@inproceedings{akarajaradwong-etal-2025-nitibench,
title = "{N}iti{B}ench: Benchmarking {LLM} Frameworks on {T}hai Legal Question Answering Capabilities",
author = "Akarajaradwong, Pawitsapak and
Pothavorn, Pirat and
Chaksangchaichot, Chompakorn and
Tasawong, Panuthep and
Nopparatbundit, Thitiwat and
Pratai, Keerakiat and
Nutanong, Sarana",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.1739/",
pages = "34292--34315",
ISBN = "979-8-89176-332-6",
abstract = "Large language models (LLMs) show promise in legal question answering (QA), yet Thai legal QA systems face challenges due to limited data and complex legal structures. We introduce NitiBench, a novel benchmark featuring two datasets: (1) NitiBench-CCL, covering Thai financial laws, and (2) NitiBench-Tax, containing Thailand{'}s official tax rulings. Our benchmark also consists of specialized evaluation metrics suited for Thai legal QA. We evaluate retrieval-augmented generation (RAG) and long-context LLM (LCLM) approaches across three key dimensions: (1) the benefits of domain-specific techniques like hierarchy-aware chunking and cross-referencing, (2) comparative performance of RAG components, e.g., retrievers and LLMs, and (3) the potential of long-context LLMs to replace traditional RAG systems. Our results reveal that domain-specific components slightly improve over naive methods. At the same time, existing retrieval models still struggle with complex legal queries, and long-context LLMs have limitations in consistent legal reasoning. Our study highlights current limitations in Thai legal NLP and lays a foundation for future research in this emerging domain."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="akarajaradwong-etal-2025-nitibench">
<titleInfo>
<title>NitiBench: Benchmarking LLM Frameworks on Thai Legal Question Answering Capabilities</title>
</titleInfo>
<name type="personal">
<namePart type="given">Pawitsapak</namePart>
<namePart type="family">Akarajaradwong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pirat</namePart>
<namePart type="family">Pothavorn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chompakorn</namePart>
<namePart type="family">Chaksangchaichot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Panuthep</namePart>
<namePart type="family">Tasawong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thitiwat</namePart>
<namePart type="family">Nopparatbundit</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Keerakiat</namePart>
<namePart type="family">Pratai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sarana</namePart>
<namePart type="family">Nutanong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Large language models (LLMs) show promise in legal question answering (QA), yet Thai legal QA systems face challenges due to limited data and complex legal structures. We introduce NitiBench, a novel benchmark featuring two datasets: (1) NitiBench-CCL, covering Thai financial laws, and (2) NitiBench-Tax, containing Thailand’s official tax rulings. Our benchmark also consists of specialized evaluation metrics suited for Thai legal QA. We evaluate retrieval-augmented generation (RAG) and long-context LLM (LCLM) approaches across three key dimensions: (1) the benefits of domain-specific techniques like hierarchy-aware chunking and cross-referencing, (2) comparative performance of RAG components, e.g., retrievers and LLMs, and (3) the potential of long-context LLMs to replace traditional RAG systems. Our results reveal that domain-specific components slightly improve over naive methods. At the same time, existing retrieval models still struggle with complex legal queries, and long-context LLMs have limitations in consistent legal reasoning. Our study highlights current limitations in Thai legal NLP and lays a foundation for future research in this emerging domain.</abstract>
<identifier type="citekey">akarajaradwong-etal-2025-nitibench</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.1739/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>34292</start>
<end>34315</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T NitiBench: Benchmarking LLM Frameworks on Thai Legal Question Answering Capabilities
%A Akarajaradwong, Pawitsapak
%A Pothavorn, Pirat
%A Chaksangchaichot, Chompakorn
%A Tasawong, Panuthep
%A Nopparatbundit, Thitiwat
%A Pratai, Keerakiat
%A Nutanong, Sarana
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F akarajaradwong-etal-2025-nitibench
%X Large language models (LLMs) show promise in legal question answering (QA), yet Thai legal QA systems face challenges due to limited data and complex legal structures. We introduce NitiBench, a novel benchmark featuring two datasets: (1) NitiBench-CCL, covering Thai financial laws, and (2) NitiBench-Tax, containing Thailand’s official tax rulings. Our benchmark also consists of specialized evaluation metrics suited for Thai legal QA. We evaluate retrieval-augmented generation (RAG) and long-context LLM (LCLM) approaches across three key dimensions: (1) the benefits of domain-specific techniques like hierarchy-aware chunking and cross-referencing, (2) comparative performance of RAG components, e.g., retrievers and LLMs, and (3) the potential of long-context LLMs to replace traditional RAG systems. Our results reveal that domain-specific components slightly improve over naive methods. At the same time, existing retrieval models still struggle with complex legal queries, and long-context LLMs have limitations in consistent legal reasoning. Our study highlights current limitations in Thai legal NLP and lays a foundation for future research in this emerging domain.
%U https://aclanthology.org/2025.emnlp-main.1739/
%P 34292-34315
Markdown (Informal)
[NitiBench: Benchmarking LLM Frameworks on Thai Legal Question Answering Capabilities](https://aclanthology.org/2025.emnlp-main.1739/) (Akarajaradwong et al., EMNLP 2025)
ACL