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Abstract

Chart question answering (CQA) has become a
critical multimodal task for evaluating the rea-
soning capabilities of vision-language models.
While early approaches have shown promising
performance by focusing on visual features or
leveraging large-scale pre-training, most exist-
ing evaluations rely on rigid output formats and
objective metrics, thus ignoring the complex,
real-world demands of practical chart analy-
sis. In this paper, we introduce ChartMind, a
new benchmark designed for complex CQA
tasks in real-world settings. ChartMind covers
seven task categories, incorporates multilingual
contexts, supports open-domain textual outputs,
and accommodates diverse chart formats, bridg-
ing the gap between real-world applications
and traditional academic benchmarks. Further-
more, we propose a context-aware yet model-
agnostic framework, ChartLLM, that focuses
on extracting key contextual elements, reducing
noise, and enhancing the reasoning accuracy of
multimodal large language models. Extensive
evaluations on ChartMind and three represen-
tative public benchmarks with 14 mainstream
multimodal models show our framework signif-
icantly outperforms the previous three common
CQA paradigms: instruction-following, OCR-
enhanced, and chain-of-thought, highlighting
the importance of flexible chart understanding
for real-world CQA. These findings suggest
new directions for developing more robust chart
reasoning in future research.

1 Introduction

Chart question answering (Ma et al., 2024; Qin
et al., 2022) is a prominent multimodal task de-
signed to evaluate the reasoning capabilities of
vision-language models, especially their multi-
modal perception ability and local reasoning ability.
Early studies treat CQA as a discriminative task,
focusing on directly modeling visual elements to

* Equal contribution.
† Corresponding author.

answer questions (Kafle et al., 2018; Chang et al.,
2022). However, these methods often struggle with
generalization due to their inability to capture the
semantic and visual richness of charts. Hence, re-
searchers introduce more visual semantic infor-
mation (e.g., OCR) to enhance the multimodal
perception ability (Liu et al., 2023; Wang et al.,
2023a). Recent studies have shown the potential
of multimodal large language models (LLMs) on
the CQA task by adopting large-scale multimodal
pre-training (Kim et al., 2022; Lee et al., 2023) or
chain-of-thought (COT) reasoning (Li et al., 2024b;
Wei et al., 2024), suggesting that leveraging large-
scale datasets and supervised fine-tuning improves
the interpretation of multimodal charts.

Several benchmarks (Zaib et al., 2022; Bajić
and Job, 2023; Wang et al., 2024) have been pro-
posed to better understand the strengths and weak-
nesses of multi-modal LLMs for CQA. However,
human evaluations often suffer from high variabil-
ity and instability due to individual and cultural dif-
ferences, leading many existing benchmarks (Kafle
et al., 2018; Mahinpei et al., 2022) to rely pre-
dominantly on automatic metrics (e.g., F1 scores).
While such approaches effectively evaluate the ac-
curacy of a single answer (e.g., “2024" for “What
is the largest value in column X?"), they do not
fully capture the need for complex and multi-step
reasoning commonly required in real-world sce-
narios. Many professional data analysis tasks de-
mand advanced inference, such as multi-hop rea-
soning or synthesizing information from multiple
charts. Consequently, most existing benchmarks
have widely ignored the logical steps involved in
such inferencing, focusing instead on whether the
answer includes the correct keyword or value.

In addition, as shown in Figure 1, we summa-
rize three main challenges in existing benchmarks:
multilingual charts, diverse formats, and questions
lacking a single definitive answer, such as chart
summarization. Models need to handle both visual
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Figure 1: Key Challenges in CQA Benchmarks: (A) Predominantly monolingual, limiting multilingual applicability
in chart question answering; (B) Fixed formats and metrics, restricting adaptability to diverse charts; (C) Emphasis
on deterministic answers, overlooking complex reasoning, such as trend analysis, and summarization.

comprehension and logical reasoning. To extract
meaningful information, they must first recognize
visual elements, such as colors, structures, and spa-
tial relationships. Then, they must analyze the logi-
cal connections between elements and answer com-
plex queries, such as performing calculations, iden-
tifying trends, and finding relationships within the
data. Moreover, the wide range of real-world chart
types (e.g., bar charts, line charts, scatter plots) cre-
ates higher demands for models to generalize and
perform well on new and unseen formats.

To address these challenges, we introduce Chart-
Mind, a multilingual benchmark designed for high-
level chart reasoning across seven task categories.
It includes both English and Chinese charts, pro-
viding the first dual-language evaluation setting
for chart QA. Compared to prior benchmarks that
focus on single-answer prediction, ChartMind sup-
ports open-ended outputs such as summarization
and trend analysis. This design narrows the gap be-
tween academic benchmarks and real-world chart
usage scenarios. To support better performance
in these complex tasks, we propose ChartLLM, a
structured context modeling framework that explic-
itly extracts semantic components—titles, legends,
axes—from charts and feeds them into the model.
Unlike procedural reasoning like CoT, ChartLLM
reduces cognitive burden by pre-structuring rele-
vant visual information, improving the robustness
and generalizability of existing MLLMs.

To validate our benchmark, we conduct a com-
prehensive study of 14 mainstream multimodal
models, comparing ChartLLM-based approaches
with three widely used CQA paradigms: (1)
instruction-following methods driven by predefined

prompts, (2) OCR-enhanced methods that priori-
tize text extraction, and (3) COT-based methods
emphasizing step-by-step reasoning.

Our contributions are as follows:
(1) We introduce ChartMind, the first bench-

mark for complex CQA tasks in real-world settings.
Covering seven task categories, multilingual con-
texts, and diverse chart formats, it bridges the gap
between real-world applications and traditional aca-
demic benchmarks.

(2) We propose ChartLLM, a context-aware yet
model-agnostic framework that focuses on extract-
ing key contextual elements, reducing noise, and
enhancing the reasoning accuracy of MLLMs.

(3) Through experiments across seven task cate-
gories, two languages, and seven chart formats, we
show that ChartLLM outperforms prevalent CQA
paradigms. These findings highlight the need for
flexible chart understanding and foster advanced
research on real-world chart analysis.

2 Related Work

In contrast, ChartLLM uses structured semantic
cues from charts—such as titles, legends, and
axes—to guide model reasoning, without relying
on step-by-step decomposition.

CQA Methods. The development of CQA meth-
ods (Zeng et al., 2024; Li et al., 2024b; Xu et al.,
2023) has evolved from early discriminative ap-
proaches to structured reasoning and large-scale
pretraining (Zhou et al., 2023; Li et al., 2023;
Huang et al., 2024; Tan et al., 2024). Early mod-
els like IMG+QUESS (Kafle et al., 2018) and V-
MODEQA (Chang et al., 2022) use CNNs for vi-
sual encoding and RNNs for query processing, but
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Dataset Avg. Ans. Instances Language Diverse Task Topic Chart Pie Scatter Common Grouped Stacked Complex Common
Length Number Format Format Format Format Format Bar Bar Bar Line Line

ChartQA (Masry et al., 2022) 1.15 2,500 English 1 1 3 3 ✓ ✗ ✓ ✗ ✗ ✗ ✓

MMC-Benchmark (Liu et al., 2024a) 1.08 2,126 English 1 4 5 2 ✗ ✓ ✗ ✗ ✗ ✗ ✓

PaperQA (Lu et al., 2023) 1.26 107 English 1 1 2 4 ✓ ✓ ✓ ✗ ✗ ✗ ✓

OpenCQA (Kantharaj et al., 2022a) 55.73 1,159 English 1 1 4 4 ✓ ✓ ✓ ✗ ✗ ✗ ✓

Chart-to-Text (Kantharaj et al., 2022b) 73.49 3,474 English 1 1 3 4 ✓ ✓ ✓ ✗ ✗ ✗ ✓

LineCap (Mahinpei et al., 2022) 13.63 1,930 English 1 1 1 2 ✗ ✗ ✗ ✗ ✗ ✓ ✓

ChartMind 119.69 757 EN&ZH 2 7 6 7 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of ChartMind with Existing Chart QA Datasets.

suffer from limited generalization due to weak rea-
soning and OOV handling. OCR-enhanced meth-
ods (Liu et al., 2023; Wang et al., 2023a) con-
vert chart visuals into text, aiding value extrac-
tion but introducing noise and losing spatial cues.
COT-based models (Li et al., 2024b; Wei et al.,
2024) decompose reasoning steps to improve in-
terpretability, yet depend on structured input and
struggle with varied chart layouts. Other methods
like Donut (Kim et al., 2022) and Pix2Struct (Lee
et al., 2023) remove OCR dependency via end-
to-end training, while instruction-following mod-
els (Achiam et al., 2023) leverage large-scale
vision-language pretraining but still fall short on
multilingual support and high-level reasoning. Re-
cent work such as ChartInsights (Wu et al., 2024b)
targets low-level factual QA, whereas ChartLLM
uses structured semantic cues—titles, legends,
axes—to support multilingual and high-level tasks
without relying on CoT-style decomposition.

CQA Benchmarks. The development of CQA
models necessitates reliable benchmarks to evalu-
ate performance across diverse tasks (Zaib et al.,
2022; Bajić and Job, 2023). Existing datasets fall
into Factoid Question Answering (FQA), Open-
Domain Question Answering (OQA), and Caption-
ing (CAP) categories (Huang et al., 2024). FQA
datasets, such as ChartQA (Kafle et al., 2018),
MMC-Bench (Liu et al., 2024a), and PaperQA (Lu
et al., 2023), assess factual queries, including
numerical extractions, trend identification, and
relational interpretations, relying on predefined
chart types for objective reasoning. OQA datasets
like OpenCQA (Kantharaj et al., 2022a), ChartL-
lama (Han et al., 2023a), ChartX (Xia et al., 2024),
and Charxiv (Wang et al., 2024) introduce open-
ended questions but often enforce constrained
output templates and rely heavily on automated
metrics such as BLEU, which limits their adapt-
ability to complex reasoning. CAP datasets, in-
cluding Chart-to-Text (Kantharaj et al., 2022b) and
LineCap (Mahinpei et al., 2022), generate textual
chart descriptions but remain constrained by struc-
tured evaluation metrics. ChartMind addresses

these gaps by combining high-level semantic tasks,
multilingual data, and diverse chart types to sup-
port broader and more flexible evaluation. Unlike
prior benchmarks that are monolingual and con-
strained to factoid-style or template-based outputs,
ChartMind enables multilingual evaluation with
open-ended, inferential reasoning tasks, bridging
the gap between academic settings and real-world
chart analysis. Table 1 compares representative
CQA benchmarks.

3 Construction of ChartMind

Figure 2 presents an overview of our three-stage
data construction pipeline, including chart collec-
tion, GPT-based generation, and human validation.
Each stage is described below.

3.1 Stage I: Chart Collection and Processing

To build a diverse and realistic chart QA bench-
mark, we collect over 1,200 charts from open-
source platforms, including GitHub repositories,
public datasets, and Overleaf-based academic
projects. All content complies with permissive
licenses (e.g., CC BY 4.0, MIT). Charts span
multiple formats—pie, bar (common, grouped,
stacked), line (common, complex), and scatter
plots—covering domains such as economics, edu-
cation, and technology.

We remove charts that are blurry, lack proper
axis or legend labels, or contain unreadable text.
This filtering step ensures that remaining charts
support meaningful reasoning and are visually ac-
cessible to models. These cleaned charts serve as
the input to the next stage.

3.2 Stage II: Prompt-based QA Generation

Given a chart, we generate diverse QA pairs for
seven tasks (e.g., summarization, classification,
suggestion) using GPT-4o (Achiam et al., 2023).
For each task type, we design a dedicated prompt
template that includes a few-shot example, output
format instructions, and style control. Prompts are
adapted to the chart type and domain to ensure
contextual grounding. To avoid redundancy, we
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Figure 2: Data Construction Pipeline for the ChartMind.

apply controlled randomness (e.g., varying prompt
temperature and phrasing) and use clustering on
question embeddings to eliminate duplicates. Fig-
ure 2 (Stage II) illustrates this process.

3.3 Stage III: Human Validation

Each generated QA pair is reviewed by at least
two annotators with over two years of chart QA
research experience. Annotators follow a unified
protocol and examine: (1) semantic alignment be-
tween question and chart, (2) accuracy and consis-
tency of answers, (3) proper use of terminology
and metrics. We revise or discard pairs with hallu-
cinated entities, incorrect reasoning, or weak chart
grounding. This human-in-the-loop validation en-
sures that the benchmark questions reflect realistic
analytical needs rather than synthetic artifacts.

Answer Rewriting. GPT-generated answers are
not automatically accepted. Annotators verify ref-
erences to chart elements (e.g., trends, labels, time
ranges) and rewrite unclear or incorrect responses.
textcolorblueFor example: Question: What does
this chart suggest about AI patent trends between
2013 and 2022? GPT-4o Answer: They increased
significantly. Human Answer: The chart shows a
consistent rise in AI patent filings, particularly in
machine learning, highlighting growing investment
in AI research during this period.

Final Filtering. Only QA pairs that pass human
validation and align with visual evidence are in-
cluded in ChartMind. Our process draws on best
practices from TableBench (Wu et al., 2024a) and
ArXivQA (Li et al., 2024a). Annotators help refine
task definitions by identifying unclear cases.
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Figure 3: Language and task distribution in ChartMind.
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Figure 4: Topic distribution in ChartMind.

3.4 Data Summary and Task Complexity

Language and Topic Diversity. As shown in
Figure 3, ChartMind includes 59.71% English and
40.29% Chinese questions, enabling bilingual eval-
uation across all seven task types. While Chinese
is not a low-resource language, high-quality chart
reasoning data in Chinese remains rare. ChartMind
provides a first step toward multilingual bench-
marking, and we plan to expand to more languages
in future releases.

Figure 4 illustrates the topic breakdown, where
economic charts dominate with 68.00%, followed
by education and technology.

4559



Task Samples Query Length Answer Length
(Min / Max) (Min / Max)

Chart Conversion 140 11 / 477 5 / 55
Chart OCR 139 13 / 351 8 / 59
Suggestions 88 17 / 492 13 / 53
Chart Classification Analysis 37 360 / 503 72 / 79
Chart Summarization 34 76 / 335 12 / 113
Chart Assistance 76 9 / 276 12 / 41
Information Positioning 140 11 / 208 11 / 35

Total 757 9 / 503 5 / 113

Table 2: Task Type Statistics in ChartMind.

Task Coverage and Reasoning Demands. Ta-
ble 2 summarizes the distribution and complexity
of QA samples across the seven task categories.

The seven task types differ in language structure,
visual grounding, and reasoning depth. Summa-
rization and Classification require long, structured
responses, while Positioning and OCR involve pre-
cise short-form grounding. Specifically, Chart Con-
version transforms visual data into a structured se-
mantic table, whereas Chart OCR simply extracts
visible text elements without semantic structuring.
This diversity supports balanced evaluation of rea-
soning and generation.

4 ChartLLM

4.1 Problem Definition

CQA is a task that involves providing an answer
A to a natural language question Q, based on the
information contained in a chart C. The answer
A may take various forms, depending on the type
of question. Specifically, A could be a numerical
value, a categorical label, an entity set, or an open-
domain sentence. These different answer types re-
quire distinct reasoning capabilities, ranging from
retrieval-based reasoning (e.g., extracting numeri-
cal values) to analytical reasoning (e.g., identifying
patterns and trends in the chart). Formally, the an-
swer A is represented as a collection of values or
entities {a1, a2, . . . , ak}, where k ∈ N+.

4.2 Reasoning Methods

Instruction-following (Wei et al., 2021) and In-
context learning (Dong et al., 2024) refer to strate-
gies that optimize input for LLMs to generate prac-
tical outputs based on task-specific instructions and
context. These methods enable models to leverage
the provided task instructions to guide reasoning
and output generation. To fully assess the reasoning
capabilities of LLMs for CQA, we propose three
distinct reasoning methods that aim to evaluate the
model’s reasoning performance.

Instruction-following-based methods Such
methods (Wei et al., 2021) leverage task-specific
instructions to guide LLMs in reasoning tasks.
The model utilizes a prompt to interpret chart data
and generate answers. The prompt P provides
additional contextual guidance for the natural
language question Q, specifying how the model
should reason over the chart data. The reasoning
process can be expressed as:

M(C,Q, P ) → A (1)

where M represents the model, C is the chart, Q is
the natural language question, P is the instruction
prompt, and A is the answer. This approach can in
principle be applied in both fine-tuning and zero-
shot settings; in this work we focus on zero-shot
evaluation to assess intrinsic model capabilities.

OCR-enhanced methods OCR-enhanced meth-
ods (Liu et al., 2023) augment reasoning by incor-
porating textual content extracted from charts using
OCR tools. These tools provide the model with ad-
ditional information embedded in the chart, which
may not be directly accessible through its visual
content. The reasoning process is formulated as:

M(C,Q,O(C)) → A (2)

where O(C) denotes the OCR-extracted content
from the chart C. OCR tools offer essential support
in understanding chart-based queries by enhancing
the model’s input with relevant textual data.

COT-based methods COT-based methods (Wei
et al., 2022) break down the reasoning process
into intermediate steps to improve both the accu-
racy and interpretability of the model’s responses.
This approach decomposes the reasoning into a
sequence of logical steps, which enhances the
model’s ability to solve complex tasks. The process
is represented as:

M(C,Q) → {r1, r2, . . . , rk} → A (3)

where r1, r2, . . . , rk represent intermediate reason-
ing steps, and A is the final answer. CoT is partic-
ularly useful for tasks requiring step-by-step rea-
soning, such as analyzing trends, identifying pat-
terns, or extracting structured insights from com-
plex chart data.

4.3 ChartLLM: Context Extraction for CQA
The ChartLLM is designed to enhance CQA by
extracting and structuring relevant contextual infor-
mation from a chart. Given a chart C, the context
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Models Size
ChartMind ChartQA Chart-to-Text OpenCQA

ACC Avg.CIDEr Avg.GPT-4o Score Aug. ACC Hum. ACC Avg. ACC Pew. BLEU Statista. BLEU Avg. BLEU Avg. BLEU

Instruction-Following-Based (Wei et al., 2021)

TinyChart† (Zhang et al., 2024a) 3B 5.36 18.45 16.81 93.60 72.16 82.88 10.84 27.04 18.94 19.62
ChartInstruct† (Masry et al., 2024) 7B 9.82 24.55 15.05 82.40 40.64 61.52 12.81 39.39 26.10 14.78
ChartLlama† (Han et al., 2023b) 7B 20.54 21.34 12.72 90.36 48.96 69.66 14.23 40.71 27.47 4.70
Sphinx-v2 (Lin et al., 2023) 7B 9.82 25.95 13.69 60.96 43.92 52.44 3.43 4.94 4.19 3.10
LLaVA1.5 (Liu et al., 2024c) 7B 34.82 39.50 15.58 20.12 25.20 22.66 15.70 11.07 13.39 15.17
ViP-LLaVA (Cai et al., 2024) 7B 20.54 37.01 15.56 17.60 26.16 21.88 1.36 2.59 1.98 15.04
LLaVA-NEXT (Liu et al., 2024b) 7B 20.54 47.37 31.09 74.26 46.30 60.28 13.85 6.63 10.24 8.07
IXC-2.5 (Zhang et al., 2024b) 7B 47.30 40.10 43.31 92.40 74.32 83.36 17.69 11.86 14.78 9.39
Qwen2-VL (Bai et al., 2023) 7B 57.14 37.32 47.89 94.10 72.00 83.05 11.07 22.98 17.03 8.26
mPLUG-Owl2 (Ye et al., 2024) 8B 25.00 36.17 14.22 24.13 27.34 25.74 12.83 5.97 9.40 5.34
MiniCPM-v2 (Hu et al., 2024) 8B 22.32 28.48 10.63 91.12 69.02 80.07 22.17 11.01 16.59 20.05
CogVLM (Wang et al., 2023b) 17B 23.21 40.20 29.35 23.95 39.53 31.74 16.38 11.84 14.11 1.75
GLM-4V-plus (GLM et al., 2024) - 59.83 38.36 21.52 16.80 12.80 14.80 5.69 5.71 5.70 7.41
GPT-4o (Achiam et al., 2023) - 61.89 47.25 68.81 95.34 76.06 85.70 17.75 8.70 13.23 13.92

OCR-Enhanced (Liu et al., 2023)

TinyChart† (Zhang et al., 2024a) 3B 6.71 (+1.35) 13.91 (-4.54) 17.91 (+1.10) 94.86 (+1.26) 73.95 (+1.79) 84.41 (+1.53) 13.85 (+3.01) 28.27 (+1.23) 21.06 (+2.12) 20.15 (+0.53)
ChartInstruct† (Masry et al., 2024) 7B 10.01 (+0.19) 32.80 (+8.25) 23.42 (+8.37) 83.74 (+1.34) 42.17 (+1.53) 62.96 (+1.44) 14.95 (+2.14) 40.83 (+1.44) 27.89 (+1.79) 16.01 (+1.23)
ChartLlama† (Han et al., 2023b) 7B 22.03 (+1.49) 21.07 (-0.27) 26.70 (+13.97) 90.85 (+0.49) 49.26 (+0.30) 70.06 (+0.40) 16.02 (+1.79) 39.97 (-0.74) 28.00 (+0.53) 5.89 (+1.19)
Sphinx-v2 (Lin et al., 2023) 7B 11.54 (+1.72) 24.14 (-1.81) 17.21 (+3.52) 64.08 (+3.12) 45.49 (+1.57) 54.79 (+2.35) 8.81 (+5.38) 2.39 (-2.55) 5.60 (+1.41) 3.16 (+0.06)
LLaVA1.5 (Liu et al., 2024c) 7B 36.15 (+1.33) 33.49 (-6.01) 21.03 (+5.45) 19.73 (-0.39) 25.95 (+0.75) 22.84 (+0.18) 15.94 (+0.24) 12.67 (+1.60) 14.30 (+0.91) 16.31 (+1.14)
ViP-LLaVA (Cai et al., 2024) 7B 25.38 (+4.84) 36.77 (-0.24) 26.45 (+10.89) 27.12 (+9.52) 24.94 (-1.22) 26.03 (+4.15) 14.13 (+12.77) 14.37 (+11.78) 14.25 (+12.27) 18.08 (+3.04)
LLaVA-NEXT (Liu et al., 2024b) 7B 41.15 (+20.61) 47.83 (+0.46) 31.51 (+0.42) 70.47 (-3.79) 52.68 (+6.38) 61.58 (+1.30) 15.16 (+1.31) 8.82 (+2.19) 11.99 (+1.75) 8.25 (+0.18)
IXC-2.5 (Zhang et al., 2024b) 7B 42.31 (-4.99) 40.35 (+0.24) 45.38 (+2.06) 94.23 (+1.83) 73.40 (-0.92) 83.82 (+0.46) 17.03 (-0.66) 12.34 (+0.48) 14.68 (-0.10) 14.53 (+5.14)
Qwen2-VL (Bai et al., 2023) 7B 42.31 (-14.83) 36.04 (-1.27) 49.28 (+1.39) 94.23 (+0.13) 75.96 (+3.96) 85.10 (+2.05) 11.08 (+0.01) 23.21 (+0.23) 17.15 (+0.12) 11.75 (+3.49)
mPLUG-Owl2 (Ye et al., 2024) 8B 27.62 (+2.62) 30.60 (-5.57) 24.67 (+10.44) 35.58 (+11.45) 37.18 (+9.84) 36.38 (+10.65) 11.82 (-1.01) 7.30 (+1.33) 9.56 (+0.16) 4.45 (-0.89)
MiniCPM-v2 (Hu et al., 2024) 8B 23.04 (+0.72 19.73 (-8.75) 18.10 (+7.47) 92.36 (+1.24) 73.21 (+4.19) 82.79 (+2.72) 20.93 (-1.24) 5.75 (-5.26) 13.34 (-3.25) 20.60 (+0.55)
CogVLM (Wang et al., 2023b) 17B 25.54 (+2.33) 39.00 (-1.20) 36.80 (+7.45) 29.81 (+5.86) 48.72 (+9.19) 39.27 (+7.53) 20.85 (+4.47) 13.88 (+2.04) 17.37 (+3.26) 1.79 (+0.04)
GLM-4V-plus (GLM et al., 2024) - 44.64 (-15.19) 44.83 (+6.47) 35.79 (+14.27) 17.95 (+1.15) 16.87 (+4.07) 17.41 (+2.61) 7.91 (+2.22) 7.63 (+1.92) 7.77 (+2.07) 8.72 (+1.31)
GPT-4o (Achiam et al., 2023) - 49.31 (-12.58) 46.48 (-0.76) 71.79 (+2.98) 96.20 (+0.86) 78.04 (+1.98) 87.12 (+1.42) 20.13 (+2.38) 9.86 (+1.16) 15.00 (+1.77) 14.85 (+0.93)

COT-Based (Wei et al., 2022)

TinyChart† (Zhang et al., 2024a) 3B 6.01 (+0.65) 13.58 (-4.87) 19.30 (+2.49) 94.84 (+1.24) 74.46 (+2.30) 84.65 (+1.77) 12.31 (+1.47) 28.53 (+1.49) 20.42 (+1.48) 20.74 (+1.12)
ChartInstruct† (Masry et al., 2024) 7B 9.96 (+0.14) 31.95 (+7.40) 22.44 (+7.39) 83.35 (+0.95) 42.74 (+2.10) 63.05 (+1.53) 14.34 (+1.53) 41.32 (+1.93) 27.83 (+1.73) 15.25 (+0.47)
ChartLlama† (Han et al., 2023b) 7B 21.44 (+0.90) 18.99 (-2.36) 21.77 (+9.04) 91.63 (+1.27) 50.04 (+1.08) 70.84 (+1.18) 15.76 (+1.53) 41.42 (+0.71) 28.59 (+1.12) 6.32 (+1.62)
Sphinx-v2 (Lin et al., 2023) 7B 9.91 (+0.09) 25.03 (-0.92) 16.26 (+2.57) 61.86 (+0.90) 46.79 (+2.87) 54.33 (+1.89) 3.53 (+0.10) 5.09 (+0.15) 4.31 (+0.12) 3.13 (+0.03)
LLaVA1.5 (Liu et al., 2024c) 7B 35.77 (+0.95) 35.61 (-3.89) 19.68 (+4.10) 16.90 (-3.22) 28.57 (+3.37) 22.74 (+0.08) 15.20 (-0.50) 11.66 (+0.59) 13.43 (+0.04) 15.93 (+0.76)
ViP-LLaVA (Cai et al., 2024) 7B 23.31 (+2.77) 36.13 (-0.88) 22.24 (+6.68) 22.12 (+4.52) 28.21 (+2.05) 25.17 (+3.29) 15.48 (+14.12) 12.20 (+9.61) 13.84 (+11.86) 15.67 (+0.63)
LLaVA-NEXT (Liu et al., 2024b) 7B 40.23 (+19.69) 47.44 (+0.07) 27.34 (-3.75) 68.49 (-5.77) 52.13 (+5.83) 60.31 (+0.03) 14.81 (+0.96) 6.29 (-0.34) 10.55 (+0.31) 8.09 (+0.02)
IXC-2.5 (Zhang et al., 2024b) 7B 41.15 (-6.15) 41.23 (+1.13) 46.73 (+3.42) 93.91 (+1.51) 72.82 (-1.50) 83.37 (+0.01) 17.36 (+0.23) 11.92 (+0.06) 14.64 (-0.14) 14.39 (+5.00)
Qwen2-VL (Bai et al., 2023) 7B 40.69 (-16.45) 44.72 (+7.41) 55.12 (+7.24) 94.87 (+0.77) 77.88 (+5.88) 86.38 (+3.33) 16.70 (+5.63) 23.91 (+0.93) 20.30 (+3.27) 10.32 (+2.06)
mPLUG-Owl2 (Ye et al., 2024) 8B 25.89 (+0.89) 35.10 (-1.08) 21.27 (+7.04) 27.56 (+3.43) 31.09 (+3.75) 29.33 (+3.59) 14.00 (+1.17) 7.84 (+1.87) 10.92 (+1.52) 7.88 (+2.54)
MiniCPM-v2 (Hu et al., 2024) 8B 22.78 (+0.46) 28.81 (+0.33) 18.18 (+7.54) 92.37 (+1.25) 71.47 (+2.45) 81.92 (+1.85) 26.56 (+4.39) 12.53 (+1.52) 19.54 (+2.95) 20.30 (+0.25)
CogVLM (Wang et al., 2023b) 17B 24.01 (+0.80) 40.04 (-0.16) 37.14 (+7.79) 27.31 (+3.36) 44.93 (+5.40) 36.12 (+4.38) 17.94 (+1.56) 12.57 (+0.73) 15.26 (+1.15) 3.41 (+1.66)
GLM-4V-plus (GLM et al., 2024) - 41.00 (-18.83) 39.55 (+1.19) 21.68 (+0.16) 18.63 (+1.83) 15.96 (+3.16) 17.30 (+2.50) 6.86 (+1.17) 7.72 (+2.01) 7.29 (+1.59) 8.83 (+1.42)
GPT-4o (Achiam et al., 2023) - 46.15 (-15.74) 48.19 (+0.95) 69.00 (+0.19) 95.39 (+0.05) 77.23 (+1.17) 86.31 (+0.61) 19.20 (+1.45) 9.31 (+0.61) 14.26 (+1.03) 15.42 (+1.50)

ChartLLM-Based

TinyChart† (Zhang et al., 2024a) 3B 7.69 (+2.33) 20.07 (+1.62) 23.21 (+6.40) 95.04 (+1.44) 74.41 (+2.25) 84.73 (+1.85) 14.68 (+3.84) 34.22 (+7.18) 24.45 (+5.51) 21.84 (+2.22)
ChartInstruct† (Masry et al., 2024) 7B 11.54 (+1.72) 34.79 (+10.24) 26.43 (+11.39) 85.93 (+3.53) 43.52 (+2.88) 64.73 (+3.20) 15.52 (+2.71) 41.42 (+2.03) 28.47 (+2.37) 18.53 (+3.75)
ChartLlama† (Han et al., 2023b) 7B 22.67 (+2.13) 22.54 (+1.19) 27.58 (+14.85) 91.42 (+1.06) 51.72 (+2.76) 71.57 (+1.91) 17.94 (+3.71) 40.47 (-0.24) 29.21 (+1.74) 7.40 (+2.70)
Sphinx-v2 (Lin et al., 2023) 7B 13.85 (+4.03) 30.11 (+4.16) 23.68 (+9.99) 62.80 (+1.84) 48.00 (+4.08) 55.40 (+2.96) 7.90 (+4.47) 7.35 (+2.41) 7.63 (+3.44) 6.88 (+3.78)
LLaVA1.5 (Liu et al., 2024c) 7B 36.92 (+2.10) 38.39 (-1.11) 26.95 (+11.37) 25.44 (+5.32) 31.68 (+6.48) 28.56 (+5.90) 18.21 (+2.51) 17.83 (+6.76) 18.02 (+4.63) 17.40 (+2.23)
ViP-LLaVA (Cai et al., 2024) 7B 26.23 (+5.69) 41.98 (+4.97) 28.79 (+13.23) 23.96 (+6.36) 29.04 (+2.88) 26.50 (+4.62) 14.31 (+12.95) 14.38 (+11.79) 14.35 (+12.37) 18.72 (+3.68)
LLaVA-NEXT (Liu et al., 2024b) 7B 42.31 (+21.77) 49.40 (+2.03) 34.40 (+3.32) 75.82 (+1.56) 47.68 (+1.38) 61.75 (+1.47) 15.26 (+1.41) 8.93 (+2.30) 12.10 (+1.86) 9.02 (+0.95)
IXC-2.5 (Zhang et al., 2024b) 7B 47.31 (+0.01) 43.38 (+3.28) 51.88 (+8.56) 94.88 (+2.48) 76.24 (+1.92) 85.56 (+2.20) 19.82 (+2.13) 14.70 (+2.84) 17.26 (+2.48) 16.83 (+7.44)
Qwen2-VL (Bai et al., 2023) 7B 57.66 (+0.52) 45.54 (+8.22) 56.10 (+8.21) 94.40 (+0.30) 77.44 (+5.44) 85.92 (+2.87) 20.96 (+9.89) 24.45 (+1.47) 22.71 (+5.68) 18.53 (+10.27)
mPLUG-Owl2 (Ye et al., 2024) 8B 29.38 (+4.38) 40.46 (+4.29) 29.15 (+14.93) 38.76 (+14.63) 40.34 (+13.00) 39.55 (+13.82) 13.01 (+0.18) 8.91 (+2.94) 10.96 (+1.56) 6.26 (+0.92)
MiniCPM-v2 (Hu et al., 2024) 8B 24.21 (+1.89) 38.65 (+10.17) 23.73 (+13.09) 93.84 (+2.72) 71.86 (+2.84) 82.85 (+2.78) 27.68 (+5.51) 24.55 (+13.54) 26.12 (+9.53) 20.88 (+0.83)
CogVLM (Wang et al., 2023b) 17B 26.38 (+3.17) 41.05 (+0.85) 41.85 (+12.50) 33.41 (+9.46) 51.73 (+12.20) 42.57 (+10.83) 21.46 (+5.08) 14.74 (+2.90) 18.10 (+3.99) 2.48 (+0.73)
GLM-4V-plus (GLM et al., 2024) - 60.18 (+0.35) 47.00 (+8.64) 37.19 (+15.67) 19.74 (+2.94) 18.04 (+5.24) 19.66 (+4.86) 9.75 (+4.06) 8.97 (+3.26) 9.36 (+3.66) 9.74 (+2.34)
GPT-4o (Achiam et al., 2023) - 61.89 (+0.00) 50.42 (+3.17) 73.89 (+5.08) 98.63 (+3.29) 79.49 (+3.43) 89.06 (+3.36) 23.65 (+5.90) 11.07 (+2.37) 17.36 (+4.14) 16.04 (+2.12)

Table 3: Performance of multimodal models on ChartMind and three structured-output CQA datasets. The best
results are highlighted in bold, and the second-best results are underlined. †Specialized CQA models.

Ccontext = {T, L,X, Y }, where T is the title, L
is the legend, X is the X-axis label, and Y is the
Y-axis label, is generated to represent the essential
elements of the chart. This approach minimizes ir-
relevant data and focuses solely on the components
required for accurate reasoning in CQA tasks. To
extract Ccontext, predefined prompts, such as "Ex-
tract key information from the chart, including title,
legend, and X and Y-axis information," guide the
model in identifying the necessary elements of the
chart. This ensures the extracted context is concise,
relevant, and foundational for reasoning. Unlike
step-by-step CoT reasoning, ChartLLM focuses on
structured context modeling, reducing the model’s
perceptual burden by presenting semantically key
components upfront.

The reasoning objective for ChartLLM is to pre-
dict the answer A that maximizes the conditional
probability given the question Q and the extracted
context Ccontext. This can be expressed as:

A = argmaxa∈A
∑n

i=1 ECcontext,Q [logP (ai | Ccontext, Q; Θ)]

(4)
Here, A is the predicted answer, A represents the
candidate answer space, Ccontext is the extracted
context from the chart C, Q is the natural language
question, ai is the i-th candidate answer, and Θ
denotes the model parameters.

Unlike OCR-based methods that extract raw text
or chart2table approaches that recover full data
tables, ChartLLM emphasizes structured compo-
nents, which provide higher-level cues for reason-
ing while avoiding noise from low-level details.
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Models Size Avg. GPT-4o Score Avg. Human Score

ChartInstruct (Masry et al., 2024) 7B 26.43 22.52
ChartLlama (Han et al., 2023b) 7B 27.58 23.11
TinyChart (Zhang et al., 2024a) 3B 23.21 21.97
mPLUG-Owl2 (Ye et al., 2024) 8B 29.15 29.31
Sphinx-v2 (Lin et al., 2023) 7B 23.68 22.31
CogVLM (Wang et al., 2023b) 17B 41.85 34.96
LLaVA1.5 (Liu et al., 2024c) 7B 26.95 22.93
MiniCPM-v2 (Hu et al., 2024) 8B 23.73 24.01
ViP-LLaVA (Cai et al., 2024) 7B 28.79 30.75
LLaVA-NEXT (Liu et al., 2024b) 7B 34.40 32.31
IXC-2.5 (Zhang et al., 2024b) 7B 51.88 36.61
Qwen2-VL (Bai et al., 2023) 7B 56.10 40.39
GLM-4V-plus (GLM et al., 2024) - 37.19 39.35
GPT-4o (Achiam et al., 2023) - 73.89 50.73

PCC (Cohen et al., 2009) - 93.09

Table 4: Correlation of GPT4o and Human Eval.

5 Experiments

5.1 Experimental Setup

We evaluate four paradigms for CQA tasks, in-
cluding instruction-following, COT-based reason-
ing, OCR-enhanced methods, and our proposed
ChartLLM framework. These methods are tested
on 14 MLLMs from three categories: specialized
CQA models, general-purpose open-source models,
and general-purpose closed-source models. The
evaluation spans four datasets, including our pro-
posed ChartMind and three structured-output CQA
datasets—ChartQA (Masry et al., 2022), Chart-to-
Text (Kantharaj et al., 2022b), and OpenCQA (Kan-
tharaj et al., 2022a)—which primarily rely on pre-
defined answer formats and automated scoring met-
rics. In contrast, ChartMind introduces diverse
chart formats and open-domain textual outputs, en-
abling a more comprehensive assessment of real-
world CQA scenarios. Further implementation de-
tails, model descriptions, and benchmark specifica-
tions are provided in Appendix B.

5.2 Main Results

To evaluate the effectiveness and robustness
of ChartLLM-based methods over OCR-
enhanced (Liu et al., 2023) and COT-based (Wei
et al., 2022) approaches in open-ended and
structured-output reasoning, Table 3 compares
their performance across various benchmarks.
Both OCR-enhanced and COT-based methods
yield significant improvements (blue text), but
their effectiveness varies by task. OCR-enhanced
methods often degrade performance (red text),
particularly in open-ended reasoning, where redun-
dancy and noise from textual extraction disrupt
holistic reasoning. For instance, GPT-4o’s (Achiam
et al., 2023) ACC in open-ended tasks drops by
-12.58 with OCR-enhanced methods, reflecting
their sensitivity to flexible reasoning. COT-based
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Figure 5: Performance of multimodal models across
Chinese and English datasets in ChartMind.

methods enhance structured-output reasoning but
struggle in open-ended tasks, reducing GPT-4o’s
ACC by -15.74 due to difficulties in integrating
contextual and visual elements. ChartLLM-based
methods address these challenges by strategically
extracting key contextual information and min-
imizing redundancy, reducing external noise in
reasoning. By focusing on essential chart elements
and preserving relevant semantic relationships,
they achieve superior performance with consistent
adaptability across both reasoning types. Their
ability to balance context extraction and noise
reduction underscores their robustness in handling
complex chart reasoning.

5.3 Correlation Analysis of Metrics

To assess the consistency between automated and
human evaluation in open-ended CQA, Table 4
analyzes the correlation between GPT-4o Score
and Human Score across 14 multimodal models.
The Pearson Correlation Coefficient (PCC) (Co-
hen et al., 2009) is 93.09, indicating a strong linear
relationship. High-performing models like GPT-
4o (Achiam et al., 2023) and Qwen2-VL (Bai et al.,
2023) show strong alignment between GPT-4o and
human scores, validating automated evaluation re-
liability. Notably, models like mPLUG-Owl2 (Ye
et al., 2024) and ViP-LLaVA (Cai et al., 2024)
exhibit slight deviations, where human scores
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Figure 6: Performance of multimodal models on seven tasks in ChartMind.

marginally exceed automated ones, possibly re-
flecting nuanced human judgment in open-ended
reasoning. The high PCC confirms GPT-4o Score
as a robust proxy for human evaluation, reinforcing
its applicability in open-ended CQA.

5.4 Sensitivity Analysis

Language-Level Analysis. To evaluate the sen-
sitivity of different paradigms to multilingual chal-
lenges in CQA, we analyze model performance
across English and Chinese charts in ChartMind.
Figure 5 compares results under each method
across both languages, grouped by paradigm to
highlight method robustness. We observe a consis-
tent performance gap across models: Chinese tasks
are generally more difficult, reflecting challenges
in tokenization, OCR quality, and implicit reason-
ing common in Chinese chart labels. Instruction-
following models such as GPT-4o (Achiam et al.,
2023) and LLaVA1.5 (Liu et al., 2024c) show sig-
nificant degradation in Chinese due to weaker mul-
tilingual grounding. OCR-enhanced methods help
mitigate these gaps by injecting extracted text, es-
pecially in Chinese, where axis labels and titles are
often more semantically informative. COT-based
methods help slightly but introduce more variance,
especially in visual tasks where decomposition is
less intuitive. ChartLLM-based methods consis-
tently achieve the best cross-lingual performance.
By explicitly structuring chart context before rea-
soning, ChartLLM reduces noise and enhances se-
mantic alignment, leading to more stable perfor-
mance in both languages.

Task-Level Analysis. To explore how different
paradigms handle diverse CQA tasks, we evalu-
ate model performance across seven task types in
ChartMind. As shown in Figure 6, these tasks vary
in difficulty. Chart Conversion and Chart Summa-
rization are the most challenging, involving seman-
tic fusion and cross-modal reasoning. In contrast,
Suggestions and Information Positioning focus on
localized extraction and are comparatively easier.
Instruction-following methods often struggle with
complex tasks, showing unstable outputs due to
weak multimodal alignment. OCR-enhanced ap-
proaches perform well in text-heavy scenarios like
Chart OCR, but degrade on tasks such as Summa-
rization, where excess raw text introduces noise
and misleads the model. COT-based methods help
in procedural reasoning tasks like Suggestions, but
fall short in integrative tasks such as Chart As-
sistance, where linear step-by-step thinking can-
not capture multimodal dependencies. ChartLLM-
based methods consistently demonstrate robust per-
formance across all task types. By explicitly model-
ing structural context before reasoning, ChartLLM
improves semantic grounding in complex settings
while preserving precision in simpler tasks. This
balance highlights its adaptability and makes it par-
ticularly effective for real-world CQA.

Chart-Type-Level Analysis. To evaluate the sen-
sitivity of different paradigms to diverse chart
types in CQA tasks, we analyze their performance
across seven chart types in ChartMind. Figure 7
presents a detailed breakdown of model perfor-
mance. Chart types exhibit varying complexity,
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Figure 7: Performance of multimodal models across chart types, categorized by four paradigms.

with Pie and Stacked Bar being the most chal-
lenging due to their reliance on integrated contex-
tual reasoning, while simpler types like Complex
Line primarily require straightforward data extrac-
tion. Instruction-following methods (Wei et al.,
2021), such as GPT-4o (Achiam et al., 2023) and
LLAVA1.5 (Liu et al., 2024c), show significant per-
formance drops in high-complexity charts, under-
scoring their limitations in managing holistic rea-
soning tasks. OCR-enhanced methods (Liu et al.,
2023) excel in text-heavy charts such as Grouped
Bar, leveraging their ability to extract textual infor-
mation, but struggle with tasks like Scatter that de-
mand comprehensive visual-semantic integration.
COT-based methods (Wei et al., 2022) demonstrate
moderate performance across most chart types, per-
forming relatively well in structured charts like
Common Line, yet falling short in tasks requiring
high-contextual reasoning. ChartLLM-based meth-
ods achieve the highest overall performance, ex-
celling in high-difficulty charts by effectively us-
ing critical contextual elements and showcasing
adaptability to diverse chart types. These results
highlight the necessity of contextual reasoning for
high-performance chart understanding.

6 Conclusion

We introduce ChartMind, the first benchmark for
complex CQA in realistic settings. It addresses
key gaps in prior work by supporting multilingual
charts, open-ended outputs, and seven distinct task
types. Across four paradigms and 14 multimodal
models, our results show that ChartLLM—a model-
agnostic, context-aware framework—consistently

outperforms OCR and CoT methods, establishing
a strong baseline for future CQA research. Future
work will explore multi-turn dialogues, cross-chart
reasoning, and hybrid chart–text queries to support
more advanced and realistic use cases.

Limitations

ChartMind provides a benchmark for complex
CQA evaluation, yet several limitations remain.
First, the dataset primarily relies on publicly avail-
able charts, potentially introducing biases in data
distribution and task complexity. Ensuring broader
representativeness requires further dataset expan-
sion and diversification. Second, although Chart-
Mind defines seven reasoning tasks, real-world
chart analysis often involves more advanced rea-
soning, such as multi-turn interactions, cross-chart
comparisons, and textual-visual information inte-
gration, which remain underexplored. Third, the
reliance on automated evaluation methods, such as
GPT-4 ratings, introduces challenges in capturing
nuanced human judgment in complex reasoning.
Future improvements may focus on expanding the
dataset, enhancing evaluation metrics, and integrat-
ing multi-turn reasoning and cross-chart analysis
to better reflect real-world scenarios.
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Chart Classification AnalysisSuggestions Chart SummarizationChart Assistance Information PositioningChart Conversion

Based on the chart, please convert  the 
chart into a table and output it in 
markdown format.

| Entity | Percentage |\n|---|---|\n| 
Individuals | 45.00% |\n| 
Corporations | 20.00% |\n| 
Foundations | 20.00% |\n| 
Government | 10.00% |\n| Other | 
5.00% |

Please extract the donation amounts 
for each type of donation shown in 
the bar chart and convert the 
extracted OCR data into a formatted 
data table.

| Donation Type | Donation 
Amount(USD) |\n|---|---|\n| Online 
donations | 500 |\n| Donations by 
mail | 400 |\n| Donations in person | 
300 |\n| Donations by phone | 450 |

Based on the corresponding information 
of male and female height and weight 
in the chart, analyze the differences in 
the relationship between male and …

The scatter plot shows the 
relationship between height and 
weight for both males and females. 
The data points for males are 
generally higher on the y-axis …

The chart has the following categories: 
pie chart, regular bar chart … Please 
determine the category of the chart 
based on the graphs shown in this image. 

Based on the chart, summarize the trends 
in healthcare coverage in the US 
population from 2000 to 2025. Note: 
Please provide a detailed analysis process.

According to this grouped bar 
chart, which art-related venues do 
visitors over 50 prefer the most?

According to the grouped bar 
chart, visitors over 50 prefer 
theaters the most… this age 
cohort shows a significant 
preference for theaters.

In the chart, the area 
representing the average time 
spent by users on the Twitter 
platform in 2021 is the 
segment of the red bar that 
extends above the black part.

Please mark the area representing 
the average time spent by users 
on the Twitter platform in 2021 
on the chart.

Chart OCR

The chart in the image shows 
two lines representing …Based 
on the detailed analysis, the 
category of the chart shown in 
the image is a complex line 
chart.

Based on the chart, from 2000 to 
2025 … This trend indicates that 
over these 25 years, there has 
been a significant expansion in 
the scope of healthcare coverage.

7 Chart Tasks

Pie Common Bar Scatter Grouped Bar Complex Line Stacked Bar Common Line 

7 Chart Types

Figure 8: Overview of the seven chart types and seven reasoning tasks included in ChartMind.

A Chart Types and Tasks in ChartMind

ChartMind supports a diverse range of chart types
and reasoning tasks, ensuring a comprehensive
evaluation of complex reasoning in CQA. As
shown in Figure 8 The dataset includes seven
distinct chart types—Pie, Common Bar, Scatter,
Grouped Bar, Complex Line, Stacked Bar, and
Common Line—capturing varied visual structures
and data representations. Additionally, ChartMind
defines seven reasoning tasks: Chart Conversion,
Chart OCR, Suggestions, Chart Assistance, Chart
Classification, Chart Summarization, and Informa-
tion Positioning, covering key aspects of multi-
modal chart understanding. These distributions
illustrate ChartMind’s ability to comprehensively
assess complex multimodal reasoning, spanning
diverse chart types and reasoning paradigms. Com-
pared to prior benchmarks, ChartMind provides a
broader evaluation scope, capturing the complexity
of real-world CQA tasks.

B Experimental Setup Details

B.1 Implementation Details

To assess the performance of models on com-
plex CQA tasks in real-world settings, we experi-
ment with four types of paradigms. First, we test
MLLMs in the instruction-following setting (Zhou
et al., 2023), where we use prompts to evaluate their
ability to answer chart-related questions. Second,
we apply COT-based methods (Wei et al., 2022),
which break down reasoning processes into inter-
mediate steps to generate answers. Third, we adopt
OCR-enhanced methods inspired by DePlot (Liu
et al., 2023), which extract chart content as text and
use it as input for multimodal reasoning models. Fi-

nally, we propose the ChartLLM method, which en-
hances reasoning performance by extracting struc-
tured contextual information, such as chart titles,
legends, and axes, using Qwen2-VL (Bai et al.,
2023), and feeding this information into models for
further analysis.

B.2 Models

We evaluate 14 MLLMs across three categories:
specialized CQA models, general-purpose open-
source multimodal models, and general-purpose
closed-source multimodal models. The majority of
the models have a parameter size of approximately
7B, with a few exceptions, including smaller mod-
els such as TinyChart (Zhang et al., 2024a) with 3B
parameters and larger models like CogVLM (Wang
et al., 2023b) with 17B parameters. For special-
ized CQA models, we include ChartInstruct (Masry
et al., 2024), ChartLlama (Han et al., 2023b), and
TinyChart (Zhang et al., 2024a). These models are
specifically trained on CQA datasets, making them
particularly suited for tasks requiring precise un-
derstanding of chart-related queries. Among open-
source general-purpose multimodal models, we
evaluate mPLUG-Owl2 (Ye et al., 2024), Sphinx-
v2 (Lin et al., 2023), CogVLM (Wang et al., 2023b),
LLaVA1.5 (Liu et al., 2024c), MiniCPM-v2 (Hu
et al., 2024), ViP-LLaVA (Cai et al., 2024), LLaVA-
NEXT (Liu et al., 2024b), IXC-2.5 (Zhang et al.,
2024b), and Qwen2-VL (Bai et al., 2023). These
models leverage extensive multimodal training
datasets, including CQA data, and exhibit strong
performance on chart-related tasks. Finally, closed-
source general multimodal models, including GPT-
4o (Achiam et al., 2023) and GLM-4V-plus (GLM
et al., 2024), are state-of-the-art models with ad-

4567



You are a professional **chart-based question-answering evaluation expert**. You need to evaluate the model's performance based on **charts**, 
**questions**, **human reference answers**, and **model answers**. In your evaluation, please analyze the performance in two dimensions in detail:

1. **Output Quality (0-1 points)**: Evaluate whether the model's answer is fluent, whether the reasoning process is complete, and whether the instructions are 
accurately followed.
2. **Output Correctness (0-1 points)**: Assess whether the reasoning is correct overall, whether most of the data is accurate, and whether the model's answer 
aligns with the logic of the human reference answer.

### Input Format
The input is a JSON object with the following fields:

"question": "string, the question description",  
"human_reference": "string, the human reference answer",  
"model_answer": "string, the model's generated answer"

### Scoring Criteria
- **Output Quality Score (0-1 points)**:

- **0 points**: The expression is not fluent, the reasoning process is lacking, or the instructions are not followed.
- **1 point**: The expression is generally clear and fluent, the logic is reasonable, and it adheres to the instructions.

- **Output Correctness Score (0-1 points)**:
- **0 points**: The reasoning process is incorrect, the data is inaccurate, or the key elements such as labels, colors, etc., are not correctly identified.
- **1 point**: The reasoning process is generally reasonable, the key data in the model's answer is mostly consistent with the reference answer or the chart 

content, and it aligns with the question requirements, even if it is not 100% consistent with the human reference answer.

### Output Format
The output should be a JSON object, including a detailed analysis and score:

```json
{

"reason": "string, please use Chinese to describe in detail the quality and correctness of the model's output, including the reasoning process and data 
accuracy. Specially compare the data with human reference answers and chart content, and explain the basis for the score.",

"quality_score": "int, the output quality score (0 or 1)",
"correctness_score": "int, the output correctness score (0 or 1)"

}

### Task Requirements
Based on the chart information and model responses, conduct a detailed analysis of the model's reasoning logic and data accuracy, providing specific reasons 
for scoring. Note that the reference answers are only examples; the model's response should be generally reasonable and consistent with the question in terms of 
logic and data.

Figure 9: Prompt design for GPT-4o score.

vanced multimodal reasoning capacities, provid-
ing strong competition to existing open-source sys-
tems.

B.3 Benchmarks and Metrics

To comprehensively evaluate multimodal CQA
tasks, we adopt three representative structured-
output reasoning datasets—ChartQA (Masry et al.,
2022), Chart-to-Text (Kantharaj et al., 2022b), and
OpenCQA (Kantharaj et al., 2022a)—alongside our
proposed benchmark, ChartMind. ChartQA and
Chart-to-Text primarily take a chart and a natural
language question as input and generate structured
textual answers, such as numerical values, categor-
ical labels, or predefined captions, making them
well-suited for factual extraction tasks. OpenCQA,
despite allowing open-ended queries, constrains
responses to structured formats evaluated by au-
tomated metrics like BLEU, limiting its ability to
assess flexible reasoning. To address these con-
straints, ChartMind introduces a more comprehen-
sive evaluation by supporting diverse chart types,
open-ended textual outputs, and seven complex
reasoning tasks, enabling a broader assessment of

multimodal reasoning. Models are evaluated using
Accuracy and CIDEr for structured assessments,
while GPT-4o score and Human score serve as
open-ended evaluation metrics, with GPT-4o score
as the primary metric, as detailed in Appendix C.
The structured-output datasets are evaluated using
Accuracy and BLEU score.

C GPT-4o Scoring Prompt Design

The GPT-4o score prompt evaluates the perfor-
mance of models on CQA tasks by assessing two
key dimensions: output quality and output correct-
ness. Output quality focuses on the fluency of the
model’s answer, the completeness of its reasoning
process, and its ability to follow instructions accu-
rately. Output correctness measures the overall ac-
curacy of the reasoning, the correctness of the data,
and the logical alignment with the human reference
answer or chart content. The input to the prompt
includes a JSON object containing the question, the
human reference answer, and the model-generated
answer. The output is also formatted as a JSON
object, which includes a detailed explanation of
the scoring rationale along with scores for both di-
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Value Recognition Error Judgment Error

Calculation Error Color Recognition Error

Please locate the area in the chart where
the average score of 6th-grade students
is depicted.

The average score of 6th-grade students is depicted at the highest
point on the chart, where the score is 95.

The graph shows the average scores of students in grades 4th to 8th. Here
are the key observations:\n\n- The average score starts at 87 in the 4th
grade.\n- It increases to 91 in the 5th grade.\n- The score peaks at 92 in the
6th grade.\n- It then decreases to 90 in the 7th grade.\n- Finally, it increases
again to 92 in the 8th grade.\n\nThe highest average score is in the 6th
grade, and the lowest is in the 4th grade.

Is the Not at all value of Use military
force wisely more than Handle an
international crisis?

In the chart, we can see two different policy areas:- **Use military force
wisely** (Wise use of military force)
- "Not at all" (Not at all): 51%
- **Handle an international crisis** (Handling an international crisis) …
compared to using military force wisely. Therefore, the answer is "No"
meaning the "Not at all" value for "Use military force wisely" is not
greater than that for "Handle an international crisis."

The answer to this question is Yes.

Please mark the area where the
number of art museums in Germany in
2021 is located.

The area where the number of art museums in Germany in 2021 is located
is represented by the blue segment in the bar chart for Germany. This
segment starts at the 50-mark on the y-axis … Therefore, the number of
art museums in Germany in 2021 is between 50 and 100.

In this bar chart, the number of art museums in Germany for the year
2021 is represented in orange. In the \"Germany\" column, the orange
area represents the number of museums. Please look at the orange area in
the middle of the third bar …

Based on the chart, what is the difference
between the highest and lowest number of
artworks sold during the Renaissance era?

Based on the information from the chart … is 400, and the lowest is
150. The difference between these two figures is 400 - 150 = 250.

According to the information from the chart, the highest number of
artworks sold during the Renaissance era is 400, and the lowest
number of artworks sold during this period might be 180. The
difference between these two figures is 400 - 180 = 200. Therefore …
during the Renaissance era is 200.

Figure 10: The four major error types in ChartMind.

mensions. The full design of the scoring prompt is
visualized in Figure 9.

D Error Analysis

Figure 10 illustrates specific examples of the four
major error types observed in the ChartMind: value
recognition errors, judgment errors, calculation er-
rors, and color recognition errors. These examples
highlight typical failure cases, such as incorrect
identification of numerical values in bar segments
(value recognition), flawed logical reasoning or
mismatched context interpretation (judgment), in-
accurate arithmetic operations (calculation), and
misassociation of chart elements with their respec-
tive colors in legends or overlapping areas (color
recognition). The figure provides detailed scenar-
ios, such as errors in identifying peak values, inter-
preting differences in chart segments, and miscalcu-
lating relationships between visual elements. These
cases emphasize the challenges faced by models in
aligning visual interpretation with reasoning accu-
racy.

E Potential Risks

While our work primarily focuses on dataset con-
struction and evaluation methodology for chart
question answering (CQA), we acknowledge the
following limited potential risks:

• Use of LLMs in Data Generation. The initial
QA pairs in ChartMind were generated using
GPT-4o. Although all outputs were manu-
ally reviewed, revised, and filtered by trained
annotators, there remains a low-level risk of
inherited model bias or hallucination that may
not have been fully eliminated.

• Automated Evaluation. Our experiments
rely partially on GPT-4o for scoring open-
ended answers. While we provide correlation
analysis with human judgments to validate re-
liability (Section 5.2), model-based scoring
may still carry implicit biases toward certain
linguistic styles or answer formats.

• Language Scope. ChartMind currently sup-
ports English and Chinese. Although this
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already expands the field beyond English-
only benchmarks, performance and fairness in
other language contexts are not yet covered.

Overall, our design minimizes these risks through
manual validation, diverse model comparisons, and
detailed performance analysis. Future versions of
ChartMind will incorporate broader language cov-
erage and alternative evaluation strategies to further
mitigate these concerns.
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