@inproceedings{hong-etal-2025-litex,
title = "{L}i{TE}x: A Linguistic Taxonomy of Explanations for Understanding Within-Label Variation in Natural Language Inference",
author = "Hong, Pingjun and
Chen, Beiduo and
Peng, Siyao and
de Marneffe, Marie-Catherine and
Plank, Barbara",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.1728/",
pages = "34053--34073",
ISBN = "979-8-89176-332-6",
abstract = "There is increasing evidence of Human Label Variation (HLV) in Natural Language Inference (NLI), where annotators assign different labels to the same premise-hypothesis pair. However, *within-label variation* {---} cases where annotators agree on the same label but provide divergent reasoning {---} poses an additional and mostly overlooked challenge. Several NLI datasets contain highlighted words in the NLI item as explanations, but the same spans on the NLI item can be highlighted for different reasons, as evidenced by free-text explanations, which offer a window into annotators' reasoning. To systematically understand this problem and gain insight into the rationales behind NLI labels, we introduce LiTEx, a linguistically-informed taxonomy for categorizing free-text explanations in English. Using this taxonomy, we annotate a subset of the e-SNLI dataset, validate the taxonomy{'}s reliability, and analyze how it aligns with NLI labels, highlights, and explanations. We further assess the taxonomy{'}s usefulness in explanation generation, demonstrating that conditioning generation on LiTEx yields explanations that are linguistically closer to human explanations than those generated using only labels or highlights. Our approach thus not only captures within-label variation but also shows how taxonomy-guided generation for reasoning can bridge the gap between human and model explanations more effectively than existing strategies."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hong-etal-2025-litex">
<titleInfo>
<title>LiTEx: A Linguistic Taxonomy of Explanations for Understanding Within-Label Variation in Natural Language Inference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Pingjun</namePart>
<namePart type="family">Hong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Beiduo</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Siyao</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie-Catherine</namePart>
<namePart type="family">de Marneffe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="family">Plank</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>There is increasing evidence of Human Label Variation (HLV) in Natural Language Inference (NLI), where annotators assign different labels to the same premise-hypothesis pair. However, *within-label variation* — cases where annotators agree on the same label but provide divergent reasoning — poses an additional and mostly overlooked challenge. Several NLI datasets contain highlighted words in the NLI item as explanations, but the same spans on the NLI item can be highlighted for different reasons, as evidenced by free-text explanations, which offer a window into annotators’ reasoning. To systematically understand this problem and gain insight into the rationales behind NLI labels, we introduce LiTEx, a linguistically-informed taxonomy for categorizing free-text explanations in English. Using this taxonomy, we annotate a subset of the e-SNLI dataset, validate the taxonomy’s reliability, and analyze how it aligns with NLI labels, highlights, and explanations. We further assess the taxonomy’s usefulness in explanation generation, demonstrating that conditioning generation on LiTEx yields explanations that are linguistically closer to human explanations than those generated using only labels or highlights. Our approach thus not only captures within-label variation but also shows how taxonomy-guided generation for reasoning can bridge the gap between human and model explanations more effectively than existing strategies.</abstract>
<identifier type="citekey">hong-etal-2025-litex</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.1728/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>34053</start>
<end>34073</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T LiTEx: A Linguistic Taxonomy of Explanations for Understanding Within-Label Variation in Natural Language Inference
%A Hong, Pingjun
%A Chen, Beiduo
%A Peng, Siyao
%A de Marneffe, Marie-Catherine
%A Plank, Barbara
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F hong-etal-2025-litex
%X There is increasing evidence of Human Label Variation (HLV) in Natural Language Inference (NLI), where annotators assign different labels to the same premise-hypothesis pair. However, *within-label variation* — cases where annotators agree on the same label but provide divergent reasoning — poses an additional and mostly overlooked challenge. Several NLI datasets contain highlighted words in the NLI item as explanations, but the same spans on the NLI item can be highlighted for different reasons, as evidenced by free-text explanations, which offer a window into annotators’ reasoning. To systematically understand this problem and gain insight into the rationales behind NLI labels, we introduce LiTEx, a linguistically-informed taxonomy for categorizing free-text explanations in English. Using this taxonomy, we annotate a subset of the e-SNLI dataset, validate the taxonomy’s reliability, and analyze how it aligns with NLI labels, highlights, and explanations. We further assess the taxonomy’s usefulness in explanation generation, demonstrating that conditioning generation on LiTEx yields explanations that are linguistically closer to human explanations than those generated using only labels or highlights. Our approach thus not only captures within-label variation but also shows how taxonomy-guided generation for reasoning can bridge the gap between human and model explanations more effectively than existing strategies.
%U https://aclanthology.org/2025.emnlp-main.1728/
%P 34053-34073
Markdown (Informal)
[LiTEx: A Linguistic Taxonomy of Explanations for Understanding Within-Label Variation in Natural Language Inference](https://aclanthology.org/2025.emnlp-main.1728/) (Hong et al., EMNLP 2025)
ACL