@inproceedings{park-etal-2025-making,
title = "Making {VLM}s More Robot-Friendly: Self-Critical Distillation of Low-Level Procedural Reasoning",
author = "Park, Chan Young and
Fisher, Jillian and
Memmel, Marius and
Khullar, Dipika and
Yun, Seoho and
Gupta, Abhishek and
Choi, Yejin",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.1658/",
pages = "32578--32599",
ISBN = "979-8-89176-332-6",
abstract = "Large language models (LLMs) have shown promise in robotic procedural planning, yet their human-centric reasoning often omits the low-level, grounded details needed for robotic execution. Vision-language models (VLMs) offer a path toward more perceptually grounded plans, but current methods either rely on expensive, large-scale models or are constrained to narrow simulation settings. We introduce SelfReVision, a lightweight and scalable self-improvement framework for vision-language procedural planning. SelfReVision enables small VLMs to iteratively critique, revise, and verify their own plans, without external supervision or teacher models, drawing inspiration from chain-of-thought prompting and self-instruct paradigms. Through this self-distillation loop, models generate higher-quality, execution-ready plans that can be used both at inference and for continued fine-tuning. Using models varying from 3B to 72B, our results show that SelfReVision not only boosts performance over weak base VLMs but also outperforms models 100X the size, yielding improved control in downstream embodied tasks."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="park-etal-2025-making">
<titleInfo>
<title>Making VLMs More Robot-Friendly: Self-Critical Distillation of Low-Level Procedural Reasoning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chan</namePart>
<namePart type="given">Young</namePart>
<namePart type="family">Park</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jillian</namePart>
<namePart type="family">Fisher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marius</namePart>
<namePart type="family">Memmel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dipika</namePart>
<namePart type="family">Khullar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seoho</namePart>
<namePart type="family">Yun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abhishek</namePart>
<namePart type="family">Gupta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yejin</namePart>
<namePart type="family">Choi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Large language models (LLMs) have shown promise in robotic procedural planning, yet their human-centric reasoning often omits the low-level, grounded details needed for robotic execution. Vision-language models (VLMs) offer a path toward more perceptually grounded plans, but current methods either rely on expensive, large-scale models or are constrained to narrow simulation settings. We introduce SelfReVision, a lightweight and scalable self-improvement framework for vision-language procedural planning. SelfReVision enables small VLMs to iteratively critique, revise, and verify their own plans, without external supervision or teacher models, drawing inspiration from chain-of-thought prompting and self-instruct paradigms. Through this self-distillation loop, models generate higher-quality, execution-ready plans that can be used both at inference and for continued fine-tuning. Using models varying from 3B to 72B, our results show that SelfReVision not only boosts performance over weak base VLMs but also outperforms models 100X the size, yielding improved control in downstream embodied tasks.</abstract>
<identifier type="citekey">park-etal-2025-making</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.1658/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>32578</start>
<end>32599</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Making VLMs More Robot-Friendly: Self-Critical Distillation of Low-Level Procedural Reasoning
%A Park, Chan Young
%A Fisher, Jillian
%A Memmel, Marius
%A Khullar, Dipika
%A Yun, Seoho
%A Gupta, Abhishek
%A Choi, Yejin
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F park-etal-2025-making
%X Large language models (LLMs) have shown promise in robotic procedural planning, yet their human-centric reasoning often omits the low-level, grounded details needed for robotic execution. Vision-language models (VLMs) offer a path toward more perceptually grounded plans, but current methods either rely on expensive, large-scale models or are constrained to narrow simulation settings. We introduce SelfReVision, a lightweight and scalable self-improvement framework for vision-language procedural planning. SelfReVision enables small VLMs to iteratively critique, revise, and verify their own plans, without external supervision or teacher models, drawing inspiration from chain-of-thought prompting and self-instruct paradigms. Through this self-distillation loop, models generate higher-quality, execution-ready plans that can be used both at inference and for continued fine-tuning. Using models varying from 3B to 72B, our results show that SelfReVision not only boosts performance over weak base VLMs but also outperforms models 100X the size, yielding improved control in downstream embodied tasks.
%U https://aclanthology.org/2025.emnlp-main.1658/
%P 32578-32599
Markdown (Informal)
[Making VLMs More Robot-Friendly: Self-Critical Distillation of Low-Level Procedural Reasoning](https://aclanthology.org/2025.emnlp-main.1658/) (Park et al., EMNLP 2025)
ACL