@inproceedings{li-etal-2025-sensorllm,
title = "{S}ensor{LLM}: Aligning Large Language Models with Motion Sensors for Human Activity Recognition",
author = "Li, Zechen and
Deldari, Shohreh and
Chen, Linyao and
Xue, Hao and
Salim, Flora D.",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.19/",
pages = "354--379",
ISBN = "979-8-89176-332-6",
abstract = "We introduce SensorLLM, a two-stage framework that enables Large Language Models (LLMs) to perform human activity recognition (HAR) from sensor time-series data. Despite their strong reasoning and generalization capabilities, LLMs remain underutilized for motion sensor data due to the lack of semantic context in time-series, computational constraints, and challenges in processing numerical inputs. SensorLLM addresses these limitations through a Sensor-Language Alignment stage, where the model aligns sensor inputs with trend descriptions. Special tokens are introduced to mark channel boundaries. This alignment enables LLMs to capture numerical variations, channel-specific features, and data of varying durations, without requiring human annotations. In the subsequent Task-Aware Tuning stage, we refine the model for HAR classification, achieving performance that matches or surpasses state-of-the-art methods. Our results demonstrate that SensorLLM evolves into an effective sensor learner, reasoner, and classifier through human-intuitive Sensor-Language Alignment, generalizing across diverse HAR datasets. We believe this work establishes a foundation for future research on time-series and text alignment, paving the way for foundation models in sensor data analysis. Our codes are available at https://github.com/zechenli03/SensorLLM."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2025-sensorllm">
<titleInfo>
<title>SensorLLM: Aligning Large Language Models with Motion Sensors for Human Activity Recognition</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zechen</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shohreh</namePart>
<namePart type="family">Deldari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Linyao</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hao</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Flora</namePart>
<namePart type="given">D</namePart>
<namePart type="family">Salim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>We introduce SensorLLM, a two-stage framework that enables Large Language Models (LLMs) to perform human activity recognition (HAR) from sensor time-series data. Despite their strong reasoning and generalization capabilities, LLMs remain underutilized for motion sensor data due to the lack of semantic context in time-series, computational constraints, and challenges in processing numerical inputs. SensorLLM addresses these limitations through a Sensor-Language Alignment stage, where the model aligns sensor inputs with trend descriptions. Special tokens are introduced to mark channel boundaries. This alignment enables LLMs to capture numerical variations, channel-specific features, and data of varying durations, without requiring human annotations. In the subsequent Task-Aware Tuning stage, we refine the model for HAR classification, achieving performance that matches or surpasses state-of-the-art methods. Our results demonstrate that SensorLLM evolves into an effective sensor learner, reasoner, and classifier through human-intuitive Sensor-Language Alignment, generalizing across diverse HAR datasets. We believe this work establishes a foundation for future research on time-series and text alignment, paving the way for foundation models in sensor data analysis. Our codes are available at https://github.com/zechenli03/SensorLLM.</abstract>
<identifier type="citekey">li-etal-2025-sensorllm</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.19/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>354</start>
<end>379</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SensorLLM: Aligning Large Language Models with Motion Sensors for Human Activity Recognition
%A Li, Zechen
%A Deldari, Shohreh
%A Chen, Linyao
%A Xue, Hao
%A Salim, Flora D.
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F li-etal-2025-sensorllm
%X We introduce SensorLLM, a two-stage framework that enables Large Language Models (LLMs) to perform human activity recognition (HAR) from sensor time-series data. Despite their strong reasoning and generalization capabilities, LLMs remain underutilized for motion sensor data due to the lack of semantic context in time-series, computational constraints, and challenges in processing numerical inputs. SensorLLM addresses these limitations through a Sensor-Language Alignment stage, where the model aligns sensor inputs with trend descriptions. Special tokens are introduced to mark channel boundaries. This alignment enables LLMs to capture numerical variations, channel-specific features, and data of varying durations, without requiring human annotations. In the subsequent Task-Aware Tuning stage, we refine the model for HAR classification, achieving performance that matches or surpasses state-of-the-art methods. Our results demonstrate that SensorLLM evolves into an effective sensor learner, reasoner, and classifier through human-intuitive Sensor-Language Alignment, generalizing across diverse HAR datasets. We believe this work establishes a foundation for future research on time-series and text alignment, paving the way for foundation models in sensor data analysis. Our codes are available at https://github.com/zechenli03/SensorLLM.
%U https://aclanthology.org/2025.emnlp-main.19/
%P 354-379
Markdown (Informal)
[SensorLLM: Aligning Large Language Models with Motion Sensors for Human Activity Recognition](https://aclanthology.org/2025.emnlp-main.19/) (Li et al., EMNLP 2025)
ACL