

这就叫四人保龄球。

这被称为四分卫碗。

Text-only

这叫做四人保龄球。

我们有另一间客房。
(We have another guest bedroom.) (This is called four-player bowling.)

(We have another guest bedroom.)

(This is called the Quarterback dish.)(We have another guest bedroom.)

(This is called four-player bowling.)

Text-only
Output:

我们还有另一间客房。 这被称为四边形碗。
(This is called the quadrangular dish.)(We have another guest bedroom.)

… …

Table 5: Qualitative case studies of the SHIFT
framework on two en→zh examples. Brown marks
multimodal-dependent text; Blue/red denote correct/in-
correct translations.

Table 5 presents qualitative case study results of
the SHIFT framework on two English→Chinese
examples from the TriFine test set, using Qwen2.5-
VL-7B. For the clear sentence in the first exam-
ple, SHIFT selects the text-only input, allowing
the MLLM to produce accurate translations while
avoiding the substantial computational overhead
associated with processing video input. In con-
trast, for the ambiguous phrase “Quad Bowl” in
the second example, directly performing VMT with
video-text input introduce misleading visual cues
that impair the MLLM’s translation. SHIFT instead
identifies and selects a relevant frame from video
based on the text, enabling correct translation as

“four-player bowling.”
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6 Conclusions

In this work, we introduce SHIFT, a novel plug-
and-play framework for VMT, designed to reduce
computational overhead and enhance the transla-
tion quality of MLLMs. For each video–text VMT
sample, the clustering module of SHIFT first clus-
ters the frames by visual features and clarity to ob-
tain a set of key frames. Conditioned on the source
text and key frames, a selector module determines
whether to provide the MLLM with the text alone
or with the text accompanied by a selected key
frame. Extensive experiments demonstrate that our
method consistently outperforms baselines in both
translation quality and inference efficiency across
diverse test sets and model architectures.

Limitations

Although SHIFT has achieved strong performance
on the VMT task, our computational resource con-
straints limited its full potential. Leveraging mod-
els with more advanced reasoning, multimodal, and
multilingual capabilities to assign reference scores
during data collection could provide richer and
more comprehensive selection knowledge, thereby
potentially further enhancing translation quality.
We plan to investigate this issue in depth in future
work.

Acknowledgments

We sincerely thank the anonymous reviewers for
their insightful comments and constructive sugges-
tions. This research was supported by the National
Natural Science Foundation of China (Grant Nos.
62336008 and 62476271) and the Young Scientists
Fund of the State Key Laboratory of Multimodal
Artificial Intelligence Systems (MAIS2024316).

References
Duarte Alves, Nuno Guerreiro, João Alves, José Pom-

bal, Ricardo Rei, José de Souza, Pierre Colombo,
and Andre Martins. 2023. Steering large language
models for machine translation with finetuning and
in-context learning. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
11127–11148, Singapore. Association for Computa-
tional Linguistics.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wen-
bin Ge, Sibo Song, Kai Dang, Peng Wang, Shi-
jie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu,
Mingkun Yang, Zhaohai Li, Jianqiang Wan, Pengfei
Wang, Wei Ding, Zheren Fu, Yiheng Xu, and 8 others.

2025. Qwen2.5-vl technical report. arXiv preprint
arXiv:2502.13923.
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A K-means Calculation

Given a set of frame-level feature vectors Φ =
[ϕ1, . . . ,ϕn]

⊤ ∈ Rn×d, we apply the standard K-
means clustering algorithm to partition the features
into K disjoint clusters. The objective is to mini-
mize the total intra-cluster variance:

J ({µk}, {ℓt}) =
n∑

t=1

∥∥ϕt − µℓt

∥∥2

2
(18)

Here, ℓt ∈ {1, . . . ,K} denotes the cluster as-
signment of frame t, and µk ∈ Rd represents the
centroid of the k-th cluster.

The optimization is solved using Lloyd’s algo-
rithm, which iteratively alternates between the fol-
lowing two steps until convergence:

Assignment step: Each data point is assigned to
the nearest cluster center:

ℓ
(i+1)
t = arg min

k∈{1,...,K}

∥∥ϕt − µ
(i)
k

∥∥2

2
, ∀ t (19)

Update step: Each cluster centroid is updated as
the mean of all assigned points:

µ
(i+1)
k =

1

|S(i+1)
k |

∑

t: ℓ
(i+1)
t =k

ϕt, ∀ k (20)

where S(i+1)
k = {t | ℓ

(i+1)
t = k} is the set of

points assigned to cluster k at iteration i+ 1.
After convergence, the label vector ℓ =

[ℓ1, . . . , ℓn]
⊤ ∈ {1, . . . ,K}n defines the final clus-

ter membership of all video frames.

B More Results

Method General (zh→en) General (en→zh)

BLEU ↑ / COMET ↑ / BLEURT ↑
Random 21.87/76.03/60.81 33.52/79.35/60.49
Cluster Center 21.92/76.20/60.75 33.58/79.28/60.47
Clearst 22.09/76.61/61.01 33.74/79.83/61.08

Table 6: Different key frame selection strategies within
SHIFT’s clustering module are compared, with the opti-
mal performance highlighted in bold.

We leveraged Qwen2.5-VL-7B to investigate the
impact of selecting different frames as key frames
for each cluster within the clustering module, with
results reported in Table 6. Our findings indicate
that choosing the clearest frame per cluster en-
hances translation quality, which we attribute to
these frames providing more precise multimodal
semantic information.

#Frames BLEU COMET
Qwen MiniCPM Qwen MiniCPM

1 33.74 31.95 79.83 79.21
2 33.24 32.01 79.59 79.16
3 32.84 31.92 79.53 79.00
5 32.98 31.20 78.91 78.34

10 31.61 30.94 78.13 78.16

Table 7: The exact numerical values for Figure 3. Perfor-
mance comparison under different numbers of selected
frames. BLEU and COMET scores are reported for
Qwen2.5-VL-7B and MiniCPM-V2.6 on the general
en→zh test set of TriFine.

The precise numerical values depicted in Figure
3 are provided in Table 7.

Index Original Order Rotated Order
0 56 142
1 8 38
2 4 12
3 0 0
4 5 14
5 551 534
6 96 71
7 155 103
8 49 21
9 76 65

Table 8: The exact numerical values for Figure 4, where
each entry denotes the number of times the image at that
position in the input sequence was selected.

The specific numerical values shown in Figure
4 are presented in Table 8. To assess frame selec-
tion behavior, we sampled 1,000 VMT instances
and uniformly extracted 10 frames per video to
form F = [f0, . . . , f9]. A rotated sequence F ′ =
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[f5, f6, f7, f8, f9, f0, f1, f2, f3, f4] was created by
shifting each fi to position (i+ 5) mod 10. Both
(F,X) and (F ′, X) were fed into Qwen2.5-VL-7B
using the prompt in Figure 9 to identify the most
informative frame. Despite substantial differences
in visual content between corresponding indices,
the model’s predictions remained highly consistent
(Spearman’s ρ = 0.9152, p = 0.0002), suggesting
index-based rather than content-based selection.

Additional results from the main experiment in
Table 1 are presented in Table 9. Additional re-
sults are presented regarding the MLLM’s perfor-
mance on the VMT task when using either a frame
randomly sampled from the video or the video’s
middle frame. Additionally, we have conducted ex-
periments on the larger-scale InterVL3-14B (Zhu
et al., 2025) model to further validate the gener-
alizability of our method on models with greater
capacity.

C Clarity Score Calculation for Each
Frame

Each color frame fi with per-pixel channels
(Rx,y, Gx,y, Bx,y) is first converted to grayscale
G ∈ RH×W using the BT.601 luminance formula
(International Telecommunication Union, 2011).

Gx,y = 0.299Rx,y + 0.587Gx,y + 0.114Bx,y (21)

A discrete Laplacian operator with the 3 × 3 ker-
nel is applied to compute the second-order spatial
derivative:

KLap =



0 1 0
1 −4 1
0 1 0


 (22)

Lx,y = (KLap ∗G)x,y =
∂2G

∂x2
(x, y) +

∂2G

∂y2
(x, y), (23)

resulting in the Laplacian map L ∈ RH×W , where
larger magnitudes indicate edges or fine textures.
The clarity score of fi is quantified as the variance
of L (Jarvis, 1976; Pech-Pacheco et al., 2000):

µL =
1

H ×W

∑

x,y

Lx,y (24)

Clarity(fi) = Var(L) =

∑
x,y

(
Lx,y − µL

)2

H ×W
(25)

D Prompts and Human Evaluation

D.1 Prompts in Experiments
In all our experiments, we adopt the same prompt
whenever the input format remains consistent (e.g.,
a single image accompanied by text). We design

our prompts with reference to those used in exist-
ing multimodal translation studies (Liu et al., 2025).
To minimize the potential impact of prompt varia-
tions on the experimental results, all prompts used
to directly generate translations were designed to
follow a consistent format. The specific prompts
corresponding to each input format are detailed
below.

In the figure, the placeholders [SOURCE
LANGUAGE] and [TARGET LANGUAGE] should be re-
placed with either Chinese or English according
to the translation direction, and [SRC SENTENCE]
should contain the source-language sentence to be
translated.

Prompt for Translation with Text-only

Please translate the following input sentence from
[SOURCE LANGUAGE] to [TGRGET LANGUAGE].
ONLY output the translated sentence.
Input sentence:
[SRC SENTENCE]
Translated sentence:

Figure 6: Prompt for translation with text-only.

Text-only. Our prompt for text-only translation
is shown in Figure 6. The experiments correspond-
ing to rows 5, 6 and 7 in Table 1 employed this
prompt.

Prompt for Translation with Image-text Input

Please translate the following input sentence from
[SOURCE LANGUAGE] to [TGRGET LANGUAGE]
according to the iamge. ONLY output the translated
sentence.
Input sentence:
[SRC SENTENCE]
Translated sentence:

Figure 7: Prompt for translation with image-text input.

Single Image + Text. In our experiments, when
the input comprised a single image and a source-
language sentence, we utilized the prompt illus-
trated in Figure 7 to generate the target-language
translation. Specifically, items in row 13 and 17
(during the second-generation phase) in Table 1 and
items in Table 2 were produced using this prompt.

Multi-image + Text. When the input consists of
multiple images and a text, two processing strate-
gies are adopted. The first strategy directly gen-
erates the translation based on the input using the
prompt shown in Figure 8, corresponding to Rows
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TriFine VATEX Speed
General (zh→en) General (en→zh) Ambiguity (en→zh) Test (en→zh)

# Method BLEU ↑ / COMET ↑ / BLEURT ↑ SPS ↑

Traditional VMT Methods

1 Transformer 23.58/71.86/56.65 36.55/75.40/54.49 29.85/74.39/52.47 29.70/73.02/—— 75.32
2 TVE 23.85/72.58/57.20 36.55/75.64/54.98 30.37/74.45/55.55 30.30/73.37/—— 1.30
3 CVE 23.97/72.60/57.19 36.43/75.58/55.29 30.28/74.39/55.55 29.40/73.44/—— 1.28
4 FIAT 25.51/73.59/57.89 38.06/76.48/56.15 31.24/75.93/56.32 30.75/73.92/55.43 0.71

Open-source LLMs based on Text

5 Llama-3-8B 14.12/72.48/57.08 25.00/75.65/55.57 22.50/76.65/56.85 25.11/75.33/54.94 9.25
6 Llama-3.1-8B 16.68/72.54/55.78 25.11/77.66/57.39 24.95/77.14/58.91 27.81/78.15/57.95 9.21
7 Qwen2.5-7B 16.63/74.24/57.93 28.87/78.11/58.17 29.13/79.33/60.20 28.76/77.00/55.78 9.36

Open-source MLLMs based on Text & Image

MiniCPM-V 2.6
8 + Random Frame 19.08/74.83/59.17 31.03/78.26/58.10 31.40/80.33/61.56 30.28/78.48/58.30 1.23
9 + Middle Frame 20.47/75.13/59.42 29.90/78.22/58.12 31.92/80.47/61.46 30.23/78.47/58.22 1.23

Qwen2.5-VL-7B
10 + Random Frame 19.07/74.88/59.31 32.69/79.00/60.13 33.01/81.35/62.76 32.94/79.13/59.02 1.05
11 + Middle Frame 20.88/75.48/60.24 32.72/78.98/60.02 33.42/81.50/62.95 32.94/79.10/59.09 1.05

Open-source MLLMs based on Text & Video

12 LLaVA-Next-Video 12.38/68.65/55.18 23.63/73.63/57.26 23.66/76.35/58.22 25.62/75.45/55.10 0.65
13 InternVideo2.5-8B 19.60/75.55/60.18 30.28/77.59/57.85 31.49/80.25/61.41 30.09/78.25/58.04 0.72

MiniCPM-V 2.6
14 + Uniform Frames 18.25/74.70/58.62 30.94/78.16/59.07 32.06/80.15/61.43 29.95/78.35/58.14 0.42
15 + Video 20.46/75.26/59.34 31.16/78.29/58.04 31.51/80.57/61.50 29.78/78.33/58.12 0.21
16 + Self-reasoing Frame 19.42/74.42/58.94 30.84/78.20/58.89 31.79/80.43/61.45 30.15/78.41/58.26 0.39
17 + SHIFT (Ours) 21.53/76.23/60.91 31.95/79.21/59.78 33.27/81.39/62.64 31.27/79.06/58.76 1.02

Qwen2.5-VL-7B
18 + Uniform Frames 20.87/75.37/60.16 32.04/78.21/59.00 32.48/80.20/60.84 32.46/79.04/58.91 0.37
19 + Video 20.69/75.52/60.13 32.90/79.03/60.07 33.83/81.59/63.01 32.87/79.02/58.95 0.73
20 + Self-reasoing Frame 21.13/75.42/60.28 32.20/78.65/59.52 33.67/81.49/62.45 33.10/79.16/59.00 0.35
21 + SHIFT (Ours) 22.09/76.61/61.01 33.74/79.83/61.08 35.06/82.65/64.10 33.86/79.82/59.73 0.96

InternVL3-14B
22 + Uniform Frames 21.19/75.58/60.93 26.68/77.44/61.08 28.06/79.55/63.56 20.30/72.61/57.74 0.39
23 + Video 21.58/76.02/61.21 32.90/79.03/60.07 34.95/81.91/63.79 32.99/78.84/58.69 0.45
24 + Self-reasoing Frame 19.51/74.60/60.54 32.75/79.79/61.05 34.60/82.13/63.93 33.42/79.03/59.09 0.32
25 + SHIFT (Ours) 22.31/76.73/61.75 34.12/80.38/61.59 35.47/82.81/64.28 34.40/79.71/59.70 0.91

Table 9: The complete data of Table 1. Results of methods on the TriFine en-zh general test sets, the ambiguity test
set, and VATEX, averaged over three random seeds. SPS (Samples Per Second) denotes the average inference speed
across all four sets. The best value for each metric on each test set is highlighted in bold.

Prompt for Translation with Multi-image and Text
Input

Please translate the following input sentence from
[SOURCE LANGUAGE] to [TGRGET LANGUAGE]
according to the images. ONLY output the translated
sentence.
Input sentence:
[SRC SENTENCE]
Translated sentence:

Figure 8: Prompt for translation with multi-image and
text input.

10 and 14 in Table 1. The second strategy involves
a two-stage self-reasoning process, corresponding

to Rows 12 and 17 in Table 1. In the first stage, the
MLLM selects the most relevant image from the
set using the prompt illustrated in Figure 9. In the
second stage, the selected image is used to revert
the input into a single image-text pair, which is
then processed using the prompt in Figure 7.

Video + Text. When the input comprises both
a video and the source text, we utilize the prompt
illustrated in Figure 10 to generate the translation,
corresponding to the experiments in rows 8, 9, 11,
and 15 of Table 1.

D.2 Prompt Quality Evaluation

To verify the effectiveness of the prompts used
in our experiments, we conducted experiments on
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Prompt for Multi-image and Text Self-reasoning

I will give you an input sentence, which is a subtitle
of a video clip, and I will also input the frames of
this video clip.
I need to translate this input sentence from [SOURCE
LANGUAGE] to [TGRGET LANGUAGE]. Please select
the frame that is most relevant to this sentence from
these ten frames, that is, the frame that is most useful
for translating the input sentence.
Please ONLY output the frame number, such as
the fourth frame is most relevant to the translated
sentence, then output 4.
Input sentence:
[SRC SENTENCE]
Selected frame number:

Figure 9: Prompt for multi-image and text self-
reasoning.

Prompt for Translation with Video-text Input

Please translate the following input sentence from
[SOURCE LANGUAGE] to [TGRGET LANGUAGE]
according to the video. ONLY output the translated
sentence.
Input sentence:
[SRC SENTENCE]
Translated sentence:

Figure 10: Prompt for translation with video-text input.

Modle zh → en en → zh

BLEU ↑ / COMET ↑
BayLing-7B 27.11/80.66 37.27/86.67
LLaMA-2-7B 27.46/81.25 31.89/85.43
Qwen2.5-7B
+ Yang et al.’s (2025) prompt 27.97/82.53 39.44/87.09
+ our prompt 27.76/82.67 39.49/87.14

Table 10: Experimental results on the WMT19 News
Chinese-English validation set for text-only translation.

the WMT19 (Barrault et al., 2019) News Chinese-
English validation set, where both models were pro-
vided with text-only input prompts as illustrated
in Figure 6. We further compared our prompts
with the more stringent prompt-constrained format
proposed by Yang et al. (2025), and present the re-
sults in Table 10, where the LLaMA-2-7B (Touvron
et al., 2023) and BayLing-7B (Zhang et al., 2023)
scores are taken from the experiments reported by
Hu et al. (2024). The experimental results indicate
that the prompt we employed performs on par with
a strictly format-constrained prompt. Moreover,
we randomly sampled 2,000 translation outputs
from the main experiments—covering various in-
put formats—and found that only 0.65% exhibited

instruction non-compliance (for example, by in-
cluding the unwanted prefix “The translation is:”
in the output).

D.3 Human Evaluation

The evaluators were computer science PhD stu-
dents who are native Chinese speakers with strong
bilingual proficiency. We provided the annotators
with fair compensation based on the local wage
standards.

E Baselines

E.1 Traditional VMT Methods

Transformer model (Vaswani et al., 2017). The
Transformer model adopts a 6-layer encoder-
decoder architecture as the text-only baseline, in-
cluding a hidden size of 512 and a feed-forward
network size of 2048. To ensure consistency with
prior work, we also include this baseline in our
experiments.

TVE and CVE (Shurtz et al., 2024). The
Transformer Video Encoder (TVE) and Conformer
Video Encoder (CVE) uniformly sample video at 5
FPS and utilize pre-extracted CLIP features. The
Transformer encoder leverages self-attention mech-
anisms to capture global contextual information
across frames, while the Conformer integrates con-
volutional neural networks with self-attention, ef-
fectively exploiting both local and global visual
features. Each encoder independently processes
the video input and jointly attends with the textual
encoder’s representations. The decoder, inspired
by the doubly attentive Transformer architecture,
separately attends to video encodings, textual en-
codings, and its own previous outputs to generate
translations in the target language.

FIAT (Guan et al., 2025). Fine-grained
Information-enhanced Approach for Translation
(FIAT) is a model-agnostic VMT method that en-
hances translation by incorporating fine-grained
multimodal tags—such as audio sentiment, stress,
and visual entities—into the input. These tags are
embedded alongside the source subtitle and fused
via a soft attention mechanism, without modifying
the Transformer architecture. FIAT achieves better
translation quality and lower computational cost
compared to coarse-grained visual baselines.

E.2 Text-only LLMs

LLaMA 3 and LLaMA 3.1 (Grattafiori et al.,
2024). LLaMA 3 and LLaMA 3.1 are Meta’s
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decoder-only Transformer families, both pre-
trained on roughly 15 trillion tokens. LLaMA
3 (8B/70B) employs a 128K-token vocabulary
and grouped-query attention for long-sequence
efficiency but—with only ∼5 % non-English
data—primarily targets English tasks and requires
fine-tuning for other languages. LLaMA 3.1
(8B/70B plus a new 405B variant) retains GQA
while extending its context window to 128K tokens
and draws on a more multilingual corpus; it offi-
cially supports eight high-resource languages (En-
glish, German, French, Italian, Portuguese, Hindi,
Spanish, and Thai), though Chinese–English per-
formance remains outside its guaranteed scope.

Qwen 2.5 (Yang et al., 2024a). Qwen 2.5 is
a multilingual, open-source decoder-only LLM
suite (0.5B–72B parameters) developed by Alibaba
Cloud. Pretrained on an extensive 18-trillion-token
corpus, it incorporates rotary embeddings and
grouped-query attention for efficiency, supports up
to 128K-token contexts, and demonstrates strong
performance across 29+ languages, notably English
and Chinese. Due to its substantial Chinese train-
ing data and explicit multilingual design, Qwen 2.5
is particularly effective for English–Chinese trans-
lation tasks. Specialized variants also target code
and mathematical reasoning.

E.3 MLLMs
LLaVA-NeXT-Video (Zhang et al., 2024). LLaVA-
Next-Video is a 7B-parameter open-source multi-
modal model that extends the LLaVA-NeXT frame-
work to video inputs. It combines a CLIP-style
vision encoder with Qwen2-7B and is trained on
large-scale image and synthetic video instruction
datasets (e.g., LLaVA-Video-178K). The model
adopts an interleaved image-text architecture to
enable temporal reasoning and video question an-
swering across multiple frames. Leveraging the
multilingual capabilities of Qwen, it supports bilin-
gual prompts in English and Chinese. During in-
ference, sampled video frames are encoded into
visual tokens, concatenated with text prompts, and
decoded by the transformer to produce outputs.

InternVideo2.5-8B (Wang et al., 2025).
InternVideo2.5-8B is a bilingual 8B-parameter
video-language model developed by OpenGVLab
(Shanghai AI Lab), designed for long-form and
fine-grained video understanding. It integrates a
vision encoder, a vision-language connector, and
a Chinese-optimized InternLM2.5-7B, enhanced
with task-specific modules (e.g., temporal and

mask heads). The model employs adaptive frame
sampling and hierarchical token compression
(spatiotemporal merging and attention-guided
pruning) to efficiently capture long-range temporal
context. Trained primarily on Chinese video-text
data, it supports English via instruction tuning.
The video processing pipeline adaptively samples
frames, compresses visual tokens, and feeds them
into the LLM to produce responses or summaries.

MiniCPM-V 2.6 (Yao et al., 2024). MiniCPM-
V 2.6 is an 8B-parameter multimodal LLM that
integrates a SigLIP-400M vision encoder with the
Qwen2-7B language model. As the latest in the
MiniCPM-V series, it enhances image and video
understanding through multilingual support (e.g.,
English and Chinese), enabled by Qwen2’s bilin-
gual architecture and additional multilingual train-
ing. For video inputs, each sampled frame is en-
coded via SigLIP (optionally compressed with a
perceiver resampler), and the resulting visual to-
kens are concatenated and fed into the Qwen-based
decoder to produce temporally coherent captions
or responses.

Qwen2.5-VL-7B (Bai et al., 2025). Qwen2.5-
VL-7B is a 7B-parameter multilingual vision-
language model that combines the SigLIP2 visual
encoder with the Qwen2-7B language backbone.
As an improved successor to Qwen2-VL, it demon-
strates strong visual reasoning capabilities, includ-
ing long-video understanding by identifying salient
events. The model excels in fine-grained scene in-
terpretation (e.g., OCR, chart reading, layout analy-
sis) and supports agentic tasks. It processes videos
by sampling frames, encoding them into visual to-
kens, and integrating these with language prompts
(in English or Chinese) into a unified multimodal
sequence for generation.

F Implementation Details

Training was conducted for 2 epochs. All ex-
periments were conducted on two NVIDIA A100
80GB GPUs, the data collection and training pro-
cesses took approximately 40 hours and 12 hours,
respectively. All reported SPS (samples per sec-
ond) values were measured during inference on a
single NVIDIA A100 GPU. We used the AdamW
(Loshchilov and Hutter, 2019) optimizer, with β1
set to 0.9 and β2 set to 0.999. We performed
paired t-tests comparing SHIFT with alternative
approaches (e.g., +video) on Qwen2.5-VL-7B and
MiniCPM-V 2.6, showing that SHIFT’s improve-
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ments are statistically significant (p < 0.01). The
learning rate was set to 5e-4, weight decay was set
to 0.01, and the warmup ratio was set to 0.1. We set
the batch size to 8. We adopted the VATEX-trained
results for TVE and CVE as reported in their paper.
The results of the three methods—TVE, CVE, and
FIAT—reported in our work on the TriFine test
sets in Table 1 are taken from the TriFine paper.
Since the FIAT method did not include VATEX
experiments in that work, we reproduced its re-
sults on VATEX using the publicly released code
and report the outcomes of our reproduction. In
the experiments, when using uniformly sampled
frames together with text as input of MLLM, a
sampling rate of one frame per second was adopted
due to constraints on computational resources and
GPU memory. Our implementation is built upon
Huggingface Transformers (Wolf et al., 2020), and
DeepSpeed5 (Rasley et al., 2020). All experiments
are conducted using mixed-precision training (Das
et al., 2018) to improve computational efficiency.

G Optimal Input Distribution

41.0%
Text-only

Best key frame
48.3%

Uniform Sampling
4.5%

Video
6.2%

Figure 11: Distribution of the four input conditions
yielding the highest COMET score across 1,000 ran-
domly sampled test examples.

We sampled 1,000 examples and evaluated
Qwen2.5-VL-7B using COMET under four input
settings: (1) text-only, (2) text + key frame, (3) text
+ ten uniform frames, and (4) text + full video. The
highest value for the (2) input setting is denoted
as “+ best key frame.” The highest-scoring input
was selected for each example (preferring lower
cost in ties), with distribution statistics in Figure
11. It shows that 89.3% of samples achieve opti-
mal performance with either text alone or a single
key frame, validating SHIFT’s goal of minimiz-
ing multimodal redundancy without compromising
translation quality.

5https://github.com/microsoft/DeepSpeed
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Figure 12: Human preference evaluation across two
MLLMs and three test sets between the SHIFT frame-
work and video-text input.

We also randomly selected 50 outputs from
each test set generated by Qwen2.5-VL-7B and
MiniCPM-V 2.6 using either the SHIFT framework
or direct video-text input for human evaluation. As
shown in Figure 12, the SHIFT framework con-
sistently received higher human preference scores
across both MLLMs and all three test sets.
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