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Abstract

Large Vision-Language Models (L-VLMs) have
demonstrated remarkable performance in var-
ious vision and language tasks, including vi-
sual question answering (VQA). However,
their high computational cost makes them
impractical for resource-constrained settings
and inference-heavy applications. In contrast,
Small Vision-Language Models (S-VLMs) offer
efficiency but suffer from a significant perfor-
mance gap compared to their larger counter-
parts. In this work, we introduce the Model Par-
ity Aligner (MPA), a novel framework designed
to systematically improve S-VLMs by leverag-
ing unlabeled images and effective knowledge
transfer from L-VLMs. Instead of traditional
knowledge distillation methods that rely on
labeled training data, MPA employs a strate-
gic parity-based approach that precisely identi-
fies the knowledge disparities between S-VLMs
and L-VLMs, and optimizes training by target-
ing only these disparities. We conduct exten-
sive experiments on four diverse VQA bench-
marks, namely TextVQA, ST-VQA, ChartQA,
and OKVQA, each of which required special-
ized reasoning capabilities such as text recog-
nition, chart interpretation, and commonsense
and factual understanding. Our results demon-
strate that MPA consistently enhances the per-
formance of S-VLM on all benchmarks, reduc-
ing the performance gap while maintaining
computational efficiency. We make our code
publicly available.

1 Introduction

Large vision and language models (L-VLMs) have
recently made remarkable progress on various vi-
sion and language tasks, including visual question
answering (VQA) (Liu et al., 2024; Dai et al., 2024;
Li et al., 2023; Zhu et al., 2023; Ye et al., 2023;
Wang et al., 2024; Chen et al., 2024; Ghosh et al.,
2024). This makes them a de facto first choice

*Equal contribution.

Figure 1: Small models often struggle to match the per-
formance of their larger counterparts. We show model
sizes using circle with radius proportional to the pa-
rameter count, and their respective inference time and
VQA accuracies in X and Y-axis, respectively on one
of the datasets used in this paper (Singh et al., 2019).
Proposed MPA significantly enhances VQA accuracy
for five S-VLMs across four datasets. (Best viewed in
color).

for the VQA task on a new data set that does not
have labeled training samples. However, L-VLMs
may not be the most practical choice in resource-
constrained settings and especially for inference-
heavy tasks such as VQA, due to their high com-
putational requirements and latency. In contrast,
smaller vision and language models (S-VLMs) are
more efficient but fall significantly short in perfor-
mance, as shown in Figure 1. This raises a critical
question: Can we improve S-VLMs by a relevant
and effective knowledge transfer from L-VLMs?

Several techniques have been explored to trans-
fer knowledge from large neural models to smaller
ones such as: (i) knowledge distillation (KD) (Hin-
ton et al., 2015; Sanh et al., 2019; Gu et al., 2024;
Ko et al., 2024; Xu et al., 2024; Shu et al., 2024;
Cai et al., 2024) trains a small model (student) to
mimic a large model (teacher) by learning from its
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soft labels or intermediate representations. How-
ever, KD typically relies on labeled training data,
which may not always be available, and effectively
distilling multimodal knowledge remains a chal-
lenge due to the complex interplay between vi-
sion and language features. (ii) Adapter-based
methods (Houlsby et al., 2019; Hu et al., 2022;
Liu et al., 2022; Dettmers et al., 2023) introduce
lightweight trainable layers into large models to en-
able efficient fine-tuning. Although these methods
reduce training costs, they still require access to
large models during inference, limiting their prac-
tical advantages in resource-constrained environ-
ments. (iii) Self-supervised learning and pseudo-
labeling (Chen et al., 2013; Veit et al., 2017; Ra-
dosavovic et al., 2018; Xie et al., 2020; Khan et al.,
2023) provide an alternative by leveraging unla-
beled data to generate training signals. However,
naïve pseudo-labeling often propagates noisy pre-
dictions, reducing overall effectiveness. Moreover,
the challenge of systematically transferring knowl-
edge from large to small vision-language models
using pseudo-labeling remains largely under ex-
plored. Addressing this gap is crucial for making
smaller models more capable without the high com-
putational cost of large models for inference.

To fill the aforementioned gaps, we introduce
the Model Parity Aligner (MPA) – a framework
that enables effective knowledge transfer from L-
VLM to S-VLM using only unlabeled images. In-
stead of relying on traditional knowledge distil-
lation or fine-tuning, MPA utilizes large model-
guided pseudo-labeling with quality assessment.
MPA accurately identifies and addresses the knowl-
edge gaps between S-VLM and L-VLM, ensuring
that small models learn from high-confidence pre-
dictions while minimizing error propagation. By
leveraging the strong reasoning capabilities of large
VLMs to create high-quality supervision signals
through systematic parity assessment, MPA effi-
ciently addresses performance gaps while main-
taining computational efficiency.

We conducted extensive experiments and abla-
tion studies to evaluate the effectiveness of the
MPA. Specifically, we used four public datasets
– TextVQA (Singh et al., 2019), ST-VQA (Biten
et al., 2019), ChartQA (Masry et al., 2022), and
OKVQA (Marino et al., 2019). These datasets re-
quire additional capabilities such as visual text un-
derstanding, chart interpretation, and world knowl-
edge integration, making them well-suited to test
the robustness of MPA. We experimented with ten

combinations of L-VLM and S-VLM pairs, demon-
strating that MPA consistently improves S-VLM

performance across all benchmarks, highlighting
its effectiveness in knowledge transfer.
Contributions: (i) We propose a Model Parity
Aligner (MPA) – an effective approach that empow-
ers small VLMs and improve their visual question-
answering performance using only unlabeled im-
ages, eliminating the need for expensive labeled
datasets. (ii) MPA employs a novel parity-based
training paradigm, leveraging the L-VLM to gener-
ate pseudo-labels for unlabeled images while iden-
tifying and targeting specific knowledge gaps be-
tween S-VLM and L-VLM. This strategy ensures re-
liable supervision, minimizes noise, and maximizes
relevant knowledge transfer. (iii) MPA achieves
consistent improvement across four diverse VQA
benchmarks. Furthermore, our findings indicate
that MPA not only improves VQA performance,
but also enables S-VLM to benefit from closed-
source L-VLMs and enhances its core capabilities
beyond VQA, such as text recognition and text-
aware captioning.

2 Related Work

Small and Large VLMs: Following the success
of large language models (LLMs) (Devlin et al.,
2019; Brown et al., 2020; Touvron et al., 2023;
Penedo et al., 2024; Dubey et al., 2024; Yang et al.,
2024) across NLP tasks, vision and language mod-
els (VLMs) (Liu et al., 2024; Dai et al., 2024; Zhu
et al., 2023; Ye et al., 2023; Chen et al., 2024;
Wang et al., 2024; Zhou et al., 2024; Marafioti,
2024) have been developed that process both visual
and textual data. Although state-of-the-art VLMs
achieve impressive zero-shot performance, their
growing parameter count impose significant con-
straints on computational efficiency, accessibility,
and deployment costs. This trade-off between ef-
ficiency and capacity requires the development of
smaller VLMs (Zhou et al., 2024; Shao et al., 2024;
Marafioti, 2024) that maintain competitive perfor-
mance with reduced computational demands (Lu
et al., 2024). The key approach to developing S-
VLMs from L-VLMs involves substituting the in-
ternal LLM with lightweight alternatives (Team
et al., 2024; Abdin et al., 2024; Zhang et al., 2024;
HuggingFaceTB, 2023). Inspired by the literature
on LLM (Lu et al., 2024), we follow a parameter-
based taxonomy where VLMs with ≤ 5B param-
eters are classified as S-VLMs, while those that
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exceed this threshold are L-VLMs. For context, a
small 4B-parameter VLM constitutes just 0.2% of
the estimated 1.8T parameters of GPT-4.
Knowledge Distillation: It transfers knowledge
from large teacher models to smaller student mod-
els using KL-divergence over soft logits (Hin-
ton et al., 2015) or feature representations (Wang
et al., 2021; Xu et al., 2020; Sanh et al., 2019).
With LLMs adhering to scaling laws, their distilla-
tion has gained significant interest. Recent meth-
ods for LLMs (Gu et al., 2024; Ko et al., 2024)
and L-VLMs (Shu et al., 2024; Xu et al., 2024;
Cai et al., 2024) explore KL-Divergence variants,
while others (Hsieh et al., 2023; Tian et al., 2024;
Ranaldi and Freitas, 2024) distill reasoning via
LLM-generated Chain-of-Thought rationales. In
contrast to standard KD, which distills over the la-
beled dataset, our method identifies and supervises
only the samples that represent knowledge gaps be-
tween the student and teacher. This targeted strat-
egy enables efficient, model-agnostic training using
only input-output access to the teacher–including
closed-source L-VLMs.
Data Augmentation for VQA: Vision and lan-
guage tasks such as VQA have traditionally been
benefited by data augmentation, and visual ques-
tion generation becomes a natural choice to gen-
erate augmented data (Fan et al., 2018; Jain et al.,
2017; Krishna et al., 2019; Mostafazadeh et al.,
2016; Wang et al., 2022; Jahagirdar et al., 2021;
Zhang et al., 2017; Vedd et al., 2022). Although
few methods (Chen et al., 2022; Kant et al., 2021;
Kil et al., 2021; Khan et al., 2023) augment the
data-scarce VQA datasets to improve performance,
other methods (Banerjee et al., 2021; Changpinyo
et al., 2022) leverage large-scale image-caption
datasets to generate noisy VQA labels and use them
as VQA foundational data. Distinctively different
from these lines of work, we employ L-VLMs to
pseudo-label unlabeled images with a quality check
to discard noise, ensuring minimal yet effective an-
notations for targeted improvements of S-VLMs.

3 Model Parity Aligner (MPA)

Given a task T and a set of unlabeled images I =
{Ii}Ni=1, our goal is to empower small vision lan-
guage models (S-VLMs) with task-specific capa-
bilities and improve their performance on the task
T . In this work, we restrict ourselves to the VQA
task and experiment with various variants of VQA
that require interpretation of visual text, chart, and

Algorithm 1 Model Parity Aligner (MPA)

Input: Large Vision Language Model (L-
VLM) parameterized by ϕ; Small Vision-
Language Model (S-VLM) parameterized by θ;
unlabeled images: I = {I1, I2, · · · , IN}; task:
T .
Output: Enhanced S-VLM with updated param-
eters (θ̂).

1: DT
PA← PA(L-VLMϕ, I, T ) ▷ PA - Pseudo

Annotator, DT
PA : pseudo-annotated data

2: DT
PI ← PI(L-VLMϕ, S-VLMθ, DT

PA) ▷ PI -
Parity Identifier, DT

PI : parity dataset
3: S-VLMθ̂ ← PL(S-VLMθ, DT

PI ) ▷ PL: Parity
Leveler

4: return S-VLMθ̂

external knowledge. Inspired by the standard ma-
chine learning lifecycle (Stodden, 2020), our pro-
posed Model Parity Aligner (MPA) framework fol-
lows a systematic approach to achieve this goal.
The process begins with automatically annotating
unlabeled images I for task T using the Pseudo
Annotator module discussed in Section 3.1, fol-
lowed by strategic data selection with automatic
quality assessment of the annotations using the Par-
ity Identification module discussed in Section 3.2.
This automatically curated and cleaned data is then
utilized to fine-tune the S-VLM model using the Par-
ity Leveler module discussed in Section 3.3. The
workflow of our proposed MPA framework, which
includes its three interconnected modules, is illus-
trated in Figure 2 and described in Algorithm 1.

The proposed Model Parity Aligner (MPA) con-
sists of three main modules: (a) Pseudo Annotator
(PA), (b) Parity Identifier (PI), (c) Parity Leveler
(PL). These modules work together to systemat-
ically enrich S-VLMs. The MPA takes S-VLMθ,
L-VLMϕ, a set of unlabeled images I and the task
T as inputs and returns an enhanced S-VLMθ̂ where
ϕ, θ, θ̂ are the parameters of L-VLM, S-VLM, up-
dated S-VLM, respectively. It should be noted here
that |θ̂| = |θ| ≪ |ϕ| where | · | denotes the size of
the model. Next, we provide an in-depth overview
of each module.

3.1 Pseudo Annotator (PA)
This module which is described in Algorithm 2
is responsible for obtaining pseudo-annotation for
unlabeled images I. We employ an L-VLM to gen-
erate annotations for the unlabeled images for the
task T . In this work, we experimented with two
L-VLMs. Since we have only access to unlabeled
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Q: What time is it on the clock?
A: 5:00

Q: Which airline is represented by the 
blue and white plane in the image?
A: KLM

Q: What is the phone number for 
MainStay Suites?
A: 615-371-8477

Q: What time is it on the clock?

Q: Which airline is represented by the 
blue and white plane in the image?

Q: What is the phone number for 
MainStay Suites?

….
….

5:07
KLM

615-371-8477
….

1:55
Air France

615-371-8477
….

5:00

….

KLM

615-371-8477
….

5:00
KLM

615-371-8477
….

Q: Which airline is represented by the 
blue and white plane in the image? 
A: KLM ….

Frozen Trainable

Pseudo-annotated samples that 
represent the parity between 

S-VLM and L-VLM

Pseudo-annotations for task 
T on unlabeled images

unlabeled images

(a) Pseudo Annotator (PA) (b) Parity Identifier (PI)

(c) Parity Leveler (PL)
Pseudo-annotations from PA

Answers from S-VLM

Answers from L-VLM Eval

Eval

Noisy Annotation

   Not a knowledge-gap

Rejected samples:
K

LM

Q: Which airline is 
represented by the blue and 
white plane in the image? 

Figure 2: Overview of the proposed MPA framework. It consists of three modules, namely (a) Pseudo Annotator
(Section 3.1), (b) Parity Identifier (Section 3.2), and (c) Parity Leveler (Section 3.3). Given a set of unlabeled images
I and task T , MPA begins with automatically annotating the unlabeled images, followed by strategic data selection
that targets knowledge gaps of S-VLM with the L-VLM, while accounting for annotation quality. This selection
process identifies parity, capturing instances where the L-VLM answers correctly while the S-VLM fails. Finally, PL
updates the S-VLM’s parameters on the obtained parity subset. (Best viewed in color).

Algorithm 2 Pseudo Annotator (PA)
Input: Large Vision Language Model (L-VLM)
parameterized by ϕ; unlabeled images: I =
{Ii}Ni=1; task prompt: Tpr.
Output: pseudo-annotated images for the task
T : DT

PA = {(Ii, Qi, Ai)}Ni=1.
1: DT

PA ← [ ]
2: for Ii in I do
3: (Q,A)i ← L-VLMϕ(Tpr, Ii)
4: DT

PA.append((Ii, Qi, Ai)) ▷
Triplet: (Ii, Qi, Ai) is considered as one
pseudo-annotated sample for task T .

5: end for
6: return DT

PA

images, we ask L-VLM to generate task-specific vi-
sual question and answer pairs. The generation of
visual questions (VQG) has been shown to improve
the visio-lingual abilities of a vision and language
model (Kafle et al., 2017; Chen et al., 2022). In
this work, we additionally ask L-VLM to generate
the corresponding answer.

To be precise, L-VLM is prompted with a task-
specific prompt Tpr to create task-specific question-
answer pairs1 (Q,A)i for each image Ii within
I, where i ∈ {1, · · · , N}. The module pro-
duces the pseudo-annotated dataset DT

PA for task
T : {(Ii, Qi, Ai)}Ni=1, with each triplet (Ii, Qi, Ai)

1For example, in the case of ChartQA, Tpr instructs the
model to focus on reasoning over charts, including trend anal-
ysis and numerical interpretation. Similarly, for TextVQA,
the prompt emphasizes reading and comprehending scene text
to formulate relevant questions and answers. This ensures
that the generated QA pairs align with the specific reasoning
challenges posed by each task.

representing an annotated sample for task T . The
L-VLM-driven automated annotation presents chal-
lenges, e.g., (i) noisy annotations and (ii) halluci-
nated content necessitating careful quality valida-
tions. Our proposed PI module, described next,
inherently accounts for quality validations and min-
imizes such noisy annotations, while sampling for
parity samples.

3.2 Parity Identifier (PI)

This module capitalizes on the existing capabili-
ties of S-VLM while isolating its knowledge gaps
relative to L-VLM. Rather than following conven-
tional approaches (Chen et al., 2022; Khan et al.,
2023; Changpinyo et al., 2022) of using all pseudo-
annotated data for training, we implement a more
targeted methodology to identify specific knowl-
edge disparities between models. We evaluated
both L-VLM and S-VLM in zero-shot settings by
presenting each model with image-question pairs
(Ii, Qi) from the PA-annotated dataset DT

PA. The
respective answers - Ãi from L-VLM and Âi from
S-VLM—are then compared against the pseudo an-
notation Ai using the following expression.

E(X) =

{
1, if X = A,

0, otherwise,
for X ∈ {Ã, Â}.

(1)
Further, we select samples that satisfy the fol-

lowing Boolean condition S.

S
(
(I,Q,A)

)
=

{
1, if E(Ã) ∧ ¬E(Â),

0, otherwise.
(2)
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Algorithm 3 Parity Identifier (PI)

Input: Large Vision Language Model (L-VLM)
parameterized by ϕ; Small Vision Language
Model (S-VLM) parameterized by θ; pseudo-
annotated data: DT

PA.
Output: Parity (Knowledge gap) be-
tween L-VLM and S-VLM: DT

PI =
{(Ii, Qi, Ai)}Ki=1,K ≪ N .

1: DT
PI = [ ]

2: for (Ii, Qi, Ai) in DT
PA do

3: Ãi ← L-VLMϕ(Ii, Qi)

4: Âi ← S-VLMθ(Ii, Qi)
5: if Ãi == Ai and Âi ̸= Ai then ▷ Eq. 1 &

Eq. 2
6: DT

PI .append((Ii, Qi, Ai)) ▷ Satisfies Eq. 2
criteria

7: else
8: continue
9: end if

10: end for
11: return DT

PI

Here, Boolean condition S selects an annotated
triplet (Ii, Qi, Ai) if Ãi correctly matches Ai while
Âi does not, thereby precisely identifying the
knowledge gap between the models where S-VLM

requires improvement. In other words, S selects
those samples where L-VLM answers correctly,
while S-VLM answer is incorrect, assuming the
pseudo-annotated answer as ground truth. This
methodology inherently performs quality verifica-
tion by leveraging L-VLM’s superior answering ca-
pabilities, as these models are primarily instruction-
tuned for answering rather than annotating. By se-
lecting only instances where L-VLM demonstrates
consistency between its annotation and answering
phases, PI module effectively filters out noisy or
hallucinated annotations. The resulting parity sub-
set DT

PI : {(Ii, Qi, Ai)}Ki=1 with K ≪ N , consti-
tutes highly efficient samples focused exclusively
on the specific knowledge deficiencies of S-VLM.
This targeted approach eliminates the need to train
on potentially problematic samples or the entire
annotation set, optimizing both training efficiency
and model performance. This module is detailed in
Algorithm 3.

3.3 Parity Leveler (PL)
This module fine-tunes S-VLM on the parity (knowl-
edge gap) samples identified by the PI module for L
number of iterations. We feed each sample {I,Q}i
from DT

PI , within an instruction prompt template

Algorithm 4 Parity Leveler (PL)

Input: Small Vision-Language Model (S-
VLM) parameterized by θ; parity set: DT

PI =
{(Ii, Qi, Ai)}Ki=1

Output: Enhanced S-VLM with updated param-
eters θ̂

1: for iter = 1 to L do ▷ L: total no. of iterations
2: for {(Ii, Qi, Ai)}bi=1 in DT

PI do ▷ b: batch
size

3: {Âi}bi=1 ← S-VLMθ({(Ii, Qi)}bi=1)
4: Compute Lgen({Âi, Ai}bi=1) ▷ Answer

generation loss
5: Update θ using Lgen ▷ Gradient descent
6: end for
7: end for
8: return S-VLMθ̂

to S-VLM to generate the accurate answer Ai to the
visual question Qi on the image Ii. S-VLM learns
P (Ai|Qi, Ii) by modeling the task as a text gen-
eration problem, auto-regressively generating the
tokens in the answer.

Lgen(θ) = −1

b

b∑

i=1

[
m∑

t=1

logPθ(Ait |Ai<t, {Ii, Qi})
]

(3)

Once all answer tokens Ai1:m are obtained, we
optimize the model using the generation loss Lgen,
defined over the minibatches of size b samples
(Eq.3) which is minimized via stochastic gradient
descent. Note that L-VLM parameters ϕ remain
frozen throughout MPA. For an algorithmic de-
scription of this module, refer to Algorithm 4.

4 Experiments and Results

Datasets. We evaluate our approach on four
widely-used public VQA benchmarks, namely,
TextVQA (Singh et al., 2019), ST-VQA (Biten
et al., 2019), ChartQA (Masry et al., 2022), and
OKVQA (Marino et al., 2019). These datasets are
relevant to MPA because they introduce diverse
reasoning challenges, such as text, chart, external
world understanding beyond traditional VQA (An-
tol et al., 2015), making them strong benchmarks
for evaluating gains in S-VLM. More details on
these datasets are in Appendix B. Further, as MPA
is primarily designed for label-free training, we
exclude all question-answer annotations from the
training splits of each dataset during evaluation.
S-VLMs and L-VLMs used. Following the
parameter-based taxonomy defined for Vision-
Language Models (VLMs) in Section 2, where
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L-VLM Gains

Qwen2VL-7B (Wang et al., 2024) InternVL2-8B (Chen et al., 2024)
Max Average

S-VLM Method TextVQA ST-VQA ChartQA OKVQA TextVQA ST-VQA ChartQA OKVQA

SmolVLM-500M
ZS 55.3 78.5 56.5 38.2 55.3 78.5 56.5 38.2

3.4 2.4MPA 57.6(+2.3) 80.3(+1.8) 59.9(+3.4) 40.7(+2.5) 57.7(+2.4) 80.7(+2.2) 59.3(+2.8) 39.9(+1.7)

TinyLLaVA-2B
ZS 47.1 44.7 12.0 43.6 47.1 44.7 12.0 43.6

15.2 6.8MPA 53.5(+6.4) 48.7(+4.0) 24.0(+12.0) 46.6(+3.0) 51.9(+4.8) 49.8(+5.1) 27.2(+15.2) 47.2(+3.6)

InternVL2-2B
ZS 68.0 63.0 63.2 42.7 68.0 63.0 63.2 42.7

5.1 3.0MPA 70.3(+2.3) 65.5(+2.5) 68.3(+5.1) 45.6(+2.9) 69.5(+1.5) 65.7(+2.7) 68.2(+5.0) 44.6(+1.9)

InternVL2-4B
ZS 69.1 63.2 73.1 50.5 69.1 63.2 73.1 50.5

4.7 2.1MPA 71.4(+2.3) 66.6(+3.4) 73.8(+0.7) 52.3(+1.8) 70.3(+1.2) 67.9(+4.7) 74.0(+0.9) 52.0(+1.5)

Qwen2VL-2B
ZS 70.6 62.5 65.9 47.1 70.7 62.5 65.9 47.1

4.7 2.6MPA 75.1(+4.5) 67.2(+4.7) 67.6(+1.7) 48.9(+1.8) 72.3(+1.6) 66.6(+4.1) 66.9(+1.0) 48.9(+1.8)

Table 1: Comparison of our proposed MPA framework performance with the baselines on TextVQA, ST-VQA,
ChartQA and OKVQA. The parenthesis (+x) denotes the improvement of +x% over the zero-shot S-VLM by our
proposed MPA. The max and average columns show the overall performance gains across all tests for each S-VLM.

Q: What is the name of the airline company 
operating the aircraft in the image?
A: Biman

Q: What airline does the plane belong to?
A: Biman

Q: What made this airplane?
A: Biman

Q: Where is this truck from?
A: Dallas, TX

Q: What is the name of the company that owns the 
white armored truck in the image?
A: Brinks

Q: What company does the truck belong to?
A: Brinks

Q: How much did Amazon pay for Twitch in 
August 2014?
A: 970

Q: Which acquisition was the most expensive for 
Amazon?
A: Whole Foods

Q: How much did Ring raise in their funding 
round?
A: 1800 million dollars

Q: What is this dish called?
A: Ramen

Q: What is the significance of the chopsticks in 
the context of the image?
A: Cultural practice

Q: What type of dish is commonly served with 
chopsticks and ingredients like meat and noodle?
A: Ramen

Image

Human
Annotated

MPA
(Qwen2VL-7B)

MPA
(InternVL2-8B)

(a) (b) (c) (d)

Figure 3: A selection of few pseudo annotations generated by our framework. We further show human annotations
from their respective original dataset train splits. (Best viewed in color).

models with ≤ 5B parameters are classified as
small VLMs (S-VLMs), while those exceeding 5B
parameters are large VLMs (L-VLMs) (Lu et al.,
2024), we chose five models that range from 500M
to 4B parameters as S-VLM, namely SmolVLM-
500M (Marafioti, 2024), TinyLLaVA-2B (Zhou
et al., 2024), InternVL2-2B (Chen et al., 2024),
Qwen2VL-2B (Wang et al., 2024), and InternVL2-
4B (Chen et al., 2024); and two open-source mod-
els viz. Qwen2VL-7B (Wang et al., 2024) and
InternVL2-8B (Chen et al., 2024) and one closed-
source model, i.e., GPT-4o (OpenAI, 2024) as L-
VLM.

4.1 Results and Discussion
We present the quantitative results of our MPA
framework across four datasets evaluated in ten
combinations of two L-VLMs and five S-VLMs in
Table 1. The results show that MPA consistently
improves the performance of all S-VLMs in all
datasets with 15.2% maximum and 3.4% average
gain in an absolute scale. Here, we analyze the
results from the following three key perspectives.
(i) S-VLM family-specific analysis The most

S-VLM GPT-4o as L-VLM

TinyLLaVA-2B 47.1
TinyLLaVA-2B + MPA 55.4(+8.3)

Qwen2VL-2B 70.6
Qwen2VL-2B + MPA 75.4(+4.8)

Table 2: Comparison of MPA-aligned S-VLMs against
baseline S-VLMs on TextVQA, with GPT-4o as LVLM.

noticeable gains are as follows (refer Table 1):
TinyLLaVA-2B achieves 27.2% accuracy on
ChartQA with our MPA framework, guided by
InternVL2-8B, marking an absolute improvement
of +15.2% over its original zero-shot performance.
Similarly, Qwen2VL-2B, guided by Qwen2VL-
7B and InternVL2-4B, guided by InternVL2-
8B in our MPA framework achieve +4.7% and
+4.7% improvements, respectively, on ST-VQA.
On ChartVQA, SmolVLM-500M, guided by
Qwen2VL-7B in our MPA framework, improves by
+3.4%, while InternVL2-2B, guided by Qwen2VL-
7B, gains +5.1%. These results highlight effec-
tiveness of MPA in enhancing the performance of
S-VLMs across diverse VQA tasks.
(ii) VQA Task-specific analysis We observe that
TinyLLaVA-2B+MPA aligned with InternVL2-8B
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Task Dataset Metric SVLM SVLM+MPA
OCR ICDAR2015 (Karatzas et al., 2015) WRR 31.9 36.4(↑ 4.5)

TC TextCaps (Sidorov et al., 2020)
BLEU-1 7.9 15.3(↑ 7.4)

ROUGE-L 17.4 20.6(↑ 3.2)
CIDEr 8.7 38.1(↑ 29.4)

Table 3: MPA transfers the fundamental capabilities
beyond VQA. In our MPA framework, we use S-VLM:
TinyLLaVA-2B, L-VLM: Qwen2VL-7B. Here, OCR:
visual-text recognition, TC: text-aware image caption-
ing. WRR: word recognition rate.

achieves a notable +15.2% gain on ChartQA, high-
lighting our MPA’s strength as a knowledge align-
ment module. In this scenario, it effectively iden-
tifies and bridges the knowledge gap between L-
VLM and S-VLM for ‘complex visual reasoning that
involves interpreting charts and graphs. Improve-
ments on TextVQA (+6.4%) and ST-VQA (+5.1%)
further demonstrate MPA’s ability to transfer ‘vi-
sual text understanding’ from larger to smaller
models. The modest gain on OKVQA reflects its
reliance on external knowledge, which S-VLM in-
herently lack. While MPA enhances internal knowl-
edge utilization, it cannot fully address such gaps
without RAG or fine-tuning on knowledge-rich
data. The results validate the effectiveness of MPA
within its scope, while highlighting the challenges
of knowledge-intensive visual question answering.

(iii) Model size-specific Analysis: MPA improves
performance on all model scales, from SmolVLM-
500M to InternVL2-4B, demonstrating its versatil-
ity. In particular, TinyLLaVA-2B achieves the high-
est average gain of +6.8 across all tasks, whereas
InternVL2-4B shows a comparatively modest im-
provement of +2.1. We attribute this contrast to
two factors: (i) Pretraining data gaps: smaller mod-
els like TinyLLaVA-2B benefit more from MPA
as it effectively fills missing capabilities through
targeted alignment; (ii) Diminishing returns with
scale: it is inherently harder to align larger mod-
els (4B in this case) that already possess stronger
capabilities, in line with scaling laws.

(iv) L-VLM-Specific Analysis: We analyze the
effectiveness of different guiding L-VLMs within
MPA by computing average gains across five S-
VLMs and four VQA datasets. Qwen2VL-7B
achieves the highest average improvement of +3.5
points, followed closely by InternVL2-8B with
+3.2 points. This suggests that while both models
are effective guides, Qwen2VL-7B offers a slightly
stronger alignment signal, potentially due to differ-
ences in their pretraining objectives or representa-
tions. These results highlight that MPA is robust to
the choice of L-VLM, yet benefits from stronger or

L-VLM Status A ↑ AC ↑ TR ↑ HLS ↑
Qwen2VL-7B

Pre-PI 0.76 0.68 0.8 58
Post-PI 0.92 0.84 0.92 74

InternVL2-8B
Pre-PI 0.74 0.65 0.78 56
Post-PI 0.87 0.78 0.88 73

Table 4: User study on the pseudo-annotations qual-
ity: Pre-PI and Post-PI in MPA. A: answerability, AC:
answer correctness, TR: task relevancy, HLS: Human
Likeness Score. Refer Section 4.1.1 for more details.

more task-aligned guides.

4.1.1 Ablations and Analysis

We conduct the following ablations and analysis:
(i) How effective is MPA in aligning S-VLMs
with closed-source models?: MPA can also lever-
age powerful closed-source L-VLMs to improve
S-VLMs. To assess this, we performed experiments
using GPT-4o (OpenAI, 2024) as the guiding L-
VLM. As shown in Table 2, MPA consistently im-
proves performance across all aligned S-VLMs, de-
spite having no access to the guiding model’s logits
or weights. This demonstrates MPA’s unique ad-
vantage over standard distillation methods, which
require full model access. With the expected rise
in powerful closed-source models (OpenAI, 2024;
Team et al., 2023), such alignment strategies be-
come increasingly valuable. In fact, our results
show that integrating powerful L-VLM, e.g. GPT-
4o through MPA brings S-VLMs closer or even bet-
ter in performance to significantly larger models,
e.g., MPA-aligned Qwen2VL-2B (75.4%) outper-
forms Qwen2VL-7B (74.7%).
(ii) Does MPA transfers the fundamental capabil-
ities beyond VQA?: MPA is designed to enhance
the VQA performance of S-VLMs by aligning them
with L-VLMs, and our results confirm its effec-
tiveness. To examine whether MPA also transfers
broader fundamental capabilities such as visual text
understanding, we evaluate zero-shot TinyLLaVA-
2B and its MPA-aligned counterpart on two dif-
ferent tasks: visual text recognition on ICDAR
2015 (Karatzas et al., 2015) and text-aware image
captioning on TextCaps (Sidorov et al., 2020), us-
ing Qwen2VL-7B as the guiding L-VLM in MPA.
As shown in Table 3, the MPA-aligned model im-
proved text recognition accuracy by 4.5% on an
absolute scale and yields notable improvements in
captioning metrics such as ROUGE-L and CIDEr.
These results suggest that MPA transfers fundamen-
tal text understanding capabilities from L-VLMs to
S-VLMs beyond the VQA.
(iii) How effective is the role of PI in pseudo-
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Method TextVQA ST-VQA ChartQA OKVQA
LoRA SFT 71.9 63.4 66.1 47.9
Full SFT 71.8 61.7 65.7 47.7
MPA 75.1 67.2 67.6 48.9

Table 5: Comparison of few-shot methods vs MPA-
aligned Qwen2VL-2B with Qwen2VL-7B as L-VLM.
Please note that MPA operates without any human-
labeled samples, whereas the other two baselines each
use 100 human-labeled samples.

annotation quality correction?: Incorrect anno-
tations may cause models to learn spurious pat-
terns, exhibit biased behavior, and suffer from de-
graded performance and reliability in downstream
tasks. To assess the impact of the PI module on
genereted annotation quality, we conducted a user
study in which three annotators evaluated 500 ran-
domly sampled pseudo-annotations prior and post
PI processing. The evaluation used the following
metrics: (a) Answerability (A): 1 if the question is
answerable from the image, 0 otherwise; (b) An-
swer Correctness (AC): 1 if the answer is correct,
assuming the question is valid; (c) Task Relevance
(TR): 1 if the question aligns with the task, 0 oth-
erwise; and (d) Human-Likeness Score (HLS): per-
centage of PI-sampled annotations mistaken for
human-annotated ones in a mixed set. As shown in
Table 4, post-PI annotations exhibited higher qual-
ity across all metrics, with more being identified
as human-annotated. Figure 3 provides visual evi-
dence by illustrating the high correlation between
MPA-generated annotations and human annotated
samples. These results validate that PI effectively
filters noise and corrects errors, enhancing the over-
all reliability of MPA-generated annotations.

(iv) How does MPA compare to few-shot super-
vised baselines? While MPA is designed for a set-
ting where human-labeled traning data is unavail-
able, obtaining a small labeled set (e.g., 100 sam-
ples) is often feasible. In such scenarios, commonly
adopted few-shot supervised methods like LoRA-
based SFT and full SFT can be applied directly
to the S-VLM. To benchmark MPA against these
methods, we fine-tune Qwen2VL-2B using both
approaches and compare them with MPA-aligned
Qwen2VL-2B (using Qwen2VL-7B as L-VLM). As
shown in Table 5, MPA consistently outperforms
both baselines without labeled supervision, demon-
strating high-quality label generation and effective
knowledge transfer.

(v) Does PI filtering improve over raw pseudo-
labels or full human-labeled data? While our
primary focus is on label-free training using MPA,

Data Labels
TextVQA ST-VQA ChartQA

#Samples ↓ Acc. ↑ #Samples ↓ Acc. ↑ #Samples ↓ Acc. ↑
Original HL 35K 72.7 22K 65.5 28K 66.9
MPA (w/o PI) PL 21K 73.6 15K 65.8 19K 67.4
MPA PL 2K 75.1 1.5K 67.2 1.6K 67.6

Table 6: Ablation result of using samples from MPA v/s
MPA without PI filtering, with Qwen2VL-7B as L-VLM
and Qwen2VL-2B as S-VLM inside MPA. HL: Human
Labeled. PL: Pseudo Labeled.

Model Method Acc. (%)

TinyLLaVA-2B ZS 51.2
TinyLLaVA-2B MPA 53.6(+2.4)

Table 7: Performance on Medical VQA (PathVQA).
MPA-aligned TinyLLaVA-2B (with Qwen2VL-7B as
L-VLM) shows improved cross-domain generalization.

we further investigate the quality of supervision in-
troduced by PI filtering. Specifically, we compare
three settings for training Qwen2VL-2B: (i) full
human-labeled data (HL), (ii) pseudo-labeled data
(PL) from MPA without PI filtering, and (iii) high-
quality subset selected by PI that targets the knowl-
edge gap. As shown in Table 6, the PI-selected
subset achieves the highest accuracy across all
tasks–TextVQA (75.1%), ST-VQA (67.2%), and
ChartQA (67.6%), despite using far fewer sam-
ples. Interestingly, the performance gain from full
human-labeled data over zero-shot baselines is rel-
atively limited. Prior work (Khan et al., 2023)
suggests that excessive labeled data can introduce
redundancy or noise, reducing the marginal benefit
of supervision. This highlights the value of PI fil-
tering in identifying high-utility samples that yield
more efficient and effective learning.

(vi) Beyond standard VQA applicability (Medi-
cal VQA): To evaluate MPA’s utility beyond stan-
dard VQA tasks, we assess its performance in the
medical domain using the PathVQA dataset (He
et al., 2020). We compare zero-shot TinyLLaVA-
2B with its MPA-aligned counterpart, guided by
Qwen2VL-7B. We focus on the binary (yes/no)
subset of PathVQA, as the open-ended questions
often contain highly specialized medical terminol-
ogy that poses challenges even for large models
and may not reflect generalizable reasoning ca-
pabilities. As shown in Table 7, MPA yields a
gain of +2.4%, demonstrating effective knowledge
transfer even in diverse domain-specific settings.
These results highlight MPA’s ability to generalize
across domains without requiring task-specific data
or fine-tuning.

(vii) Knowledge Gap Analysis. To better character-
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ize the nature of the “knowledge gaps” between S-
VLMs and L-VLMs, we manually inspected 100
randomly selected DPI samples per task. In partic-
ular, we compared Qwen2VL-2B and Qwen2VL-
7B within the MPA framework. We categorize the
dataset-wise knowledge gaps into key categories,
which are summarized in Table 8. Note that Cor-
rect but Verbose and Noisy/Task-Irrelevant cases
are excluded from the knowledge-gap categories,
as they do not represent fundamental reasoning
shortcomings.

Further, we provide representative examples that
illustrate these knowledge-gap categories:

1. TextVQA/ST-VQA: (i) Shallow OCR
grounding (Fig. 5 (a)): “What word is printed
under interior design on the book in the mid-
dle?” — S-VLM outputs “para” from a
nearby visible region instead of grounding
to the queried location. (ii) Noisy or hallu-
cinated OCR (Fig. 7 (d)): “What company’s
logo is in the black box in the upper left?”
— S-VLM hallucinates “Burberry” without
actually reading the text.

2. ChartQA: (i) Entity misalignment (Fig. 8
(d)): “Who was the leading goal scorer for
Celtic FC as of September 2020?” — the
S-VLM retrieves an incorrect player name
that is not aligned with the queried entity. (ii)
Conditional/chart understanding error (Fig. 5
(c)): “Which year yielded the smallest dif-
ference between men and women students?”
— S-VLM fails to detect the year with the
minimum gap between the trend lines. (iii)
Trend misinterpretation (Fig. 8 (b)): “Does
the life expectancy decrease over the years?”
— S-VLM misinterprets the slope changes.

3. OKVQA (i) Lack of internal knowledge
grounding (Fig. 9 (b)): “At what speed does
this animal run?” — S-VLM fails to an-
swer, while the MPA-aligned model succeeds
without external knowledge, highlighting the
shallow grounding of the S-VLM. (ii) Visual
guesswork (Fig. 9 (c)): “What is the name of
the floor pattern?” — S-VLM guesses “dia-
mond” from vague cues instead of leveraging
the consistent checkered pattern.

5 Conclusion and Future Work

In this work, we introduced the Model Parity
Aligner (MPA), a novel framework that enhances

Dataset Error Category # Samples

TextVQA/ST-VQA

Shallow OCR grounding 33
Noisy or hallucinated OCR 53
Correct but Verbose 5
Noisy/Task-Irrelevant samples 9

ChartQA

Entity misalignment 55
Conditional/chart understanding errors 17
Trend misinterpretation 14
Correct but Verbose 8
Noisy/Task-Irrelevant samples 6

OKVQA

Lack of internal knowledge grounding 23
Visual guesswork 58
Correct but Verbose 4
Noisy/Task-Irrelevant samples 15

Table 8: Distribution of error categories across datasets
in our manual inspection of 100 DPI samples per task.
Note that Correct but Verbose and Noisy/Task-Irrelevant
are not true knowledge-gap categories.

small vision-language models (S-VLMs) by lever-
aging unlabeled images and effective knowledge
transfer from large vision-language models (L-
VLMs). Unlike traditional knowledge distilla-
tion techniques that rely on labeled data and ac-
cess to large model logits, MPA employs pseudo-
labeling with quality assessment, ensuring that
small models learn from high-confidence super-
vision while avoiding error propagation. Our ex-
periments across four diverse VQA benchmarks,
viz. TextVQA, ST-VQA, ChartQA and OKVQA
demonstrate that MPA consistently improves S-
VLM performance, making them more viable for
real-world applications with limited resources.

Despite these improvements, there still remains
a gap between S-VLMs and L-VLMs that highlights
the need for further advancements. As future work,
we aim to explore more robust knowledge align-
ment strategies, including iterative refinement of
pseudo-labels, leveraging diverse sources of unla-
beled data, and integrating multi-step reasoning
from L-VLMs into S-VLMs training. Additionally,
extending MPA to tasks beyond visual question an-
swering could further enhance its applicability. We
view MPA as a first step toward achieving model
parity in vision and language models via targeted
knowledge alignment, and firmly believe that it
shall open up future research avenues for more effi-
cient and capable small models for vision-language
tasks.

Limitations

Our proposed MPA framework depends on ac-
cess to a large vision-language model (L-VLM) for
generating and validating pseudo-annotations. In
even stricter resource-constrained settings, this may
limit applicability of MPA. Further, when leverag-
ing proprietary closed-source models via commer-
cial APIs, reproducibility and transparency may
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be compromised due to limited insight into model
behavior and potential changes in API responses
over time. Our experiments also focus primarily on
English-language datasets and VQA-related tasks;
generalization to multilingual, or more complex
reasoning tasks remains an open direction.

Ethical Considerations and Broader
Impact

In this work, we used open-source datasets which
may contain social or cultural biases. The proposed
framework also depends on outputs from large-
scale vision-language models (L-VLMs), which are
known to occasionally generate hallucinated or bi-
ased content. Although the Parity Identifier (PI)
module is designed to filter out low-quality or in-
correct annotations, it cannot entirely eliminate
inherited biases from the underlying L-VLM. Fur-
ther, this work involves a human evaluation study
in which three annotators were employed to assess
the quality of pseudo-annotations generated by our
MPA framework. All annotators were compensated
fairly in accordance with local wage norms. They
were not exposed to harmful, offensive, or sensitive
content, and no personally identifiable information
was collected at any stage of the study.
Broader Impact: The proposed MPA framework
enables efficient training of small vision-language
models (S-VLMs) using only unlabeled data, reduc-
ing reliance on expensive human annotations. By
transferring capabilities from large vision-language
models (L-VLMs) to compact models, MPA makes
high-performing multimodal systems more acces-
sible in low-resource settings. This democratiza-
tion of vision-language technology can benefit real-
world applications in healthcare, agriculture, and
accessibility, particularly in regions with limited
compute or labeled data. Furthermore, the pro-
posed approach encourages the development of
scalable alignment strategies that can generalize to
diverse, resource-constrained communities.
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A Additional Analysis

(i) Additional comparisons: utility of PI filter-
ing over raw pseudo-labels. We extend the analy-
sis of PI filtering by reporting the results of MPA
(w/o PI) across all S-VLMs with Qwen2VL-7B as
the guiding L-VLM within MPA. As shown in Ta-
ble 9, MPA consistently outperforms MPA (w/o PI)
across all tasks and S-VLMs, despite using far fewer
training samples (for instance, ∼2K vs. ∼21K for
TextVQA). These results reinforce the utility of PI
filtering in isolating knowledge-gap samples that
provide more efficient and targeted supervision.
(ii) Expanded comparison on OCR and text-aware
captioning tasks. In Table 3, we examined whether
MPA-trained models can improve fundamental ca-
pabilities such as OCR and text-aware image cap-
tioning, even without direct supervision. We further
evaluate this setting by comparing against models
fine-tuned on the original human-labeled training
splits of TextVQA; the results are presented in Ta-
ble 10. As shown, MPA not only improves over
the zero-shot baseline but also surpasses models
trained with human-labeled annotations. This high-
lights that the gains stem from the effectiveness
of the MPA pipeline, rather than from overlap be-
tween benchmarks, and demonstrates that MPA
successfully transfers core visual-linguistic capa-
bilities in a label-free manner.
(iv) Computational and API cost of PA and
PI: MPA is a one-time pipeline where each im-
age is processed by the L-VLM during the PA
phase, and each generated (image, question) pair
is passed once through the L-VLM and S-VLM

during the PI phase. For open-source L-VLMs
like Qwen2VL-7B deployed locally, this is com-
putationally lightweight: on a machine with 3
A6000 (48GB) GPUs, generating approximately
21K pseudo-annotations (e.g., for TextVQA) takes
around 4-6 hours end-to-end. Further, the PI step
takes another 2-3 hours to identify the samples that
represent the knowledge gaps. Alternatively, while
using GPT-4o via API, we estimate the total cost of
PA + PI for a single S-VLM–task pair to be around
$11, making MPA a highly cost-effective label-free
alternative to supervised training.

B Dataset Details

TextVQA consists of 28K images with 45K man-
ually annotated question-answer pairs. It is split
into 21K images with 35K questions for training,
3K images with 3.7K questions for validation, and

S-VLM Samples TextVQA ST-VQA ChartQA OKVQA

TinyLLaVA-2B
MPA (w/o PI) 56.4 79.1 57.5 39.2

MPA 57.6 80.3 59.9 40.7

TinyLLaVA-2B
MPA (w/o PI) 52.1 46.3 23.3 44.6

MPA 53.5 48.7 24.0 46.6

InternVL2-2B
MPA (w/o PI) 69.0 64.5 66.7 44.0

MPA 70.3 65.5 68.3 45.6

InternVL2-4B
MPA (w/o PI) 69.8 65.1 72.9 51.2

MPA 71.4 66.1 73.8 52.3

Qwen2VL-2B
MPA (w/o PI) 73.6 65.8 67.4 47.2

MPA 75.1 67.2 67.6 48.9

Table 9: Additional results for MPA vs. MPA (w/o PI)
across all S-VLMs, using Qwen2VL-7B as the L-VLM
inside MPA.

a private test set. Since the testset is private, for
this dataset, we report all the result on validation
set. ST-VQA contains 23K images and 31K ques-
tions, with 16K images and 22K questions for train-
ing, and 2.8K images with 4K questions for test-
ing. ChartQA includes 21.6K charts with 32.3K
question-answer pairs, split into 19K charts with
28K questions for training, 1K charts with 1.8K
questions for validation, and 1.6K charts with 2.5K
questions for testing. OKVQA consists of 14K im-
ages with 14K questions, divided into 9K questions
for training, 5K for testing.

C Implementation Details

We implement our method using PyTorch. Major-
ity of the chosen S-VLMs and L-VLMs employed
in our propsed method MPA, we use their origi-
nal code-base repositories and/or their Hugging-
face implementations depending on the ease of
reproducibility. Parity leveler (Section 3.3) module
trains the entire S-VLM on the samples obtained
from the PI module (Section 3.2) for one epoch,
for all the benchmark datasets. Hyperparameters
used by the PL module for different S-VLMs are
summarized in Table 11. All our experiments
are conducted on a machine with three Nvidia
A6000 GPUs (48 GB each). For every L-VLM and
S-VLM combination, it took approximately, 5-12
GPU hours for entire MPA, for one dataset. We
use gpt-4o-2024-11-20 (OpenAI, 2024) for our
closed-source L-VLM ablation.

D Prompts used

In this section, we provide the VLM prompts used
in the PA module (Section 3.1) to generate pseudo-
annotations for all four datasets:
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Task Dataset Metric S-VLM (Zero-shot) S-VLM (HL) S-VLM (MPA)

OCR ICDAR2015 WRR 31.9 33.2 36.4 (↑ 4.5)

TC TextCaps
BLEU-1 7.9 13.4 15.3 (↑ 7.4)

ROUGE-L 17.4 18.3 20.6 (↑ 3.2)
CIDEr 8.7 34.6 38.1 (↑ 29.4)

Table 10: Comparison of OCR and text-aware captioning performance. Despite using no ground-truth labels, MPA
outperforms both the zero-shot baseline and models trained on human-labeled data (HL).

S-VLM Batch Size LR

Qwen2VL-2B 16 1e-5
InternVL2-2B 16 4e-5
InternVL2-4B 6 4e-5
SmolVLM-500M 16 1e-4
TinyLLaVA-2B 16 1e-4

Table 11: Hyperparameters used in the parity leveler
module (Section 3.3) for each S-VLM.

PA prompt for: TextVQA and ST-VQA

<image(I)>
The objective is to generate a question-answer pair
for a Textual Visual Question Answering (Text-VQA)
task. Your task is to create a contextually relevant
question that directly relates to the image’s content,
incorporating reasoning or direct references to the
text, and its correct answer.
Output:
- Question: A natural language question grounded in
the image’s content and text.
- Answer: A concise response (single word, phrase,
or Yes/No) derived from the text or reasoning based
on it.
Assistant: Question: Q̃, Answer: Ã

PA prompt for: ChartQA

<chart image (I)>
The objective is to generate a question-answer pair
for a Chart Visual Question Answering (ChartVQA)
task. Your task is to create a contextually relevant
question that directly relates to the content of a given
chart, incorporating reasoning based on the visual-
ized data.
Output Requirements:
- Question: A natural language question grounded
in the chart’s content, requiring numerical reasoning,
trend analysis, or data lookup.
- Answer: A concise response (single word, number,
phrase, or Yes/No) derived from the chart’s data.
Guidelines for Question Generation:
1. Direct Lookup Questions – extracting specific val-
ues from the chart.
2. Comparison Questions – comparing values be-
tween different categories.
3. Trend & Pattern Recognition – identifying in-
creases, decreases, or correlations in the data.
4. Inference-Based Questions – requiring reasoning
beyond direct value lookup.
Ensure the question is meaningful and the answer is
accurate based on the chart data.
Assistant: Question: Q̃, Answer: Ã

PA prompt for: OKVQA

<image(I)>
The objective is to generate a question-answer pair
for a Knowledge-based Visual Question Answering
(K-VQA) task. Your task is to create a contextually
relevant question that directly relates to the image’s
content while requiring external world knowledge to
answer correctly, and its correct answer.
Output Requirements:
- Question: A natural language question grounded in
the image’s content but requiring reasoning beyond
direct perception, incorporating real-world knowl-
edge.
- Answer: A single-word response based on general
world knowledge.
Guidelines for Question Generation:
1. Object & Scene Understanding – identifying ob-
jects or actions in the image and connecting them to
broader knowledge.
2. Commonsense Reasoning – requiring logical de-
ductions about the scene.
3. Cultural & Historical Context – related to well-
known historical events, traditions, or cultural refer-
ences.
4. Scientific & Factual Knowledge – involving basic
physics, biology, geography, or general knowledge.
5. Everyday Life & Social Understanding – questions
about daily activities, professions, or human behav-
iors.
# Ensure that the generated question is meaningful
and requires external knowledge beyond just the im-
age’s visual content.
Assistant: Question: Q̃, Answer: Ã

Note that, to ensure fair comparison, the pseudo-
annotation prompts are same for all variants of
L-VLMs used. Further, the prompt we used for
QA is ‘Answer the following question in a
single word or phrase’, which is common for
all datasets across all S-VLMs.

E Qualitative Results

Figure 5 presents a selection of examples where
MPA alignment enables S-VLM to correct errors
made by the original zero-shot S-VLM. From a
rigorous examination of the results, we find that
MPA significantly improves performance in visual
text reasoning, plot interpretation, and knowledge-
based question answering. Further, we show ad-
ditional qualitative samples for showing zero-shot
SVLM versus MPA-aligned S-VLM across all four
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Image

Q

LVLM

SVLM

What is the registration number of the 
plane?

G-ATCO

G-ATCO

(a)

What percentage of Russians described 
their economy as bad in 2015?

73

73

(b)

Image

Q

PA
Annotation

(pseudo-ground truth) 

What brand of the vehicle is Volvo?

Yes

(c)

How has the favorability of China in 
Russia changed from 2007 to 2015?

79

(d)

Figure 4: Left two examples: Pseudo-annotations discarded by PI module as they do not constitute knowledge-gap.
Right two examples: Pseudo-annotations discarded by PI module as they are noisy annotations.

datasets: TextVQA in Figure 6, ST-VQA in Fig-
ure 7, ChartQA in Figure 8 and OKVQA in Fig-
ure 9.

Furthermore, in Figure 4, we show selected ex-
amples that do not represent a disparity between
S-VLM and L-VLM ((a), (b)), and another set of
examples that are noisy annotations ((c), (d)), both
of which are discarded by the PI module.
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Image

Q What word is printed under interior 
design  on the book in the middle? Where was this product made? Which year yielded the smallest difference 

between men and women students?
What effect on the ocean does 

this platenary body cause?

SVLM

SVLM+MPA 
(Ours)

Para

Inspirations

USA

UK

2005

2000

Moon

Tide

(a) (b) (c) (d)

Figure 5: A selection of results showing zero-shot SVLM versus MPA-aligned SVLM. MPA config: S-VLM:
Qwen2VL-2B, L-VLM: Qwen2VL-7B. Green and red text correspond to correct and incorrect answers, respectively.
(Best viewed in color)

Image

Q What brand is depicted above 
the beatles logo? Which way to turn to porchester terrace? What is the first even number? What number and letter are 

found under the green icon?

SVLM

SVLM+MPA 
(Ours)

Gibson

Ludwig

Left

Right

17

18

6

F6

(a) (b) (c) (d)

Figure 6: Few more results from TextVQA showing the efficiency of MPA-aligned S-VLM over baseline S-VLM.

Image

Q

SVLM

SVLM+MPA 
(Ours)

What is the punishment for honking?

$150 penalty

$350 penalty

(a)

What letters come after the letters ATV/ 
on the same button?

DVD

DTV

(b)

What is printed on the right side of the 
clock?

Letters

1240 KC

(c) (d)

What company’s logo is in the 
black box in the upper left?

Burberry

Gucci

Figure 7: Few more results from STVQA showing the efficiency of MPA-aligned S-VLM over baseline S-VLM.
Green and red text correspond to correct and incorrect answers, respectively. (Best viewed in color)
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Image

Q

SVLM

SVLM+MPA 
(Ours)

How many facebook fans did the 
simpsons have as of June 2011?

26.1 million

62 million

(a)

Does the life expectancy decrease over 
the years?

Yes

No

(b)

How many places are mentioned in the 
graph?

10

5

(c) (d)

Who was the leading goal 
scorer for Celtic FC as of 

September 2020?

Scott Sinclair

Leigh Griffiths

Figure 8: Few more results from ChartQA showing the efficiency of MPA-aligned S-VLM over baseline S-VLM.
Green and red text correspond to correct and incorrect answers, respectively. (Best viewed in color)

Image

Q

SVLM

SVLM+MPA 
(Ours)

The chef is holding a pizza in the photo so 
what type of restaurant does this suggest he 

may be cooking at?

Pizza

Italian

(a)

At what speed does this animal run?

10 mph

30 mph

(b)

What is the name of the floor pattern?

Diamond

Checkered

(c) (d)

Can you guess the model of tv 
shown in this picture?

No

LG

Figure 9: Few more results from OKVQA showing the efficiency of MPA-aligned S-VLM over baseline S-VLM.
Green and red text correspond to correct and incorrect answers, respectively. (Best viewed in color)
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