@inproceedings{penamakuri-etal-2025-big,
title = "When Big Models Train Small Ones: Label-Free Model Parity Alignment for Efficient Visual Question Answering using Small {VLM}s",
author = "Penamakuri, Abhirama Subramanyam and
Singh, Navlika and
Arora, Piyush and
Mishra, Anand",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.1613/",
pages = "31632--31649",
ISBN = "979-8-89176-332-6",
abstract = "Large Vision-Language Models (L-VLMs) have demonstrated remarkable performance in various vision and language tasks, including Visual Question Answering (VQA). However, their high computational cost makes them impractical for resource-constrained settings and inference-heavy applications. In contrast, Small Vision-Language Models (S-VLMs) offer efficiency but suffer from a significant performance gap compared to their larger counterparts. In this work, we introduce the Model Parity Aligner (MPA), a novel framework designed to systematically improve S-VLMs by leveraging unlabeled images and effective knowledge transfer from L-VLMs. Instead of traditional knowledge distillation methods that rely on labeled training data, MPA employs a strategic parity-based approach that precisely identifies the knowledge disparities between S-VLMs and L-VLMs, and optimizes training by targeting only these disparities. We conduct extensive experiments on four diverse VQA benchmarks, namely TextVQA, ST-VQA, ChartQA, and OKVQA, each of which required specialized reasoning capabilities such as text recognition, chart interpretation, and commonsense and factual understanding. Our results demonstrate that MPA consistently enhances the performance of S-VLM on all benchmarks, reducing the performance gap while maintaining computational efficiency. We shall make our code and MPA-aligned models publicly available upon acceptance of this work."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="penamakuri-etal-2025-big">
<titleInfo>
<title>When Big Models Train Small Ones: Label-Free Model Parity Alignment for Efficient Visual Question Answering using Small VLMs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Abhirama</namePart>
<namePart type="given">Subramanyam</namePart>
<namePart type="family">Penamakuri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Navlika</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Piyush</namePart>
<namePart type="family">Arora</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anand</namePart>
<namePart type="family">Mishra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Large Vision-Language Models (L-VLMs) have demonstrated remarkable performance in various vision and language tasks, including Visual Question Answering (VQA). However, their high computational cost makes them impractical for resource-constrained settings and inference-heavy applications. In contrast, Small Vision-Language Models (S-VLMs) offer efficiency but suffer from a significant performance gap compared to their larger counterparts. In this work, we introduce the Model Parity Aligner (MPA), a novel framework designed to systematically improve S-VLMs by leveraging unlabeled images and effective knowledge transfer from L-VLMs. Instead of traditional knowledge distillation methods that rely on labeled training data, MPA employs a strategic parity-based approach that precisely identifies the knowledge disparities between S-VLMs and L-VLMs, and optimizes training by targeting only these disparities. We conduct extensive experiments on four diverse VQA benchmarks, namely TextVQA, ST-VQA, ChartQA, and OKVQA, each of which required specialized reasoning capabilities such as text recognition, chart interpretation, and commonsense and factual understanding. Our results demonstrate that MPA consistently enhances the performance of S-VLM on all benchmarks, reducing the performance gap while maintaining computational efficiency. We shall make our code and MPA-aligned models publicly available upon acceptance of this work.</abstract>
<identifier type="citekey">penamakuri-etal-2025-big</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.1613/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>31632</start>
<end>31649</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T When Big Models Train Small Ones: Label-Free Model Parity Alignment for Efficient Visual Question Answering using Small VLMs
%A Penamakuri, Abhirama Subramanyam
%A Singh, Navlika
%A Arora, Piyush
%A Mishra, Anand
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F penamakuri-etal-2025-big
%X Large Vision-Language Models (L-VLMs) have demonstrated remarkable performance in various vision and language tasks, including Visual Question Answering (VQA). However, their high computational cost makes them impractical for resource-constrained settings and inference-heavy applications. In contrast, Small Vision-Language Models (S-VLMs) offer efficiency but suffer from a significant performance gap compared to their larger counterparts. In this work, we introduce the Model Parity Aligner (MPA), a novel framework designed to systematically improve S-VLMs by leveraging unlabeled images and effective knowledge transfer from L-VLMs. Instead of traditional knowledge distillation methods that rely on labeled training data, MPA employs a strategic parity-based approach that precisely identifies the knowledge disparities between S-VLMs and L-VLMs, and optimizes training by targeting only these disparities. We conduct extensive experiments on four diverse VQA benchmarks, namely TextVQA, ST-VQA, ChartQA, and OKVQA, each of which required specialized reasoning capabilities such as text recognition, chart interpretation, and commonsense and factual understanding. Our results demonstrate that MPA consistently enhances the performance of S-VLM on all benchmarks, reducing the performance gap while maintaining computational efficiency. We shall make our code and MPA-aligned models publicly available upon acceptance of this work.
%U https://aclanthology.org/2025.emnlp-main.1613/
%P 31632-31649
Markdown (Informal)
[When Big Models Train Small Ones: Label-Free Model Parity Alignment for Efficient Visual Question Answering using Small VLMs](https://aclanthology.org/2025.emnlp-main.1613/) (Penamakuri et al., EMNLP 2025)
ACL