@inproceedings{ma-etal-2025-recall,
title = "Recall with Reasoning: Chain-of-Thought Distillation for Mamba{'}s Long-Context Memory and Extrapolation",
author = "Ma, Jun-Yu and
Fang, Tianqing and
Zhang, Zhisong and
Zhang, Hongming and
Mi, Haitao and
Yu, Dong",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.235/",
pages = "4714--4720",
ISBN = "979-8-89176-332-6",
abstract = "Mamba{'}s theoretical infinite-context potential is limited in practice when sequences far exceed training lengths. This work explores unlocking Mamba{'}s long-context memory ability by a simple-yet-effective method, Recall with Reasoning (RwR), by distilling chain-of-thought (CoT) summarization from a teacher model. Specifically, RwR prepends these summarization as CoT prompts during fine-tuning, teaching Mamba to actively recall and reason over long contexts. Experiments on LONGMEMEVAL and HELMET show that RwR outperforms existing long-term memory methods on the Mamba model. Furthermore, under similar pre-training conditions, RwR improves the long-context performance of Mamba relative to comparable Transformer/hybrid baselines while preserving short-context capabilities, all without changing the architecture."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ma-etal-2025-recall">
<titleInfo>
<title>Recall with Reasoning: Chain-of-Thought Distillation for Mamba’s Long-Context Memory and Extrapolation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jun-Yu</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tianqing</namePart>
<namePart type="family">Fang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhisong</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongming</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haitao</namePart>
<namePart type="family">Mi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dong</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Mamba’s theoretical infinite-context potential is limited in practice when sequences far exceed training lengths. This work explores unlocking Mamba’s long-context memory ability by a simple-yet-effective method, Recall with Reasoning (RwR), by distilling chain-of-thought (CoT) summarization from a teacher model. Specifically, RwR prepends these summarization as CoT prompts during fine-tuning, teaching Mamba to actively recall and reason over long contexts. Experiments on LONGMEMEVAL and HELMET show that RwR outperforms existing long-term memory methods on the Mamba model. Furthermore, under similar pre-training conditions, RwR improves the long-context performance of Mamba relative to comparable Transformer/hybrid baselines while preserving short-context capabilities, all without changing the architecture.</abstract>
<identifier type="citekey">ma-etal-2025-recall</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.235/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>4714</start>
<end>4720</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Recall with Reasoning: Chain-of-Thought Distillation for Mamba’s Long-Context Memory and Extrapolation
%A Ma, Jun-Yu
%A Fang, Tianqing
%A Zhang, Zhisong
%A Zhang, Hongming
%A Mi, Haitao
%A Yu, Dong
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F ma-etal-2025-recall
%X Mamba’s theoretical infinite-context potential is limited in practice when sequences far exceed training lengths. This work explores unlocking Mamba’s long-context memory ability by a simple-yet-effective method, Recall with Reasoning (RwR), by distilling chain-of-thought (CoT) summarization from a teacher model. Specifically, RwR prepends these summarization as CoT prompts during fine-tuning, teaching Mamba to actively recall and reason over long contexts. Experiments on LONGMEMEVAL and HELMET show that RwR outperforms existing long-term memory methods on the Mamba model. Furthermore, under similar pre-training conditions, RwR improves the long-context performance of Mamba relative to comparable Transformer/hybrid baselines while preserving short-context capabilities, all without changing the architecture.
%U https://aclanthology.org/2025.emnlp-main.235/
%P 4714-4720
Markdown (Informal)
[Recall with Reasoning: Chain-of-Thought Distillation for Mamba’s Long-Context Memory and Extrapolation](https://aclanthology.org/2025.emnlp-main.235/) (Ma et al., EMNLP 2025)
ACL