@inproceedings{agarwal-etal-2025-mechanisms,
title = "Mechanisms vs. Outcomes: Probing for Syntax Fails to Explain Performance on Targeted Syntactic Evaluations",
author = "Agarwal, Ananth and
Jian, Jasper and
Manning, Christopher D and
Murty, Shikhar",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.1712/",
pages = "33725--33745",
ISBN = "979-8-89176-332-6",
abstract = "Large Language Models (LLMs) exhibit a robust mastery of syntax when processing and generating text. While this suggests internalized understanding of hierarchical syntax and dependency relations, the precise mechanism by which they represent syntactic structure is an open area within interpretability research. Probing provides one way to identify syntactic mechanisms linearly encoded in activations; however, no comprehensive study has yet established whether a model{'}s probing accuracy reliably predicts its downstream syntactic performance. Adopting a ``mechanisms vs. outcomes'' framework, we evaluate 32 open-weight transformer models and find that syntactic features extracted via probing fail to predict outcomes of targeted syntax evaluations across English linguistic phenomena. Our results highlight a substantial disconnect between latent syntactic representations found via probing and observable syntactic behaviors in downstream tasks."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="agarwal-etal-2025-mechanisms">
<titleInfo>
<title>Mechanisms vs. Outcomes: Probing for Syntax Fails to Explain Performance on Targeted Syntactic Evaluations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ananth</namePart>
<namePart type="family">Agarwal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jasper</namePart>
<namePart type="family">Jian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="given">D</namePart>
<namePart type="family">Manning</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shikhar</namePart>
<namePart type="family">Murty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Large Language Models (LLMs) exhibit a robust mastery of syntax when processing and generating text. While this suggests internalized understanding of hierarchical syntax and dependency relations, the precise mechanism by which they represent syntactic structure is an open area within interpretability research. Probing provides one way to identify syntactic mechanisms linearly encoded in activations; however, no comprehensive study has yet established whether a model’s probing accuracy reliably predicts its downstream syntactic performance. Adopting a “mechanisms vs. outcomes” framework, we evaluate 32 open-weight transformer models and find that syntactic features extracted via probing fail to predict outcomes of targeted syntax evaluations across English linguistic phenomena. Our results highlight a substantial disconnect between latent syntactic representations found via probing and observable syntactic behaviors in downstream tasks.</abstract>
<identifier type="citekey">agarwal-etal-2025-mechanisms</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.1712/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>33725</start>
<end>33745</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Mechanisms vs. Outcomes: Probing for Syntax Fails to Explain Performance on Targeted Syntactic Evaluations
%A Agarwal, Ananth
%A Jian, Jasper
%A Manning, Christopher D.
%A Murty, Shikhar
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F agarwal-etal-2025-mechanisms
%X Large Language Models (LLMs) exhibit a robust mastery of syntax when processing and generating text. While this suggests internalized understanding of hierarchical syntax and dependency relations, the precise mechanism by which they represent syntactic structure is an open area within interpretability research. Probing provides one way to identify syntactic mechanisms linearly encoded in activations; however, no comprehensive study has yet established whether a model’s probing accuracy reliably predicts its downstream syntactic performance. Adopting a “mechanisms vs. outcomes” framework, we evaluate 32 open-weight transformer models and find that syntactic features extracted via probing fail to predict outcomes of targeted syntax evaluations across English linguistic phenomena. Our results highlight a substantial disconnect between latent syntactic representations found via probing and observable syntactic behaviors in downstream tasks.
%U https://aclanthology.org/2025.emnlp-main.1712/
%P 33725-33745
Markdown (Informal)
[Mechanisms vs. Outcomes: Probing for Syntax Fails to Explain Performance on Targeted Syntactic Evaluations](https://aclanthology.org/2025.emnlp-main.1712/) (Agarwal et al., EMNLP 2025)
ACL