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Abstract

Large language models (LLMs) can produce
fluent but factually incorrect outputs and often
have limited ability to attribute their claims to
source material. This undermines their reliabil-
ity, particularly in multi-hop and high-stakes
domains such as medicine. We propose Tree-
of-Quote (ToQ) prompting, a structured frame-
work that decomposes complex questions into
subquestions, generates quotes to support each
step without retrieval, and selectively advances
reasoning based on quote quality. We also intro-
duce FQ-Score, a unified metric that captures
answer correctness, attribution fidelity, and rea-
soning quality. Experiments on StrategyQA,
2WikiMultiHopQA, MuSiQue, MoreHopQA,
and MedQA demonstrate that ToQ improves
factuality and attribution over standard prompt-
ing baselines. To validate FQ-Score as a proxy
for human judgment, we conduct two reader
studies with clinicians on medical questions,
and observe strong correlations. Both clinician
scores and FQ-Scores also indicate a preference
for ToQ over baselines due to a combination of
greater correctness, completeness, and logical
flow. Our results suggest ToQ is a promising
approach for building more trustworthy and
auditable LLM systems.

1 Introduction

Large language models (LLMs) have demonstrated
impressive capabilities across a wide range of nat-
ural language tasks, including question answering
(QA), summarization, and reasoning (Singhal et al.,
2023, 2025; Jahan et al., 2024; Naveed et al., 2024;
Xu et al., 2025). Despite these advances, LLMs
frequently generate outputs that are fluent yet fac-
tually incorrect — a phenomenon commonly re-
ferred to as hallucination (Augenstein et al., 2023;
Huang et al., 2025). This issue is particularly criti-
cal in domains that require high factual precision

*Co-first authors

and traceability, such as in medical QA or multi-
hop reasoning tasks (Farquhar et al., 2024; Anjum
et al., 2024). Moreover, the black-box nature of
some LLMs complicates the ability to attribute the
origins of model claims despite past efforts (Liu
et al., 2025), making it difficult to discern whether
a model response is grounded in credible evidence
or is fabricated.

Existing prompting strategies such as Chain-of-
Thought (CoT) prompting (Wei et al., 2023) en-
courage intermediate reasoning steps to improve
accuracy, while Chain-of-Verification (CoVe) (Dhu-
liawala et al., 2023) introduces a post hoc check to
validate steps. However, neither of these methods
adequately addresses attribution. Even with well-
reasoned answers, it is often uncertain whether the
reasoning is based on actual knowledge from pre-
training data or merely plausible fabrication. Prior
work has shown that LLMs are sensitive to ver-
batim quotes from their training corpora and that
quoting can improve both factuality and verifia-
bility (Weller et al., 2024). However, quoting has
largely been studied in isolation or used only in
final answer justification — not as a tool integrated
throughout the reasoning process.

To address this gap, we propose Tree-of-Quote
Prompting (ToQ), a novel method that unifies quot-
ing and reasoning in an iterative, modular pipeline.
Rather than treating quoting as a post-processing
step, ToQ introduces a structured workflow in
which the model generates subquestions, attributes
subanswers to non-verbatim quotes, and scores
the quote quality before progressing. Inspired by
Chain-of-Quote (CoQ) (Li et al., 2024) and Tree-
of-Thoughts (ToT) (Yao et al., 2023), this struc-
tured prompting paradigm promotes robust multi-
step reasoning with attributed quotes at every stage
without an explicit retrieval pipeline.

Our contributions in this work are as follows:

1. We present empirical results of ToQ prompt-
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Figure 1: Schematic of the Tree-of-Quote (ToQ) prompting pipeline.

ing on five reasoning and QA datasets and
compare it against several baselines, including
zero-shot, CoT, CoVe, and CoQ prompting.

2. We introduce a new evaluation metric for rea-
soning chains with quotes — FQ-Score — that
jointly measures answer correctness, quote at-
tribution quality, and alignment between rea-
soning steps by leveraging a combination of
existing metrics and LLM calls.

3. We conduct two reader studies to validate FQ-
Score against human evaluation, demonstrat-
ing strong correlation between automated and
clinician-assigned scores that capture correct-
ness, completeness, and logical coherence.

2 Related Works

We build on a growing literature aiming to im-
prove factuality and attribution in LLM outputs.
Prior efforts like WebGPT (Nakano et al., 2022)
and GopherCite (Menick et al., 2022) fine-tune
LLMs to return answers with supporting links or
quotes, often via reinforcement learning. More re-
cent systems such as ALCE (Gao et al., 2023b) and
LongCite (Zhang et al., 2024) introduce bench-
marks and training pipelines to generate fine-

grained, sentence-level citations in long-context
QA. LongCite-8B/9B achieve state-of-the-art cita-
tion precision using a 45k-instance dataset. Ad-
ditionally, HoT prompting (Nguyen et al., 2025)
enhances attribution during reasoning by tagging
facts in input and response. While helpful for veri-
fication, our method differs by explicitly condition-
ing reasoning advancement on quote quality.

Several works also explore post-hoc attribution.
Sancheti et al. (2024) formalize this task for long
documents and compare retrieval and entailment-
based attribution methods. Ramu et al. (2024) de-
compose answers into factual units to improve at-
tribution granularity. RARR (Gao et al., 2023a)
retrofits answers by searching for missing evi-
dence post-generation. In contrast, ToQ integrates
grounding directly during generation via quote-
supported subquestions. Other grounded reason-
ing strategies include “Attribute-First” (Slobod-
kin et al., 2024) and “Blueprint-before-Generation”
(Fierro et al., 2024), which pre-select evidence be-
fore responding. ToQ similarly decomposes ques-
tions, but adds quote-based validation at each step.

LongCite (Zhang et al., 2024) and Coarse-
Grained Answer Decomposition (Cao and Liu,
2021) emphasize source alignment in long-context
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QA, as does our FQ-Score metric, which jointly
evaluates correctness, attribution, and reasoning.
Toolkits like CiteKit (Shen et al., 2024) and
retrieval-augmented reasoning frameworks such
as Self-RAG (Asai et al., 2023) show that modu-
lar pipelines improve verifiability. Hence, we de-
sign ToQ as a structured prompting and evaluation
framework for auditable multi-hop reasoning.

3 Tree-of-Quote

Tree-of-Quote (ToQ) prompting is a modular
and interpretable framework that integrates non-
verbatim quoting into the reasoning process of
LLMs. ToQ structures reasoning as a dynamic
graph (via LangGraph) with four core nodes — ini-
tialization → quoting → scoring → questioning
— that together support iterative, quote-grounded
multi-hop inference (Figure 1).

The process begins with an “Initialization” step,
where the system either decomposes a complex
question into a simpler subquestion or, in the case
of a trivial query, directly produces an answer.
Next, during the “Quoting” phase, the system at-
tempts to answer the subquestion using a quote
from Wikipedia or PubMed, or from explicitly pro-
vided documents, by generating directly from its
pretraining knowledge without retrieval. The ex-
act quote source is intentionally left as a control-
lable design choice; however, only Wikipedia and
PubMed are investigated in this paper. If the ini-
tial quote does not meet the required fidelity, as
assessed by a scoring mechanism, it performs up
to N retries to improve the quote. In the “Scoring”
stage, each quote is evaluated using the Quoted
Information Precision (QUIP) metric (Weller et al.,
2024). Quotes that score below a predefined thresh-
old (which can be tuned to suit different goals)
prompt additional retries as above; if retries are
exhausted, the highest-scoring quote is selected. Fi-
nally, the “Questioning” phase determines whether
the system has sufficient context to produce a fi-
nal answer or whether it should generate another
subquestion to continue the reasoning process. We
leverage structured XML outputs for each node to
define the next action for the pipeline. Prompts for
each step are available in Appendices A.1–A.3.

3.1 Reasoning Graph and Tree Structure

ToQ operates as a tree-structured reasoning system.
Each subquestion generated by the initialization or
questioning node spawns a new quote-attempting

branch. These branches are explored through the
quoting and scoring nodes, where candidate quotes
are evaluated via a scoring function (i.e., QUIP).
Branches that fail to meet a minimum quote quality
threshold are pruned. The initialization node can
also regenerate entirely new subquestions (varied
based on LLM sampling parameters), forming al-
ternate high-level reasoning paths. This branching
behavior supports both exploration and selective
trust in attributed evidence.

4 Experiments

4.1 Experimental Setup

We first evaluate ToQ on four datasets that span dif-
ferent kinds of QA and reasoning in the general do-
main. To probe implicit reasoning, we use the 687-
question testing split of StrategyQA (Geva et al.,
2021), a binary yes|no question set designed to
measure the ability to infer a strategy for multi-hop
reasoning. We further include two other multi-hop
reasoning datasets with contextual support corpora:
2WikiMultiHopQA (2Wiki) (Ho et al., 2020) and
MuSiQue (Trivedi et al., 2022), and specifically
evaluate using the 500 examples from their respec-
tive published subsampled test sets. These datasets
include a fixed set of support documents with each
question, allowing us to constrain the quoting pro-
cess strictly to the provided corpus. Lastly, we
leveraged MoreHopQA (Schnitzler et al., 2024), a
recently proposed benchmark that emphasizes gen-
erative responses and integrates additional layers
of complexity through commonsense, arithmetic,
and symbolic reasoning.

For each dataset, we compare ToQ against four
prompting baselines: zero-shot, where the model
receives only the question; Chain-of-Thought
(CoT) (Wei et al., 2023), which generates step-
by-step rationales before the final answer; Chain-
of-Verification (CoVe) (Dhuliawala et al., 2023),
which appends a verification step to CoT; and
Chain-of-Quote (CoQ) (Li et al., 2024), which
produces reasoning chains that include evidence
quotes but without attribution scoring or qual-
ity control. We evaluate all methods using two
model backends, GPT-4o (OpenAI et al., 2024) and
DeepSeek-Chat (V3) (DeepSeek-AI et al., 2024),
to assess performance in different training recipes.

4.2 Metrics for Answer Evaluation

For answer-based metrics, we adapt the evaluation
depending on the format of the dataset.
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For datasets with text-based answers (i.e., 2Wiki,
MuSiQue, and MoreHopQA), we use a mix of lex-
ical and semantic measures. Following the eval-
uation used in SQuAD (Rajpurkar et al., 2016),
we report Exact Match (EM), defined as the per-
centage of predictions that match the reference an-
swers exactly, after normalizing case, punctuation,
whitespace, and removing articles (i.e., “a”, “an”,
“the”). We also report a macro-averaged F1 score
that measures overlap between bags of tokens of
the prediction and ground-truth answers. Addition-
ally, we include Membership Match (MM), which
evaluates whether the candidate answer is a sub-
set or superset of any reference answer, ignoring
stop words. Finally, to account for deeper semantic
equivalence, we introduce a Semantic Match (SM)
metric based on language model inference (see
prompt in Appendix A.4), where an LLM judges
whether the model’s answer is meaning-equivalent
to the reference.

We further include lexical similarity metrics
— BLEU-4 (Papineni et al., 2002) and ROUGE-
L (Lin, 2004) — as well as semantic similarity
metrics, including BERTScore (Zhang et al., 2020)
and METEOR (Banerjee and Lavie, 2005), to give
a fuller picture of surface-level and contextual over-
lap. We lastly compute AlignScore (Zha et al.,
2023), a factual alignment metric that measures
consistency between reference and candidate an-
swers.

For the choice-based StrategyQA dataset, we
compute simple accuracy, defined as the percentage
of cases where the model-selected answer exactly
matches the ground-truth label. We also report a
conventional F1 score, which considers precision
and recall for each of the answer choices.

4.3 Performance on Reasoning Datasets
Due to the stochastic nature of ToQ — particularly
its quote-scoring and retry mechanism — we report
all results as the mean of at least three independent
replicates, alongside a range that captures the mini-
mum and maximum observed scores.

Table 1 shows StrategyQA results, where we
report accuracy and F1 for all methods. ToQ
achieves the highest performance on both met-
rics across GPT-4o and DeepSeek-Chat, with CoT
and CoQ performing competitively with GPT-4o
and DeepSeek-Chat, respectively. Tables 2 and 3
provide comprehensive performance comparisons
on 2Wiki and MuSiQue, covering the metrics de-
scribed in Section 4.2. ToQ significantly outper-

Method Accuracy ↑ F1 ↑
GPT-4o

Zero-Shot 0.734 0.728
CoT 0.792 0.788
CoVe 0.764 0.759
CoQ 0.790 0.785
ToQ (Ours) 0.817 (0.803–0.833) 0.815 (0.800–0.831)

DeepSeek-Chat
Zero-Shot 0.659 0.624
CoT 0.780 0.777
CoVe 0.752 0.752
CoQ 0.785 0.779
ToQ (Ours) 0.812 (0.804–0.819) 0.815 (0.803–0.815)

Table 1: Accuracy and F1 on StrategyQA across prompt-
ing methods.

forms all baselines on GPT-4o for 2Wiki, with con-
sistent improvements across all lexical and seman-
tic evaluation metrics. On DeepSeek-Chat, ToQ
again leads overall performance across most met-
rics on 2Wiki, with the exception of MM where
CoT and CoQ slightly outperform. Interestingly,
zero-shot prompting on DeepSeek-Chat consis-
tently ranks second across 7 out of 9 metrics,
even outperforming CoT and CoQ, which is con-
sistent with prior findings (Li et al., 2024). On
MuSiQue, GPT-4o-ToQ again outperforms all base-
lines on every metric, with zero-shot emerging as
the second-best approach in 6 of the 9 metrics.
However, DeepSeek-Chat performs poorly, with
zero-shot surprisingly outperforming all methods
in 8 of 9 metrics, and ToQ coming in second in 6
of them. We hypothesize that this may be related to
DeepSeek-Chat’s pre-training or instruction tuning
regime.

Table 4 presents results on MoreHopQA, where
we report only the core answer-based metrics (EM,
MM, SM, and F1). With GPT-4o, CoT slightly
outperforms ToQ on 3 of the 4 metrics, but ToQ
trails by negligible amounts (0.002–0.003), and
notably surpasses CoT on SM by a sizable margin
(+0.31). For DeepSeek-Chat, ToQ achieves the
highest scores on 3 of the 4 metrics, trailing only
on MM. CoT consistently ranks second.

We further compare ToQ against specialized
reasoning-tuned models in zero-shot settings
(GPT-4o with o4-mini, and DeepSeek-Chat with
DeepSeek-R1). GPT-4o-ToQ consistently outper-
forms o4-mini across all metrics on 2Wiki by a siz-
able amount, and DeepSeek-Chat-ToQ also closely
matches DeepSeek R1’s performance on 2Wiki,
though it still lags on MuSiQue.
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Method
2WikiMultiHopQA ↑

EM MM SM F1 (Macro) BLEU-4 ROUGE-L BERTScore METEOR AlignScore

GPT-4o
Zero-Shot 0.542 0.778 0.784 0.672 0.042 0.681 0.604 0.588 0.607
CoT 0.468 0.820 0.866 0.663 0.042 0.669 0.579 0.615 0.551
CoVe 0.566 0.726 0.732 0.671 0.063 0.683 0.627 0.579 0.638
CoQ 0.312 0.814 0.850 0.561 0.041 0.569 0.501 0.574 0.389
ToQ (Ours) 0.686 (0.678–0.698) 0.858 (0.840–0.872) 0.890 (0.870–0.912) 0.797 (0.781–0.810) 0.185 (0.182–0.187) 0.816 (0.813–0.818) 0.819 (0.815–0.823) 0.708 (0.705–0.713) 0.761 (0.760–0.763)

DeepSeek-Chat
Zero-Shot 0.628 0.798 0.804 0.732 0.137 0.738 0.709 0.633 0.695
CoT 0.520 0.896 0.790 0.661 0.040 0.668 0.535 0.569 0.574
CoVe 0.562 0.738 0.752 0.670 0.074 0.676 0.611 0.576 0.635
CoQ 0.470 0.864 0.854 0.649 0.038 0.659 0.529 0.600 0.520
ToQ (Ours) 0.686 (0.680–0.686) 0.856 (0.850–0.864) 0.878 (0.870–0.888) 0.793 (0.788–0.795) 0.191 (0.184–0.196) 0.798 (0.793–0.801) 0.801 (0.794–0.808) 0.699 (0.697–0.702) 0.748 (0.743–0.753)

Table 2: Performance on 2WikiMultiHopQA across prompting methods on GPT-4o and DeepSeek-Chat. Metrics
include lexical (EM, MM, F1, BLEU, ROUGE), semantic (SM, BERTScore, METEOR), and factual consistency
(AlignScore).

Method
MuSiQue ↑

EM MM SM F1 (Macro) BLEU-4 ROUGE-L BERTScore METEOR AlignScore

GPT-4o
Zero-Shot 0.348 0.598 0.640 0.522 0.022 0.531 0.444 0.452 0.479
CoT 0.300 0.586 0.600 0.503 0.008 0.509 0.389 0.426 0.496
CoVe 0.316 0.514 0.530 0.462 0.030 0.458 0.411 0.396 0.432
CoQ 0.248 0.572 0.646 0.442 0.008 0.449 0.347 0.421 0.402
ToQ (Ours) 0.434 (0.407–0.477) 0.625 (0.596–0.667) 0.681 (0.645–0.738) 0.594 (0.566–0.634) 0.041 (0.031–0.044) 0.598 (0.579–0.627) 0.586 (0.562–0.618) 0.500 (0.486–0.520) 0.576 (0.560–0.615)

DeepSeek-Chat
Zero-Shot 0.436 0.662 0.724 0.604 0.046 0.613 0.570 0.521 0.556
CoT 0.380 0.696 0.678 0.528 0.006 0.582 0.439 0.452 0.522
CoVe 0.372 0.605 0.627 0.540 0.016 0.548 0.468 0.456 0.499
CoQ 0.344 0.648 0.686 0.528 0.011 0.540 0.373 0.442 0.487
ToQ (Ours) 0.385 (0.362–0.403) 0.557 (0.522–0.578) 0.633 (0.592–0.657) 0.533 (0.505–0.555) 0.036 (0.031–0.041) 0.550 (0.516–0.588) 0.516 (0.485–0.552) 0.455 (0.423–0.490) 0.527 (0.503–0.552)

Table 3: Performance on MuSiQue across prompting methods on GPT-4o and DeepSeek-Chat. Metrics include lexi-
cal (EM, MM, F1, BLEU, ROUGE), semantic (SM, BERTScore, METEOR), and factual consistency (AlignScore).

In terms of attribution quality, we find that ToQ
consistently produces higher-fidelity quotes com-
pared to CoQ. For example, on StrategyQA, the
mean QUIP score for ToQ is 0.725 compared to
0.369 for CoQ. This improvement stems from
ToQ’s quote-scoring and retry mechanism, which
filters out hallucinated quotes and encourages the
model to regenerate better-supported evidence. In
open-domain quoting settings with Wikipedia or
PubMed, quote fidelity can vary widely; however,
ToQ attempts to mitigate the effects of this vari-
ability by enforcing quote quality thresholds and
iteratively improving its evidence selection. As a re-
sult, ToQ achieves more reliable attribution, which
translates to improved factual grounding through-
out the reasoning process without the need for a
retrieval-augmented generation pipeline.

5 FQ-Score

5.1 Constituent Components

In this work, we also introduce Factuality with
Quoting Score (FQ-Score), which comprises three
evaluation dimensions: answer correctness (AC),
quote attribution quality (QAQ), and step-wise at-

Method
MoreHopQA ↑

EM MM SM F1 (Macro)

GPT-4o
Zero-Shot 0.184 0.227 0.378 0.195
CoT 0.287 0.325 0.491 0.301
CoVe 0.274 0.319 0.463 0.286
CoQ 0.263 0.320 0.481 0.279
ToQ (Ours) 0.285 (0.259–0.324) 0.322 (0.299–0.355) 0.522 (0.488–0.559) 0.298 (0.274–0.339)

DeepSeek-Chat
Zero-Shot 0.169 0.220 0.296 0.179
CoT 0.282 0.512 0.471 0.294
CoVe 0.253 0.314 0.417 0.271
CoQ 0.279 0.394 0.448 0.289
ToQ (Ours) 0.287 (0.253-0.308) 0.324 (0.291-0.341) 0.518 (0.492-0.538) 0.297 (0.260-0.318)

Table 4: Performance on MoreHopQA across prompting
methods on GPT-4o and DeepSeek-Chat. EM, MM, SM,
and F1 (Macro) are presented.

tribution quality (SAQ). AC simply reflects a mean
of the relevant metrics described in Section 4.2.

To capture the quality and integrity of the quoted
evidence for QAQ, we use QUIP, which quanti-
fies character n-gram overlap between a quoted
span and the original pre-training corpus (e.g.,
Wikipedia or PubMed). Higher QUIP scores in-
dicate greater faithfulness and likelihood that the
quote is verifiable. Additionally, if available, the
number of retries required to achieve an acceptable
quote (above a certain QUIP threshold), and the
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length of the quote in words, also factor into QAQ
(i.e., excessive number of retries are penalized, and
a greater QUIP score with larger quote content is
rewarded).

To compute SAQ, we integrate two complemen-
tary signals: a language model–based evaluation of
reasoning quality and a semantic similarity assess-
ment across reasoning steps. First, motivated by
prior studies using LLM-judges to evaluate reason-
ing (Hao et al., 2024; Wu and Cardie, 2025), we
use GPT-4.1 to evaluate each step of the reasoning
chain along four dimensions: (1) its relevance to
the original question, (2) its usefulness in deriving
the final answer, (3) the correctness of the suban-
swer, and (4) the completeness of reasoning. Each
is scored on a 0–10 scale. Additionally, for each
example as a whole, GPT-4.1 provides a binary
judgment of whether the reasoning is sound and a
0–10 score assessing the overall logical flow across
steps. These scores are combined into a single
LLM-derived component, which is downweighted
if the answer is judged to have been derived through
unsound reasoning (see prompt in Appendix A.5).

Second, we compute semantic consistency
between reasoning steps using cosine similar-
ity of vectors from a sentence transformer
(all-MiniLM-L6-v2). This includes both the sim-
ilarity of each step to the original question and
between adjacent steps to measure coherence. The
average of these measures captures how well the
reasoning chain maintains semantic alignment and
progression. The final SAQ is obtained by aggregat-
ing the LLM scores and semantic similarity scores.

Finally, we propose a holistic FQ-Score, a uni-
fied factuality score designed to capture model per-
formance across correctness, attribution, and step-
level grounding. The FQ-Score is simply defined
as:

FQ-Score = α · AC + β · QAQ + γ · SAQ

where α, β, and γ are tunable parameters, initially
set to equal weights (α = β = γ = 1/3) for bal-
anced evaluation. FQ-Score can be computed per
example and represents a single interpretable num-
ber that reflects the factual reliability of model-
generated answers.

5.2 Clinical Reader Studies

To validate FQ-Score as a proxy for expert judg-
ment in the medical domain, we conducted two
preliminary clinical reader studies on MedQA (Jin

et al., 2020), a benchmark based on United States
Medical Licensing Exam (USMLE) questions. We
first used 593 questions from USMLE Steps 2 and
3 in the official test set and evaluated model perfor-
mance with ToQ using GPT-4o and DeepSeek-Chat
(Table 5). While all baseline prompting methods al-
ready achieved strong performance, ToQ matched
or very slightly exceeded them in accuracy and F1.

Method Accuracy ↑ F1 ↑
GPT-4o

Zero-Shot 0.855 0.853
CoT 0.886 0.885
CoVe 0.867 0.865
CoQ 0.862 0.861
ToQ (Ours) 0.886 (0.871–0.913) 0.886 (0.870–0.911)

DeepSeek-Chat
Zero-Shot 0.816 0.814
CoT 0.766 0.771
CoVe 0.782 0.778
CoQ 0.825 0.812
ToQ (Ours) 0.841 (0.830–0.860) 0.839 (0.828–0.859)

Table 5: Accuracy and F1 on MedQA across prompting
methods.

5.2.1 Reader Study Setup
Each study involved asking clinically trained evalu-
ators of various backgrounds and experiences (from
a board-certified radiation oncologist to a resident
doctor in acute general medicine) to annotate 20
samples from the MedQA test set. The same sam-
ples were used between these clinicians to allow
inter-rater agreement measurement. Evaluation
guidelines were adapted from prior clinical nat-
ural language processing works (Van Veen et al.,
2024; Xu et al., 2024).

In the first study, 5 clinicians reviewed only ToQ
outputs. We heuristically selected a diverse set of
examples — including correct/incorrect answers
and strong/weak reasoning chains — to cover the
full quality spectrum. For each reasoning step, clin-
icians were asked: (1) whether the subanswer was
factually correct (yes|no), and (2) how relevant
and useful the step was to the original question
and final answer (0–10). They were further asked
how logically consistent the entire reasoning chain
was (0–10), and were instructed to penalize logical
leaps or circular reasoning.

In the second study, 2 clinicians evaluated a
blinded comparison of CoT, CoQ, and ToQ outputs
selected based on a similar heuristic as in the first
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study. Outputs were manually post-processed into
a unified format to minimize method-identifying
cues. Each sample was scored on a 0–10 scale
for: completeness (whether it covered all clinically
relevant considerations), correctness (factual accu-
racy of reasoning and answers), and logical flow
(coherence and structure of the reasoning path).

5.2.2 Correlations between Clinicians and
with FQ-Score

In the first reader study, we observed low inter-rater
reliability for the overall score, with an intraclass
correlation coefficient (ICC) of 0.406 (95% CI:
0.21 to 0.65). This suggests considerable variabil-
ity in clinician judgments regarding sample qual-
ity. Despite this, we adopt the mean opinion score
(MOS) from clinicians as our reference standard,
which is consistent with common practices in sub-
jective evaluation domains.

Our model demonstrates a strong Pearson cor-
relation with the clinician MOS (r = 0.866,
p < 0.001), indicating close alignment with av-
erage expert judgment. However, this correlation
should be interpreted with caution given the limited
sample size and only moderate inter-rater agree-
ment (Mukaka, 2012). To enhance the robust-
ness of our conclusions, future work will include
a broader panel of raters with a greater number of
samples. The second reader study exhibited no-
tably higher inter-rater agreement, particularly for
the fine-grained completeness score. The mean
score agreement reached an ICC of 0.539 (95% CI:
0.16 to 0.78), indicating moderate to substantial
reliability among raters.

We provide a full breakdown of clinician inter-
rater correlation values in Table 6, with visual com-
parisons plotted in Figure 2 for both reader studies.
Additionally, Figure 3 shows the correlation be-
tween FQ-scores and clinician ratings from the first
reader study.

Finally, Table 7 summarizes results across multi-
ple methods evaluated in the second reader study.
As not all methods included quotes, we com-
puted FQ-Scores without the QAQ component, and
evenly weighted AC and SAQ components. We
observed that ToQ outputs are scored the highest
by both FQ-Score and clinicians with strong cor-
relations, providing support for FQ-Score to be a
practical proxy for expert evaluations.

Metric ICC(2,1) ↑ Pearson r ↑ Spearman ρ ↑
Reader Study 1

Logical Flow 0.467 (95% CI, 0.27 0.69) 0.484 0.428
Overall Score1 0.406 (95% CI, 0.21 0.65) 0.407 0.382

Reader Study 2
Completeness 0.617 (95% CI, 0.26 0.83) 0.622 0.577
Correctness 0.457 (95% CI, 0.05 0.74) 0.522 0.617
Logical Flow 0.435 (95% CI, 0.03 0.73) 0.516 0.478
Mean Score 0.539 (95% CI, 0.16 0.78) 0.592 0.628

Table 6: Inter-rater agreement metrics across both reader
studies. 1Overall Score represents the mean of the step
relevance/usefulness scores for each step (halving those
with an incorrect subanswer in the corresponding step),
averaged with the logical flow score.

5.3 Human Attribution Evaluation

To accurately measure quote attribution directly,
we also conducted a separate human evaluation
study using the same 40 samples from our two clin-
ical reader studies. Annotators manually checked
whether each quote used in the model responses
appeared in the online sources. In the first reader
study with 20 ToQ samples, 37/45 quotes appeared
in Wikipedia/PubMed, 7/45 appeared in another
online source, and only 1 did not have any match.
In the second reader study comparing methods,
14/17 quotes appeared in Wikipedia/PubMed for
ToQ, while 3 appeared in another online source.
None of the 3 quotes from the other methods ap-
peared. This explicitly validates ToQ’s improved
quote attribution quality.

6 Discussion

Our results highlight that ToQ prompting mean-
ingfully improves factual attribution and answer
quality, especially on complex multi-hop questions.
ToQ’s quote-grounded step generation helps ensure
that each reasoning step is not just a hallucinated
bridge between premise and conclusion but is an-
chored by a verifiable quote. This structure encour-
ages models to generate reasoning chains that are
both faithful to their sources and logically coherent.
Furthermore, the iterative retry-and-score mech-
anism ensures that the model does not progress
based on low-confidence or unverifiable intermedi-
ate steps, effectively reducing compounding errors.

ToQ is also easily extensible: its quoting mecha-
nism can be redirected to domain-specific sources
in a retrieval-augmented manner, and external doc-
uments (e.g., those provided with many multi-hop
datasets or patient-specific context from the health
record) can be embedded into the prompt as fixed
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Figure 2: Inter-rater agreement and correlations between clinician raters for both reader studies.

Method Mean FQ-Score ↑ Mean Clinician Score ↑ Pearson r (p) ↑ Spearman ρ (p) ↑ MAE ↓
CoT 0.591 0.790 0.758 (p=0.138) 0.667 (p=0.219) 0.199
CoQ 0.635 0.750 0.918 (p=0.028) 0.800 (p=0.104) 0.144
ToQ (Ours) 0.770 0.817 0.889 (p=0.044) 0.990 (p=0.001) 0.083

Table 7: Comparison of FQ-Scores, Clinician Scores, and their correlations between prompting methods in Reader
Study 2.

Figure 3: Correlation between FQ-Scores and Clinician
Scores in Reader Study 1.

context. This modularity enables ToQ to be applied
across both open-domain QA and closed-context
reasoning settings, supporting greater interpretabil-

ity and domain alignment.

We note that the benchmark performances can be
sensitive to the specific combination of model and
prompt design. Small changes — such as allowing
the model to quote from Wikipedia vs. only on
explicitly provided context — can noticeably affect
outcomes. In some cases, quoting improves factual
grounding, but this depends on the task setup. For
example, if models are expected to rely solely on
provided context, encouraging external referencing
can actually hurt performance on the benchmark
(i.e., MuSiQue). Interestingly, although 2Wiki’s
task formulation includes accompanying context,
referencing Wikipedia proves to be beneficial.

Finally, while ToQ’s stepwise format may pro-
duce longer responses than baseline methods,
which may be perceived as of higher quality, we
note that in clinical contexts, verbosity is not in-
herently preferred — concise, focused reasoning
is often the norm. ToQ is intended to support
interpretability and teaching, not replicate chart-
style brevity. However, we acknowledge that LLM
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judges may favor verbosity, which we did not
explicitly penalize for. Future iterations could
incorporate length-normalized metrics or human-
calibrated baselines to reduce this potential bias.

6.1 Dataset Examples

To better understand the value of quote-aware rea-
soning and adequate evaluation functions, we exam-
ined specific questions from the multi-hop datasets
and call out two examples below.

Example 1

Question: What team does the 2018 PFA
player of the year play for?
Reference: Egypt national football team
Candidate: Liverpool

While GPT-4o-ToQ’s candidate “Liverpool”
would be marked incorrect by most metrics (i.e.,
EM, MM, SM, F1, etc.), it is arguably the more pre-
cise and contextually relevant answer. The PFA is
an English football award, and in that context, the
relevant affiliation is the player’s English club team.
At the time, Mohamed Salah — the PFA 2018’s
Player of the Year — played for both the Egypt
national team and Liverpool, but only Liverpool
is an English football club and the one that was
actually mentioned in the dataset-provided context.
Hence, Liverpool would be a more-than-reasonable
answer. This highlights a fundamental limitation
in current evaluation setups, where questions and
reference answers may be incomplete or underspec-
ified, penalizing valid predictions.

Example 2

Question: When did the maker of the Acura
Legend, the manufacturer of Toyopet Mas-
ter, and Nissan open US assembly plants?
Reference: 1981
Candidate: Honda, Toyota, and Nissan all
opened their US assembly plants in the early
1980s

The model’s response to this example is a
broader but factually valid answer compared to
the reference. In this case, both the specific year
(1981) and the broader decade (early 1980s) were
mentioned in the dataset-provided context. Since
the question did not explicitly require an exact year
(e.g., by asking “In which year...”), the decade-
level response is a fair interpretation.

These issues are especially pertinent in the high-
stakes domain of medicine, where hallucinations
impact patient care. In such settings, having a
model that not only generates answers, but also
quotes the source of each intermediate claim can
dramatically improve trustworthiness and down-
stream usability. By design, ToQ is well-suited for
these domains, enabling users to audit and interpret
the reasoning chain in a fine-grained manner.

6.2 Small Language Models

To evaluate ToQ in lower-resource settings, we
briefly applied it to Google’s gemma-3-12B-it
model (Team et al., 2025). While zero-shot ToQ
was too complex for reliable outputs, performance
significantly improved in a few-shot setup — par-
ticularly when using clinician-generated examples
for answering MedQA.

7 Conclusion

In this work, we introduced Tree-of-Quote (ToQ)
prompting, a novel prompting framework that
tightly integrates quote attribution with stepwise
reasoning. Unlike prior approaches that treat quot-
ing and reasoning as separate stages, ToQ embeds
quoting directly into the reasoning process and val-
idates quotes through explicit scoring and retry
loops. This results in more factually grounded and
verifiable reasoning paths.

While ToQ makes attribution more explicit and
controllable, failure modes remain. Quote retries
can spiral if the model persistently fails to re-
trieve high-quality evidence, and subquestion gen-
eration may drift, producing shallow or redundant
branches. Improving quote search robustness and
adding dynamic pruning mechanisms could help
prevent bloated or uninformative reasoning paths.
Additionally, current evaluations rely heavily on
reference-based metrics, which often fail to re-
ward semantically correct yet differently phrased
answers. A key direction is to develop more reli-
able, model-agnostic attribution checks — such as
corpus-level quote tracing (e.g., OLMOtrace (Liu
et al., 2025)) — and to explore LLM-free alterna-
tives to the scoring pipeline. Finally, ToQ’s mod-
ularity makes it a candidate for integration with
retrieval-augmented systems, domain-specific cor-
pora, and real-time user-in-the-loop verification, all
of which open paths toward more interactive and
trustworthy AI assistants.
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Limitations

While ToQ improves factuality and attribution, sev-
eral limitations remain. First, our evaluation scripts
and metrics are still constrained by reference-based
correctness, which, as shown in our case studies,
can be brittle or incomplete. For instance, in the
question: “Which missionary helped spread the re-
ligion widely practiced in region having the second
largest rainforest in the world?” with the simple
reference answer: “Sufi missionaries”, GPT-4o-
ToQ answered: “Sufi missionaries helped spread
Islam, the widely practiced religion in Southeast
Asia, which has the second largest rainforest in
the world.” This is a high-quality, well-supported
answer, yet it fails exact match, scores poorly on
F1, and may even be marked incorrect by semantic
match due to wording differences, despite being a
faithful and factually accurate response.

In addition, failure modes emerge in complex
reasoning chains. If the quote extraction fails or
yields a low-quality quote repeatedly, the pipeline
may get “stuck” in a retry loop. Similarly, the sub-
question generation logic can sometimes drift, pro-
ducing redundant or trivial subquestions, leading
to bloated reasoning chains that don’t contribute
new information. This mirrors limitations seen in
other chain-of-reasoning methods, and highlights
the need for better subquestion pruning and more
adaptive control over when to terminate reasoning.

Lastly, compared to standard prompting, ToQ
can also be more computationally expensive. For
instance, ToQ averaged 2.26 LLM calls per ques-
tion with GPT-4o, and 3.62 LLM calls per ques-
tion with DeepSeek-Chat on multi-hop reasoning
datasets. Overall, ToQ costs about 2x more than
CoT in terms of wall clock time and tokens, but
less than CoVe (Appendix B, Table 8). We hope to
explore this cost tradeoff further in future work.
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A Prompts

A.1 Tree-of-Quote Initialization Prompt
The following prompt was used for the Initialization step in Tree-of-Quote prompting. Provided sources
are optional if the datasets do not include them.

Initialization

You are an initialization assistant for a reasoning system that aims to answer questions with
factually correct answers.

Your task is to output the first subquestion that helps identify a fact needed for
step-by-step reasoning. Start by uncovering any prerequisite knowledge.

For reference, you are provided with a list of sources that may contain relevant information.

Respond only in the following format:

<response>
<type>Subquestion</type>
<subquestion>[Your first subquestion to begin step-by-step reasoning]</subquestion>

</response>

---

<question>{question}</question>
<provided_sources>{sources}</provided_sources>

A.2 Tree-of-Quote Quoting Prompt
The following prompt was used for the Quoting step in Tree-of-Quote prompting. Provided sources are
optional if the datasets do not include them.

Quoting

You are a quoting agent in a multi-step factual reasoning system.

Your task is to answer a given subquestion using quotes from the provided sources (some of which
may be irrelevant) or Wikipedia (which is in your training data). Always include one accurate,
word-for-word quote and begin the reasoning with: According to [source], [quote].

Next, think step-by-step based on the quoted material while incorporating any provided prior
context. Continue the sequence without repeating earlier steps.

Respond only in the following format:

<response>
<reasoning>

[Begin with: According to [source], [quote].]
[Provide your reasoning here.]

</reasoning>
</response>

---

<original_question>{question}</original_question>
<provided_sources>{sources}</provided_sources>
<context>
{context}
</context>
<subquestion_to_answer>{subquestion}</subquestion_to_answer>
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A.3 Tree-of-Quote Questioning Prompt
The following prompt was used for the Questioning step in Tree-of-Quote prompting.

Questioning

You are a questioning agent in a multi-step factual reasoning system.

Your task is to:
1. Assess whether the current context contains sufficient factual information to answer the
original question.
2. If so, think step-by-step and then provide a concise final answer (not a full sentence).
3. If not, generate the next most informative subquestion.

Respond only in one of the following formats:

If context is sufficient:
<response>
<action>Answer original question</action>
<content>

<explanation>[Brief step-by-step reasoning using the context]</explanation>
<answer>The answer is: [Your concise answer to the original question]</answer>

</content>
</response>

If more information is needed:
<response>
<action>Generate subquestion</action>
<content>
<subquestion>[The next best subquestion to ask based on current context]</subquestion>

</content>
</response>

---

<original_question>{question}</original_question>
<context>
{context}
</context>
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A.4 Semantic Match Evaluation Prompt
The following prompt was used for the semantic match (SM) metric during evaluation.

Semantic Match

You are a QA evaluator. Compare the candidate answer to the reference answer given the
question.

Question: {question}
Reference: {reference}
Candidate: {candidate}

Does the candidate answer express the *same meaning* as the reference answer? Some answers
may also contain additional information. If the reference is a subset of the candidate, or
if the candidate is a subset of the reference, they are considered to express the same
meaning.

### Special cases to consider:
- If both reference and candidate mention the same fact but at different levels of detail
(e.g. adding surrounding context), they are considered equivalent unless the question
specifically asks for a certain level of detail.
- Minor numeric discrepancies (e.g. rounding) may still be considered equivalent unless
materially different or the question specifies a certain level of precision.
- Answers referring to broader or more specific geographic/political regions
(e.g. city vs. state vs. country) should be evaluated for semantic overlap.
- If the candidate includes multiple possible answers, it must still contain the reference
to be a match.
- Slight differences in temporal expressions (e.g. year vs. decade) may be allowed if the
meaning is preserved, unless the question specifies a certain time frame.
- Differences in terminology (e.g. specific names vs. their parent organizations or aliases)
should be judged based on contextual equivalence.
- Partial elaboration or addition of related facts is acceptable if the core meaning aligns.

Reply with 'Yes' or 'No'.
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A.5 FQ-Score Step-Wise Attribution Quality Evaluation Prompt
The following prompt was used for the LLM component of the step-wise attribution quality (SAQ)
subscore in FQ-Score.

FQ-Score SAQ

You are an expert in logical reasoning and explainability. Given a reasoning trace generated
in response to a question, your task is to rate each step based on:

1. Relevance to the original question (0-10)
2. Usefulness in deriving the final answer (0-10)
3. Correctness and factuality of the subanswer (0-10)
4. Completeness of the reasoning within the subanswer (0-10)

Please also give:
- An overall judgment on whether the answer was derived using sound reasoning (True/False)
- How logically consistent and valid the whole reasoning chain is (0-10). Consider the logical
flow of the reasoning and how well each step connects to the next, as well as if there are
gaps in logical flow or circular reasoning.

Instructions:
- Read the reasoning chain carefully.
- Provide your evaluation in the XML format as shown below.
- Be as harsh and rigorous as possible in your evaluation. No reasoning step is perfect, and
you should be able to find something to improve for each step.

Question: {question}

Reasoning Trace:
{context}

Respond in the following XML format:
<evaluation>
<steps>

<step>
<step_text>...</step_text>
<relevance>0-10</relevance>
<usefulness>0-10</usefulness>
<correctness>0-10</correctness>
<completeness>0-10</completeness>

</step>
...

</steps>
<final_answer_valid>true/false</final_answer_valid>
<logical_flow>0-10</logical_flow>

</evaluation>
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B Computational Costs of ToQ

Method Average wall clock time per question (secs) ↓ Approximate number of tokens per question (#) ↓
GPT-4o

Zero-Shot 1.134 (1.00x) 10.82 (1.00x)

CoT 3.058 (2.70x) 113.09 (10.45x)

CoVe 8.515 (7.51x) 531.56 (49.13x)

CoQ 3.324 (2.93x) 135.04 (12.48x)

ToQ (Ours) 9.621 (8.48x) 189.71 (17.53x)

DeepSeek-Chat
Zero-Shot 5.392 (1.00x) 9.25 (1.00x)

CoT 10.275 (1.91x) 125.45 (13.56x)

CoVe 75.246 (13.96x) 924.68 (99.97x)

CoQ 11.911 (2.21x) 158.74 (17.16x)

ToQ (Ours) 47.724 (8.85x) 236.92 (25.61x)

Table 8: ToQ costs on 2WikiMultiHopQA across prompting methods.
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