@inproceedings{bonomo-etal-2025-literaryqa,
title = "{L}iterary{QA}: Towards Effective Evaluation of Long-document Narrative {QA}",
author = "Bonomo, Tommaso and
Gioffr{\'e}, Luca and
Navigli, Roberto",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.1729/",
pages = "34074--34095",
ISBN = "979-8-89176-332-6",
abstract = "Question Answering (QA) on narrative text poses a unique challenge to current systems, requiring a deep understanding of long, complex documents. However, the reliability of NarrativeQA, the most widely used benchmark in this domain, is hindered by noisy documents and flawed QA pairs. In this work, we introduce LiteraryQA, a high-quality subset of NarrativeQA focused on literary works. Using a human- and LLM-validated pipeline, we identify and correct low-quality QA samples while removing extraneous text from source documents. We then carry out a meta-evaluation of automatic metrics to clarify how systems should be evaluated on LiteraryQA.This analysis reveals that all n-gram-based metrics have a low system-level correlation to human judgment, while LLM-as-a-Judge evaluations, even with small open-weight models, can strongly agree with the ranking identified by humans.Finally, we benchmark a set of long-context LLMs on LiteraryQA. We release our code and data at https://github.com/sapienzaNLP/LiteraryQA."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bonomo-etal-2025-literaryqa">
<titleInfo>
<title>LiteraryQA: Towards Effective Evaluation of Long-document Narrative QA</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tommaso</namePart>
<namePart type="family">Bonomo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luca</namePart>
<namePart type="family">Gioffré</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roberto</namePart>
<namePart type="family">Navigli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Question Answering (QA) on narrative text poses a unique challenge to current systems, requiring a deep understanding of long, complex documents. However, the reliability of NarrativeQA, the most widely used benchmark in this domain, is hindered by noisy documents and flawed QA pairs. In this work, we introduce LiteraryQA, a high-quality subset of NarrativeQA focused on literary works. Using a human- and LLM-validated pipeline, we identify and correct low-quality QA samples while removing extraneous text from source documents. We then carry out a meta-evaluation of automatic metrics to clarify how systems should be evaluated on LiteraryQA.This analysis reveals that all n-gram-based metrics have a low system-level correlation to human judgment, while LLM-as-a-Judge evaluations, even with small open-weight models, can strongly agree with the ranking identified by humans.Finally, we benchmark a set of long-context LLMs on LiteraryQA. We release our code and data at https://github.com/sapienzaNLP/LiteraryQA.</abstract>
<identifier type="citekey">bonomo-etal-2025-literaryqa</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.1729/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>34074</start>
<end>34095</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T LiteraryQA: Towards Effective Evaluation of Long-document Narrative QA
%A Bonomo, Tommaso
%A Gioffré, Luca
%A Navigli, Roberto
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F bonomo-etal-2025-literaryqa
%X Question Answering (QA) on narrative text poses a unique challenge to current systems, requiring a deep understanding of long, complex documents. However, the reliability of NarrativeQA, the most widely used benchmark in this domain, is hindered by noisy documents and flawed QA pairs. In this work, we introduce LiteraryQA, a high-quality subset of NarrativeQA focused on literary works. Using a human- and LLM-validated pipeline, we identify and correct low-quality QA samples while removing extraneous text from source documents. We then carry out a meta-evaluation of automatic metrics to clarify how systems should be evaluated on LiteraryQA.This analysis reveals that all n-gram-based metrics have a low system-level correlation to human judgment, while LLM-as-a-Judge evaluations, even with small open-weight models, can strongly agree with the ranking identified by humans.Finally, we benchmark a set of long-context LLMs on LiteraryQA. We release our code and data at https://github.com/sapienzaNLP/LiteraryQA.
%U https://aclanthology.org/2025.emnlp-main.1729/
%P 34074-34095
Markdown (Informal)
[LiteraryQA: Towards Effective Evaluation of Long-document Narrative QA](https://aclanthology.org/2025.emnlp-main.1729/) (Bonomo et al., EMNLP 2025)
ACL