@inproceedings{ling-etal-2025-beyond,
title = "Beyond Human Labels: A Multi-Linguistic Auto-Generated Benchmark for Evaluating Large Language Models on Resume Parsing",
author = "Ling, Zijian and
Zhang, Han and
Cui, Jiahao and
Wu, Zhequn and
Sun, Xu and
Li, Guohao and
He, Xiangjian",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.1626/",
pages = "31907--31933",
ISBN = "979-8-89176-332-6",
abstract = "Efficient resume parsing is critical for global hiring, yet the absence of dedicated benchmarks for evaluating large language models (LLMs) on multilingual, structure-rich resumes hinders progress. To address this, we introduce ResumeBench, the first privacy-compliant benchmark comprising 2,500 synthetic resumes spanning 50 templates, 30 career fields, and 5 languages. These resumes are generated through a human-in-the-loop pipeline that prioritizes realism, diversity, and privacy compliance, which are validated against real-world resumes. This paper evaluates 24 state-of-the-art LLMs on ResumeBench, revealing substantial variations in handling resume complexities. Specifically, top-performing models like GPT-4o exhibit challenges in cross-lingual structural alignment while smaller models show inconsistent scaling effects. Code-specialized LLMs underperform relative to generalists, while JSON outputs enhance schema compliance but fail to address semantic ambiguities. Our findings underscore the necessity for domain-specific optimization and hybrid training strategies to enhance structural and contextual reasoning in LLMs."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ling-etal-2025-beyond">
<titleInfo>
<title>Beyond Human Labels: A Multi-Linguistic Auto-Generated Benchmark for Evaluating Large Language Models on Resume Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zijian</namePart>
<namePart type="family">Ling</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Han</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiahao</namePart>
<namePart type="family">Cui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhequn</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xu</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guohao</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiangjian</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Efficient resume parsing is critical for global hiring, yet the absence of dedicated benchmarks for evaluating large language models (LLMs) on multilingual, structure-rich resumes hinders progress. To address this, we introduce ResumeBench, the first privacy-compliant benchmark comprising 2,500 synthetic resumes spanning 50 templates, 30 career fields, and 5 languages. These resumes are generated through a human-in-the-loop pipeline that prioritizes realism, diversity, and privacy compliance, which are validated against real-world resumes. This paper evaluates 24 state-of-the-art LLMs on ResumeBench, revealing substantial variations in handling resume complexities. Specifically, top-performing models like GPT-4o exhibit challenges in cross-lingual structural alignment while smaller models show inconsistent scaling effects. Code-specialized LLMs underperform relative to generalists, while JSON outputs enhance schema compliance but fail to address semantic ambiguities. Our findings underscore the necessity for domain-specific optimization and hybrid training strategies to enhance structural and contextual reasoning in LLMs.</abstract>
<identifier type="citekey">ling-etal-2025-beyond</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.1626/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>31907</start>
<end>31933</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Beyond Human Labels: A Multi-Linguistic Auto-Generated Benchmark for Evaluating Large Language Models on Resume Parsing
%A Ling, Zijian
%A Zhang, Han
%A Cui, Jiahao
%A Wu, Zhequn
%A Sun, Xu
%A Li, Guohao
%A He, Xiangjian
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F ling-etal-2025-beyond
%X Efficient resume parsing is critical for global hiring, yet the absence of dedicated benchmarks for evaluating large language models (LLMs) on multilingual, structure-rich resumes hinders progress. To address this, we introduce ResumeBench, the first privacy-compliant benchmark comprising 2,500 synthetic resumes spanning 50 templates, 30 career fields, and 5 languages. These resumes are generated through a human-in-the-loop pipeline that prioritizes realism, diversity, and privacy compliance, which are validated against real-world resumes. This paper evaluates 24 state-of-the-art LLMs on ResumeBench, revealing substantial variations in handling resume complexities. Specifically, top-performing models like GPT-4o exhibit challenges in cross-lingual structural alignment while smaller models show inconsistent scaling effects. Code-specialized LLMs underperform relative to generalists, while JSON outputs enhance schema compliance but fail to address semantic ambiguities. Our findings underscore the necessity for domain-specific optimization and hybrid training strategies to enhance structural and contextual reasoning in LLMs.
%U https://aclanthology.org/2025.emnlp-main.1626/
%P 31907-31933
Markdown (Informal)
[Beyond Human Labels: A Multi-Linguistic Auto-Generated Benchmark for Evaluating Large Language Models on Resume Parsing](https://aclanthology.org/2025.emnlp-main.1626/) (Ling et al., EMNLP 2025)
ACL