@inproceedings{wang-etal-2025-besimulator,
title = "{B}e{S}imulator: A Large Language Model Powered Text-based Behavior Simulator",
author = "Wang, Jianan and
Li, Bin and
Qi, Jingtao and
Wang, Xueying and
Li, Fu and
Lihanxun",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.237/",
pages = "4736--4754",
ISBN = "979-8-89176-332-6",
abstract = "Traditional robot simulators focus on physical process modeling and realistic rendering, often suffering from high computational costs, inefficiencies, and limited adaptability. To handle this issue, we concentrate on behavior simulation in robotics to analyze and validate the logic behind robot behaviors, aiming to achieve preliminary evaluation before deploying resource-intensive simulators and thus enhance simulation efficiency. In this paper, we propose BeSimulator, a modular and novel LLM-powered framework, as an attempt towards behavior simulation in the context of text-based environments. By constructing text-based virtual environments and performing semantic-level simulation, BeSimulator can generalize across scenarios and achieve long-horizon complex simulation. Inspired by human cognition paradigm, it employs a ``consider-decide-capture-transfer'' four-phase simulation process, termed Chain of Behavior Simulation (CBS), which excels at analyzing action feasibility and state transition. Additionally, BeSimulator incorporates code-driven reasoning to enable arithmetic operations and enhance reliability, and reflective feedback to refine simulation. Based on our manually constructed behavior-tree-based simulation benchmark, BTSIMBENCH, our experiments show a significant performance improvement in behavior simulation compared to baselines, ranging from 13.60{\%} to 24.80{\%}. Code and data are available at https://github.com/Dawn888888/BeSimulator."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2025-besimulator">
<titleInfo>
<title>BeSimulator: A Large Language Model Powered Text-based Behavior Simulator</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jianan</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bin</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jingtao</namePart>
<namePart type="family">Qi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xueying</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fu</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name>
<namePart>Lihanxun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Traditional robot simulators focus on physical process modeling and realistic rendering, often suffering from high computational costs, inefficiencies, and limited adaptability. To handle this issue, we concentrate on behavior simulation in robotics to analyze and validate the logic behind robot behaviors, aiming to achieve preliminary evaluation before deploying resource-intensive simulators and thus enhance simulation efficiency. In this paper, we propose BeSimulator, a modular and novel LLM-powered framework, as an attempt towards behavior simulation in the context of text-based environments. By constructing text-based virtual environments and performing semantic-level simulation, BeSimulator can generalize across scenarios and achieve long-horizon complex simulation. Inspired by human cognition paradigm, it employs a “consider-decide-capture-transfer” four-phase simulation process, termed Chain of Behavior Simulation (CBS), which excels at analyzing action feasibility and state transition. Additionally, BeSimulator incorporates code-driven reasoning to enable arithmetic operations and enhance reliability, and reflective feedback to refine simulation. Based on our manually constructed behavior-tree-based simulation benchmark, BTSIMBENCH, our experiments show a significant performance improvement in behavior simulation compared to baselines, ranging from 13.60% to 24.80%. Code and data are available at https://github.com/Dawn888888/BeSimulator.</abstract>
<identifier type="citekey">wang-etal-2025-besimulator</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.237/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>4736</start>
<end>4754</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T BeSimulator: A Large Language Model Powered Text-based Behavior Simulator
%A Wang, Jianan
%A Li, Bin
%A Qi, Jingtao
%A Wang, Xueying
%A Li, Fu
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%A Lihanxun
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F wang-etal-2025-besimulator
%X Traditional robot simulators focus on physical process modeling and realistic rendering, often suffering from high computational costs, inefficiencies, and limited adaptability. To handle this issue, we concentrate on behavior simulation in robotics to analyze and validate the logic behind robot behaviors, aiming to achieve preliminary evaluation before deploying resource-intensive simulators and thus enhance simulation efficiency. In this paper, we propose BeSimulator, a modular and novel LLM-powered framework, as an attempt towards behavior simulation in the context of text-based environments. By constructing text-based virtual environments and performing semantic-level simulation, BeSimulator can generalize across scenarios and achieve long-horizon complex simulation. Inspired by human cognition paradigm, it employs a “consider-decide-capture-transfer” four-phase simulation process, termed Chain of Behavior Simulation (CBS), which excels at analyzing action feasibility and state transition. Additionally, BeSimulator incorporates code-driven reasoning to enable arithmetic operations and enhance reliability, and reflective feedback to refine simulation. Based on our manually constructed behavior-tree-based simulation benchmark, BTSIMBENCH, our experiments show a significant performance improvement in behavior simulation compared to baselines, ranging from 13.60% to 24.80%. Code and data are available at https://github.com/Dawn888888/BeSimulator.
%U https://aclanthology.org/2025.emnlp-main.237/
%P 4736-4754
Markdown (Informal)
[BeSimulator: A Large Language Model Powered Text-based Behavior Simulator](https://aclanthology.org/2025.emnlp-main.237/) (Wang et al., EMNLP 2025)
ACL