
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 5624–5642
November 4-9, 2025 ©2025 Association for Computational Linguistics

UnitCoder: Scalable Code Synthesis from Pre-training Corpora

Yichuan Ma1,2, Yunfan Shao1,2, Peiji Li 1,2, Demin Song2,
Qipeng Guo2, Linyang Li2†, Xipeng Qiu1, Kai Chen2,

1School of Computer Science, Fudan University, Shanghai,
2Shanghai AI Laboratory, Shanghai,

yichuanma24@m.fudan.edu.cn,lilinyang@pjlab.org.cn

Abstract

Large Language Models (LLMs) have demon-
strated remarkable capabilities in various tasks,
yet code generation remains a major challenge.
Despite the abundant sources of code data, con-
structing high-quality training datasets at scale
poses a significant challenge. Pre-training code
data typically suffers from inconsistent data
quality issues. Conversely, instruction-based
methods which use a high-quality subset as
seed samples suffer from limited task diver-
sity. In this paper, we introduce UnitCoder,
which directly supervises pre-training data qual-
ity through automatically generated unit tests,
while ensuring the correctness via an iterative
fix and refine flow. Code synthesized by Unit-
Coder benefits from both the diversity of pre-
training corpora and the high quality ensured by
unit test supervision. Our experiments demon-
strate that models fine-tuned on our synthetic
dataset exhibit consistent performance improve-
ments. Our work presents a scalable approach
that leverages model-generated unit tests to
guide the synthesis of high-quality code data
from pre-training corpora, demonstrating the
potential for producing diverse and high-quality
post-training data at scale. All code and data
will be released1.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities in coding tasks, as evi-
denced by both general LLMs and code-specilaized
models. Leading foundation models like OpenAI
o12, GPT-4o (Achiam et al., 2023), Claude3, and
DeepSeek R1 (DeepSeek-AI et al., 2025) excel at
code understanding and generation. Meanwhile,
specialized models such as CodeLlama (Rozière
et al., 2023), Deepseek-Coder (Guo et al., 2024)

†Corresponding Author.
1https://github.com/Entarochuan/UnitCoder
2https://openai.com/o1/
3https://www.anthropic.com/claude

and Qwen-Coder (Hui et al., 2024) have emerged
as powerful coding assistants.

Despite the success of LLMs in coding tasks,
it still remains a challenge acquiring high-quality
code data. Pre-training corpora typically suffer
from inconsistent data quality. To address this
issue, mainstream code-specialized models often
combine large-scale code pre-training data with
high-quality instruction data to ensure the accuracy
of model-generated code (Guo et al., 2024; Yang
et al., 2024b; Hui et al., 2024). In the domain of
synthetic data generation, prevailing approaches fo-
cus on using high-quality instruction data as seeds
and employing prompt-based methods to synthe-
size instructional data. While these methods ensure
the quality of synthetic data, their inherent diversity
is inevitably constrained by the limitations of the
original seed data (Luo et al., 2023; Huang et al.,
2023; Yu et al., 2023).

Therefore, a natural idea is to introduce di-
rect supervision for pre-training data to leverage
the diversity of the original pre-training code cor-
pus. Several works have already considered sim-
ilar approaches. For instance, OSS-Instruct (Wei
et al., 2024c) and Code-DPO (Zhang et al., 2024)
explored methods to first synthesize instructions
based on pre-training data, and then apply quality
supervision using model-generated test cases.

Inspired by these approaches, we explore the
possibility of models learning directly from pre-
training corpora without synthesized instructions.
We contend that using powerful LLMs to generate
instructions introduces biases that may limit the di-
versity inherent in the original code corpus. More-
over, this instruction synthesis process may lead to
further computational costs. We propose that di-
rectly supervising the quality of pre-training code
while preserving its original functionality repre-
sents a more straightforward and natural approach.

Based on this motivation, we propose Unit-
Coder, a Unit Test-based code synthesis frame-

5624

yichuanma24@m.fudan.edu.cn
lilinyang@pjlab.org.cn
https://github.com/Entarochuan/UnitCoder
https://openai.com/o1/
https://www.anthropic.com/claude

work. Specifically, we supervise the original pre-
training code corpus using generated unit tests. For
code snippets that fail to pass the unit tests, we im-
plement an iterative fix and refine flow to perform
multiple rounds of corrections to the code details,
adjusting code correctness without modifying the
original functionality of the code snippets. To com-
prehensively evaluate both the diversity and accu-
racy of data synthesized by the UnitCoder method,
we select the API call scenario as our code applica-
tion context and adapt BigCodeBench (Zhuo et al.,
2024) as the primary evaluation benchmark.

The UnitCoder framework consists of three key
components: (i) Data Preparation, (ii) Fix and Re-
fine Flow and (iii) Post-Train. First, we utilize
the AST (Abstract Syntax Tree) parsing tool4 to
extract syntactically valid code snippets from the
pre-training corpora. Additionally, we develop a
unit test generator fine-tuned on human-written
Python test cases, capable of validating complex
API calls and edge cases. In the second stage,
for functions that fail the unit tests, we employ
a bug-fix agent to iteratively debug and modify
code snippets based on failure traces. Once the
code passes the unit test, we introduce a refine
agent to improve code style and readability without
altering functionality. In the final stage, we con-
duct post-training on base models. All agents in
our experiment are implemented using open-source
LLMs, including Llama3-70B and Qwen2.5-72B.
Utilizing UnitCoder, we successfully synthesize
over 500K executable code data, covering over 370
unique API calls.

We evaluate our approach through by fine-
tuning the Llama (Dubey et al., 2024) and In-
ternLM (Cai et al., 2024) series models with
UnitCoder-synthesized data. Results demonstrate
that the post-training stage improves model perfor-
mance across all coding benchmarks, with the most
noticeable improvement seen on BigCodeBench,
where complex API interactions are required. Our
contributions can be summarized as follows:

• We present UnitCoder, a scalable framework
for synthesizing high-quality post-training
code data from raw code corpora under unit
test guidance. UnitCoder ensures the synthe-
sis of high-quality data while preserving the
original code functionality.

• We generate a dataset of 500K+ verifiable pro-
4https://docs.python.org/3/library/ast.html

grams using UnitCoder. Experiments demon-
strate that our synthetic data consistently im-
proves base models’ performance on code gen-
eration benchmarks, particularly in handling
complex API interactions.

• We conduct ablation studies to validate each
component’s necessity and analyze the rela-
tionships between data scale, diversity, and
model performance, providing insights for
scalable code synthesis.

2 Related Work

Code LLMs Code LLM developments have pro-
gressed along two main directions: large-scale
pre-training and specialized instruct-tuning. Early
works of code pre-training models include pioneer-
ing works like CodeX (Chen et al., 2021b), Code-
Gen (Nijkamp et al., 2023), StarCoder (Li et al.,
2023) and CodeLlama (Rozière et al., 2023). Open-
sourcing series such as Qwen (Bai et al., 2023;
Yang et al., 2024a) and Deepseek (DeepSeek-AI
et al., 2024) proposed specialized code models as
well, examplified by Qwen-Coder and Deepseek-
Coder(Hui et al., 2024; Guo et al., 2024).

LLM-Based Code Filtering and Generation
Leveraging LLMs for code synthesis is a effec-
tive approach. First, LLM-based data filtering pro-
vides a valuable quality supervision signal in data
preparation. For example, WaveCoder (Yu et al.,
2023) employed GPT-4 as a discriminator, while
Arctic-SnowCoder (Wei et al., 2024b) explored the
potential of BERT-based models for code data fil-
tering.

In parallel, works represented by Wizard-
Coder (Luo et al., 2023) focused on enhancing in-
struction diversity through improved instruction en-
gineering with powerful LLMs (Jiang et al., 2024;
Zan et al., 2023; Zhu et al., 2022). Additionally,
research exemplified by AgentCoder (Huang et al.,
2023) investigated prompt-based approaches that
integrate test cases and multi-agent collaboration to
improve coding performance (Huang et al., 2023;
Chen et al., 2022; Islam et al., 2024). Methods like
those used in WarriorCoder (Feng et al., 2024) also
construct well-designed multi-agent frameworks
for synthesizing code data.

LLM-Based Unit Test Generation Meanwhile,
using LLM-generated test cases or unit tests to su-
pervise code quality is becoming a research hotspot.
Initially, several works explored specific strategies

5625

https://docs.python.org/3/library/ast.html

Unit Test Generator

Package Centric Data

Raw Corpus

Unit Test

Function

Execution Sandbox

Refine Agent

Filter

Fine-Tune

Unit Test Initialization

Function

Unit Test
TypeError: ufunc 'isnan' not
supported for the input types.

Iterative Improvement

Bug-fix Agent

FAIL PASS

Post-Train

Completion

Synthetic Data

Post-Train

Prefix

Base Models

Figure 1: The UnitCoder pipeline. The pipeline consists of three main stages: (1) Data Preparation - filter
package-centric data from raw code corpus and fine-tune a unit test generator to produce corresponding tests; (2)
Fix and Refine Flow - execute function-test pairs in sandbox, iteratively fix failed cases via bug-fix agent, and refine
successful code through refine agent; (3) Post-Train - construct prefix-completion pairs for post-training.

for LLM-generated unit tests. TestPilot (Schäfer
et al., 2023) introduced a framework for automated
test generation using LLMs. Several works fo-
cused on improving metrics like coverage and ac-
curacy (Achiam et al., 2023; Ryan et al., 2024;
Pizzorno and Berger, 2024).

Furthermore, some works considered integrat-
ing unit tests into LLM code generation to pro-
vide supervision for model-generated code during
the inference phase. Works exempliofied by Self-
CodeAlign, Self-Edit, and Self-Debug (Wei et al.,
2024a; Zhang et al., 2023; Chen et al., 2023) estab-
lished test case-based interaction frameworks that
enable LLMs to adjust generated code based on its
accuracy against test cases.

Several works also leveraged unit tests as a code
verification metric for synthesizing code data. Ace-
Coder focuses on using unit tests as a filtering met-
ric to synthesize preference dataset for training a
reward model. KodCoder uses unit tests as a veri-
fication metric for post-training data synthesis. It
first performs coding question synthesis on mul-
tiple subsets and then synthesizes data based on
the generated instructions. rstar-coder, on the other
hand, synthesizes a large number of code problems
from a collection of high-quality, expert-written
problems with oracle solutions, and then consid-

ers using auto-generated test cases as a verification
metric.

In the UnitCoder framework, the Fix and Refine
Flow stage is inspired by these approaches, imple-
menting multiple rounds of refinement and code
execution on raw code snippets that fail unit tests
to improve the quality of the synthesized data. The
core motivation behind UnitCoder is to directly
leverage the inherent diversity of pre-training code
corpora for post-training data synthesis, which rep-
resents an innovative attempt to bypass the need
for synthesizing instruction data or relying on seed
instruction data.

3 Method

In this section, we present UnitCoder, a scalable
code synthesis pipeline that leverages pre-training
code corpora and employs model-generated unit
tests for both synthesis guidance and quality vali-
dation. The complete framework is illustrated in
Figure 1.

The pipeline comprises three principal stages. In
the first stage, we perform filtering of executable
functions from a large-scale pre-trained code cor-
pus. We then fine-tune a large language model to
serve as our unit test generator, denoted as πθ0 .

In the second stage, we build an iterative code

5626

improvement framework with two key components:
(i) a debugging agent that identifies and fixes poten-
tial defects in the original implementation through
analysis of failed test cases and execution results,
and (ii) a refinement agent that enhances code qual-
ity by adding docstrings and standardizing coding
conventions once the code successfully passes the
unit test.

In the post-training stage, we leverage the synthe-
sized data to conduct post-training on open-source
foundation models to validate the effectiveness of
our approach.

3.1 Data Preparation

In the first stage of the UnitCoder pipeline, we
filter executable function snippets from pre-training
code corpus, and fine-tune a unit test generator to
generate corresponding unit tests for the filtered
functions.

3.1.1 Package-based Function Extraction
We extract executable code snippets from pre-
training corpus through a two-step process: First,
we perform AST-based semantic analysis to iden-
tify syntactically valid function units. Then, we
filter these functions based on a predefined list
of common APIs to retain those with meaningful
package imports. This process yields a subsetDpkg

from the original dataset D.

3.1.2 Unit Test Generation
To generate corresponding unit tests for the ex-
tracted code snippets, we fine-tune a unit test gen-
erator that thoroughly evaluates complex function
implementations. The generator creates compre-
hensive test cases to verify function behavior across
edge cases, error conditions, and intricate API inter-
actions. This generator, denoted as πθ, is built upon
Llama3-70B-Instruct and fine-tuned using high-
quality function-test pairs. For each executable
function fi ∈ Dpkg, πθ0 generates a corresponding
unit test ui.

3.2 Fix and Refine Flow

In the second stage, we design an iterative code im-
provement framework based on unit test execution
results. We utilize an open-source LLM to debug
and fix code according to error traces, followed by
a refinement step to ensure consistency in the qual-
ity of synthesized data. To ensure safe operation
while processing code from unknown sources, we
implement a security sandbox for code execution.

Algorithm 1 Code Improvement Pipeline

Dpass ← ∅ ▷ Repository of validated code
D0

curr ← ∅ ▷ Queue of pending code
r = 0 ▷ Current iteration counter
max_round ∈ N ▷ Maximum iteration limit
Phase 1: Unit Test Initialization
for each function f r

i in Dp_safe do
Generate comprehensive test suite for f r

i
ui ← πθ0(f

r
i)

if f r
i passes unit test ui then
Archive successfully validated code
Dpass ← Dpass

⋃{(f r
i , ui, r

r
i)}

else
Record execution diagnostics
Dr

curr ← Dr
curr

⋃{(f r
i , ui, r

r
i)}

end if
end for
Phase 2: Iterative Code Improvement
r = 1
while r ≤ max_round do
Dr

curr ← ∅
for (f r−1

i , ui, r
r−1
i) ∈ Dr−1

curr do
Apply improvement to f r−1

i

f r
i ← πθ1(f

r−1
i , ui, r

r−1
i)

if f r
i passes unit test ui then
Dpass ← Dpass

⋃{(f r
i , ui, r

r
i)}

else
Dr

curr ← Dr
curr

⋃{(f r
i , ui, r

r
i)}

end if
Collected functions that pass the unit

tests.
end for
r ++

end while

3.2.1 Safety preparation
For safe execution, we build a secure sandbox,
which redirects potentially risky operations, includ-
ing file system operations like directory creation
and deletion.

3.2.2 Iterative Code Improvement
After implementing security measures, we pair and
execute functions along with their corresponding
unit tests to obtain initial execution results. Specifi-
cally, for each function f0

i ∈ Dpkg, its correspond-
ing unit test is denoted as ui. Functions that pass
their unit tests are collected into a set Dpass, while
those that fail are placed in another set D0

curr for
subsequent iterative debugging.

Now that we collect the failed code snippets,
the related unit tests, and the execution results, the
bug-fix agent πθ1 is employed to iteratively revise
the failed codes. The complete process of code

5627

improvement is detailed in Algorithm 1.
For the r-th iteration, let Dr−1

curr denote the col-
lection of failed functions from round r − 1. For
each function f r−1

i ∈ Dr−1
curr with its corresponding

unit test ui and execution result rr−1
i , the revision

step can be formulated as:

f r
i = πθ1(f

r−1
i , ui, r

r−1
i)

The revised function f r
i is then evaluated using

its corresponding unit test ui. Functions that pass
the unit tests are collected into Dpass, while the
failed ones are collected into Dr

curr for the next
iteration. This iterative revision process continues
until reaching the maximum iteration bound, accu-
mulating all successfully fixed functions through-
out the iterations.

3.2.3 Code Refinement
Through the iterative improvement process, we
have constructed Dpass, a collection of validated
functions that pass their corresponding unit tests.
Given that the original code corpus D is sourced
from diverse repositories, it is necessary to normal-
ize the coding style to ensure consistency in the
synthetic data quality.

To address this requirement, we introduce a re-
fine agent πθ2 that enhances code readability in
three aspects: (i) generating informative docstrings
in natural language, (ii) adding explanatory inline
comments at key code sections, and (iii) maintain-
ing consistent coding style conventions.

3.3 Post-Train

In the third stage, we construct the post-training
dataset DUnit by reformulating the validated func-
tions into supervised learning samples. Each train-
ing sample is structured as a pair, where the input
consists of the import statements, function signa-
ture, and descriptive docstring, and the output con-
tains the complete function implementation.

Subsequently, we conduct post-training on open-
source foundation models using our synthetic
dataset. Experimental results demonstrate both the
diversity and high quality of our synthetic data, val-
idating the effectiveness of the UnitCoder pipeline.

4 Experiment

In this section, we first briefly introduce the ex-
perimental setups, then discuss the experimental
results, thoroughly demonstrating and validating
the effectiveness of the UnitCoder pipeline.

4.1 Experimental Setups
Training Setup For the unit test generator πθ0 ,
we employ Llama3-70B-Instruct as the founda-
tion model. The post-training experiments are
conducted on InternLM-2.5-7B and Llama-3.1-
8B. We also perform ablation studies on the In-
ternLM series to examine the impact of model scale.
Both fine-tuning and post-training processes run
for 1 epoch, with learning rates following a linear
warmup and cosine decay schedule (1e-5 to 3e-6)
and a maximum context window of 4096 tokens.
The training utilizes A800 GPUs, with 64 GPUs
for Llama3-70B-Instruct fine-tuning and 16 GPUs
for smaller models.

Evaluation Setup We evaluate our post-trained
models on three standard code benchmarks: Big-
CodeBench, HumanEval, and MBPP (Zhuo et al.,
2024; Chen et al., 2021a; Austin et al., 2021), based
on the OpenCompass framework (Contributors,
2023). The evaluation employs a 3-shot strategy
for HumanEval and MBPP, while using complete
mode for BigCodeBench. For unit test generator
evaluation, we use solutions from HumanEval and
MBPP as inputs to assess the accuracy of generated
unit tests.

Unit Test Generator Setup We fine-tune the unit
test generator πθ0 based on Llama3-70B-Instruct.
The fine-tuning data consists of unit test-function
pairs from BigCodeBench, comprising 1140 func-
tions with rich API calls and their corresponding
human-written unit tests. To prevent evaluation
set leakage, during supervised fine-tuning (SFT),
we mask the original function when computing the
loss.

Data Preparation In the UnitCoder pipeline, our
pre-training code corpus primarily comes from
The Stack pre-training dataset, where we have al-
ready performed data deduplication with evalua-
tion benchmarks (e.g., HumanEval, MBPP, Big-
CodeBench, etc.). Additionally, we utilize an SFT
dataset from WizardCoder (Luo et al., 2023), which
serves as complementary data mixed with our syn-
thetic data during the post-training stage, in order
to maintains instruction-following capabilities.

To validate UnitCoder’s effectiveness in com-
plex API interactions, we compare against sev-
eral synthetic datasets: OSS-Instruct (Wei et al.,
2024c): A dataset of 75,000 instruction-code pairs
synthesized from raw code. OpenCoder-SFT-
Stage-1 (Huang et al., 2024): A collection of 4.2M

5628

HumanEval MBPP BigCodeBench BigCodeBench-Hard

Llama3.1-8B 36.6 58.8 31.0 5.4
+UnitCoder 61.0 63.4 40.4 14.2

InternLM2.5-7B 65.2 60.3 27.9 10.1
+UnitCoder 67.1 66.2 39.3 17.6

InternLM2.5-7B-Base 41.5 57.6 28.3 7.4
+UnitCoder 62.2 65.8 41.6 14.9

Table 1: Performance of base models post-trained with UnitCoder synthetic data. Results of BigcodeBench are
tested under "complete" mode.

Models BCB BCB-Hard

Base Models (7B size)

Llama3.1-8B 31.0 5.4
InternLM2.5-7B 27.9 10.1
InternLM2.5-7B-Base 28.3 7.4

Chat Models (7B size)

Mistral-7B-Instruct-v0.3 25.7 6.8
Qwen2.5-7B-Instruct 42.4 14.2
Llam3.1-8B-Instruct 39.6 10.8
InternLM2.5-7B-Chat 32.9 5.4

Code LLMs (7B size)

CodeLlama-7B-Instruct 27.3 4.1
Deepseek-Coder-6.7B 40.4 11.5
CodeQwen1.5-7B 43.4 14.8
Qwen2.5-Coder-7B 45.3 15.9

Ours (7B size)

Llam3.1-8B+DUnit 40.4 14.2
InternLM2.5-7B-Base+DUnit 41.6 14.8
InternLM2.5-7B+DUnit 39.3 17.6

Table 2: Performance comparison between our proposed
method and existing models on BigCodeBench (BCB)
and BigCodeBench-Hard(BCB-Hard).

question-answer pairs spanning diverse computer
science domains, generated from general code cor-
pora. Evol-codealpaca-v1 (Luo et al., 2023): A
dataset of 110K instruction pairs created by aug-
menting instructions using GPT-4.

4.2 Post-Training Performance Analysis

Table 1 demonstrates the effectiveness of Unit-
Coder in enhancing LLMs’ code capabilities. Our
post-training approach combines synthetic data and
SFT data, and achieves significant improvements
across all base models.

On the BigCodeBench benchmark, which eval-
uates package calling capabilities in complex sce-
narios, UnitCoder significantly improves the per-
formance of multiple base models: InternLM 2.5-
7B’s accuracy increases from 27.9% to 39.3%, In-

Method BCB BCB-Hard

Llama3.1-8B 31.0 5.4
+Evol 26.2 6.1
+OSS 27.5 6.8
+OpenCoder 32.3 10.1
+UnitCoder 40.4 14.2

InternLM2.5-7B 27.9 10.1
+Evol 21.1 4.1
+OSS 22.8 5.4
+OpenCoder 28.2 8.8
+UnitCoder 39.3 17.6

Table 3: Performance comparison between UnitCoder
dataset and other synthetic datasets on BigCodeBench
(BCB) and BigCodeBench-Hard(BCB-Hard). Evol,
OpenCoder and OSS-Instruct refer to Evol-codealpaca-
v1, OpenCoder-SFT-Stage-1 and OSS-Instruct-75K
datasets, respectively.

ternLM 2.5-7B-base from 28.3% to 41.6%, and
Llama3.1-8B from 31.0% to 40.4%. Furthermore,
post-trained base models demonstrate consistent
improvements across other code benchmarks, in-
cluding HumanEval and MBPP. These compre-
hensive performance gains across multiple bench-
marks validate the effectiveness of the UnitCoder
approach.

4.3 Analysis of Comparative Experiments
We conduct extensive comparative experiments on
BigCodeBench to comprehensively evaluate the ef-
fectiveness of our approach on complex API invoca-
tion tasks. Table 2 presents comparisons among 7B-
scale models, including base models, instruction-
tuned models, and code-specialized models. Our
method achieves comparable performance to lead-
ing instruction-tuned models, and significantly out-
performs mainstream pre-trained models. Notably,
on BigCodeBench-Hard, which evaluates com-
plex API composition capabilities, our approach
matches or even exceeds the performance of code-

5629

Figure 2: Scaling Effects of Synthetic Data: As the scale of synthetic data (measured in tokens) increases, we
observe a corresponding growth in both the diversity of unique packages in synthetic data and InternLM2.5-7B’s
performance on BigCodeBench after post-training.

Method HumanEval MBPP BigCodeBench BigCodeBench-Hard

Base Model 65.2 60.3 27.9 10.1
+ General Code 58.5 61.1 29.4 7.4
+ Dpkg 50.6 54.5 29.7 4.1
+ General Code + Dpkg 61.0 62.3 31.1 6.1
+ General Code + Dpass 61.6 61.1 35.2 13.5

+ General Code + DUnit(Ours) 67.1 66.2 39.3 17.6

Table 4: Ablation study of the UnitCoder pipeline, showing performance comparison of InternLM-2.5-7B under
different training configurations. The evaluation demonstrates the impact of various training data combinations:
general code data (General SFT dataset), Dpkg(package-centric subset without verification), Dpass(Verified dataset
without refine), and DUnit(verified and refined data generated through the UnitCoder pipeline).

specialized models of similar size.
To further evaluate the effectiveness of our ap-

proach, we conducted controlled experiments by
fine-tuning the same base model with different
training datasets, as shown in Table 3. The re-
sults demonstrate that our method achieves the
most significant performance improvements on
BigCodeBench among all compared approaches.
This superior performance on API-related tasks
clearly validates the quality of our synthetic dataset
and the effectiveness of the UnitCoder framework,
especially considering these improvements were
achieved with a relatively compact dataset.

4.4 Scaling Effects of Synthetic Data
For investigating the impact of synthetic data scale
on model performance, we conduct a series of con-
trolled experiments with increasing data size. We
first analyze the occurrence distribution of different
APIs in the original code corpus, as shown in Fig-
ure 3. The results demonstrate a distinct long-tail
distribution, where a small number of frequently
used packages account for the majority of invoca-
tions, while most packages exhibit relatively low
occurrence frequencies.

Figure 3: The distribution of packages in filtered code
data, grouped by usage frequency. Usage represents the
frequency of package imports, and Percentage shows
the percentage of package types within each frequency
group relative to the total number.

For packages with lower occurrence frequencies,
UnitCoder demonstrates effective verification and
synthesis of high-quality data. As shown in Figure
2, the expansion of synthetic data scale leads to
two significant improvements: First, it enables the
capture of a broader spectrum of API call patterns,
particularly those that appear infrequently in the
original corpus. Second, it contributes to consis-

5630

BigCodeBench BigCodeBench-Hard

InternLM2.5-1.8B 14.7 2.0
+UnitCoder 19.6 4.1

InternLM2.5-7B 27.9 10.1
+UnitCoder 39.3 17.6

InternLM2.5-20B 41.1 14.2
+UnitCoder 44.6 22.3

Table 5: Abaltion study on model scale.

tent performance improvements on BigCodebench,
where complex package usage is needed.

4.5 Ablation Studies

In this section, we present ablation studies to com-
prehensively evaluate the key components of our
UnitCoder pipeline. Our experiments address three
critical research questions: (i) the necessity of the
iterative verification process, (ii) the impact of the
refine agent, and (iii) the consistency of synthetic
data’s effectiveness across different model scales.
Our experimental results are presented in Table 4
and Table 5.

RQ1: How essential is the verification pipeline?
We first evaluate the effectiveness of the iterative
code improvement module. As reported in Table 4,
we first compare two experimental settings: (i) fine-
tuning with general SFT data alone, and (ii) fine-
tuning with a combination of SFT data and unit-test
verified data (Dpass).

Results show that the verification process brings
substantial performance gains across all bench-
marks, with the most notable improvement ob-
served on BigCodeBench where the pass rate in-
creases from 29.4% to 35.2%. This demonstrates
the critical role of verification in enhancing model
performance, even before applying subsequent re-
finement steps.

To further examine whether similar performance
gains could be achieved without verification, we
conduct a comparative experiment using unveri-
fied package-centric data (Dpkg) combined with
SFT data. The results show that our verification
process yields a 4% performance improvement
on BigCodeBench and a substantial 7% gain on
BigCodeBench-Hard. These performance gains
clearly demonstrate that the verification process is
an irreplacable component of our pipeline.

RQ2: Is code refinement necessary? Following
our verification pipeline analysis, we investigate
the effectiveness of the refinement process through

Benchmark Accuracy Coverage

HumanEval 80.4 96.9
MBPP 84.2 92.5
FullStackBench 65.2 82.6
DS-1000 66.7 98.7
LiveCodeBench 73.5 87.9

Table 6: Unit test generator evaluation

ablation studies in Table 4. We compare two exper-
imental settings: (i) fine-tuning with a combination
of general SFT data and UnitCoder-synthesized
data, and (ii) fine-tuning with SFT data combined
with verified-only data (Dpass). Our results show
consistent performance improvements across all
benchmarks after applying the refinement process.

Notably, compared to the Dpass mixture method,
we observe particularly significant improvements
on HumanEval and MBPP benchmarks, which fo-
cus less on complex package interactions. These
results indicate that the refinement step compre-
hensively enhances the quality of synthetic data,
enabling the model to better learn fundamental cod-
ing capabilities from the original codebase.

RQ3: Does the method work on different model
scales? To further investigate the impact of our
synthetic data, we trained models from the In-
ternLM2.5 series across different scales. Table
5 reports our results, demonstrating consistent per-
formance improvements across all model sizes.
Specifically, on BigCodeBench, the 1.8B variant
improves from 14.6% to 19.6%, the 7B variant
from 27.9% to 39.3%, and the 20B variant from
41.1% to 44.6%. Furthermore, on BigCodeBench-
Hard, our synthetic data brings an average im-
provement of approximately 6% across all model
scales. These results highlight how effectively the
synthetic data enhances performance on package-
related coding tasks across various model sizes.

4.6 Unit Test Generator Evaluation

To assess our unit test generator, we conduct experi-
ments on benchmarks including HumanEval (Chen
et al., 2021a), MBPP (Austin et al., 2021), Full-
StackBench (Cheng et al., 2024), DS-1000 (Lai
et al., 2023), and LiveCodeBench (Jain et al.,
2024).

We use canonical solutions as input functions
and evaluate whether the generated unit tests ef-
fectively validate these functions. As shown in
Table 6, our generator performs well at validating

5631

code in scenarios with rich function calls.
However, compared to simpler, competition-

level code datasets like HumanEval and MBPP,
the generator shows a decrease in both line cover-
age and accuracy on datasets with more complex
function-calling scenarios. This observation con-
firms that the current unit test generator has room
for improvement when dealing with more com-
plex datasets, real-world applications, and unseen
function-calling situations.

Even with the current unit test generator that
still has room for improvement, the UnitCoder
framework has demonstrated high synthesis quality,
which we believe proves the effectiveness of the
UnitCoder framework and our posposed methodol-
ogy.

5 Conclusion

We present UnitCoder, a scalable framework for
synthesizing high-quality post-training code data
from raw code corpora under unit test guidance.
The framework innovatively leverages code exe-
cutability through unit tests as the primary guid-
ance, ensuring the synthesis of high-quality data
while preserving the original code functionality.
By synthesizing a dataset of over 500K verifiable
programs, we demonstrate through extensive ex-
periments that our synthetic data consistently im-
proves models’ performance on code generation
benchmarks, particularly in handling complex API
interactions. Through comprehensive ablation stud-
ies, we validate each component’s necessity and
analyze the relationships between data scale, diver-
sity, and model performance, providing valuable
insights for scalable code synthesis. We believe
UnitCoder demonstrates an effective approach for
scalable, high-quality code data synthesis, provid-
ing valuable insights for future research in LLM-
based code generation.

Limitations

Despite the demonstrated effectiveness of Unit-
Coder, our approach has several limitations that
warrant discussion. First, while UnitCoder shows
promising results with our current unit test gen-
erator, utilizing more advanced models could po-
tentially improve synthesis quality. The trade-off
between model capabilities and computational effi-
ciency requires further investigation. Furthermore,
our framework is currently limited to Python code
synthesis. Extending UnitCoder to multiple pro-

gramming languages would help validate its gener-
alizability across different development contexts.

References
OpenAI Josh Achiam, Steven Adler, Sandhini Agarwal,

Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim
ing Bao, Mo Bavarian, Jeff Belgum, Irwan Bello,
Jake Berdine, Gabriel Bernadett-Shapiro, Christo-
pher Berner, Lenny Bogdonoff, Oleg Boiko, Made-
laine Boyd, Anna-Luisa Brakman, Greg Brockman,
Tim Brooks, Miles Brundage, Kevin Button, Trevor
Cai, Rosie Campbell, Andrew Cann, Brittany Carey,
Chelsea Carlson, Rory Carmichael, Brooke Chan,
Che Chang, Fotis Chantzis, Derek Chen, Sully
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben-
jamin Chess, Chester Cho, Casey Chu, Hyung Won
Chung, Dave Cummings, Jeremiah Currier, Yunx-
ing Dai, Cory Decareaux, Thomas Degry, Noah
Deutsch, Damien Deville, Arka Dhar, David Do-
han, Steve Dowling, Sheila Dunning, Adrien Ecof-
fet, Atty Eleti, Tyna Eloundou, David Farhi, Liam
Fedus, Niko Felix, Sim’on Posada Fishman, Jus-
ton Forte, Is abella Fulford, Leo Gao, Elie Georges,
Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel
Goh, Raphael Gontijo-Lopes, Jonathan Gordon, Mor-
gan Grafstein, Scott Gray, Ryan Greene, Joshua
Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy,
Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Jo-
hannes Heidecke, Chris Hesse, Alan Hickey, Wade
Hickey, Peter Hoeschele, Brandon Houghton, Kenny
Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu
Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger
Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie
Jonn, Heewoo Jun, Tomer Kaftan, Lukasz Kaiser,
Ali Kamali, Ingmar Kanitscheider, Nitish Shirish
Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Hendrik Kirch-
ner, Jamie Ryan Kiros, Matthew Knight, Daniel
Kokotajlo, Lukasz Kondraciuk, Andrew Kondrich,
Aris Konstantinidis, Kyle Kosic, Gretchen Krueger,
Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee,
Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li,
Rachel Lim, Molly Lin, Stephanie Lin, Ma teusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,
Anna Makanju, Kim Malfacini, Sam Manning, Todor
Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer
McKinney, Christine McLeavey, Paul McMillan,
Jake McNeil, David Medina, Aalok Mehta, Jacob
Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel P.
Mossing, Tong Mu, Mira Murati, Oleg Murk, David
M’ely, Ashvin Nair, Reiichiro Nakano, Rajeev
Nayak, Arvind Neelakantan, Richard Ngo, Hyeon-
woo Noh, Ouyang Long, Cullen O’Keefe, Jakub W.
Pachocki, Alex Paino, Joe Palermo, Ashley Pantu-
liano, Giambattista Parascandolo, Joel Parish, Emy
Parparita, Alexandre Passos, Mikhail Pavlov, Andrew
Peng, Adam Perelman, Filipe de Avila Belbute Peres,

5632

Michael Petrov, Henrique Pondé de Oliveira Pinto,
Michael Pokorny, Michelle Pokrass, Vitchyr H. Pong,
Tolly Powell, Alethea Power, Boris Power, Elizabeth
Proehl, Raul Puri, Alec Radford, Jack W. Rae, Aditya
Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez,
Nick Ryder, Mario D. Saltarelli, Ted Sanders, Shibani
Santurkar, Girish Sastry, Heather Schmidt, David
Schnurr, John Schulman, Daniel Selsam, Kyla Shep-
pard, Toki Sherbakov, Jessica Shieh, Sarah Shoker,
Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie
Simens, Jordan Sitkin, Katarina Slama, Ian Sohl,
Benjamin D. Sokolowsky, Yang Song, Natalie Stau-
dacher, Felipe Petroski Such, Natalie Summers, Ilya
Sutskever, Jie Tang, Nikolas A. Tezak, Madeleine
Thompson, Phil Tillet, Amin Tootoonchian, Eliz-
abeth Tseng, Preston Tuggle, Nick Turley, Jerry
Tworek, Juan Felipe Cer’on Uribe, Andrea Val-
lone, Arun Vijayvergiya, Chelsea Voss, Carroll L.
Wainwright, Justin Jay Wang, Alvin Wang, Ben
Wang, Jonathan Ward, Jason Wei, CJ Weinmann,
Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian
Weng, Matt Wiethoff, Dave Willner, Clemens Win-
ter, Samuel Wolrich, Hannah Wong, Lauren Work-
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao,
Tao Xu, Sarah Yoo, Kevin Yu, Qim ing Yuan, Woj-
ciech Zaremba, Rowan Zellers, Chong Zhang, Mar-
vin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang
Zhuang, William Zhuk, and Barret Zoph. 2023. Gpt-
4 technical report.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenhang Ge, Yu Han,
Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang
Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang
Lu, K. Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang
Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian
Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen
Yu, Yu Bowen, Hongyi Yuan, Zheng Yuan, Jianwei
Zhang, Xing Zhang, Yichang Zhang, Zhenru Zhang,
Chang Zhou, Jingren Zhou, Xiaohuan Zhou, and
Tianhang Zhu. 2023. Qwen technical report. ArXiv,
abs/2309.16609.

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen,
Keyu Chen, Xin Chen, Xun Chen, Zehui Chen, Zhi
Chen, Pei Chu, et al. 2024. Internlm2 technical re-
port. arXiv preprint arXiv:2403.17297.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan,
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2022.
Codet: Code generation with generated tests. arXiv
preprint arXiv:2207.10397.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde De Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg

Brockman, et al. 2021a. Evaluating large lan-
guage models trained on code. arXiv preprint
arXiv:2107.03374.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Pondé, Jared Kaplan, Harrison Ed-
wards, Yura Burda, Nicholas Joseph, Greg Brockman,
Alex Ray, Raul Puri, Gretchen Krueger, Michael
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin,
Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Moham-
mad Bavarian, Clemens Winter, Philippe Tillet, Fe-
lipe Petroski Such, David W. Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel
Herbert-Voss, William H. Guss, Alex Nichol, Igor
Babuschkin, Suchir Balaji, Shantanu Jain, Andrew
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew M. Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021b. Evaluat-
ing large language models trained on code. ArXiv,
abs/2107.03374.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and
Denny Zhou. 2023. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128.

Yao Cheng, Jianfeng Chen, Jie Chen, Li Chen, Liyu
Chen, Wentao Chen, Zhengyu Chen, Shijie Geng,
Aoyan Li, Bo Li, et al. 2024. Fullstack bench: Eval-
uating llms as full stack coders. arXiv preprint
arXiv:2412.00535.

OpenCompass Contributors. 2023. Opencompass:
A universal evaluation platform for foundation
models. https://github.com/open-compass/
opencompass.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong
Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue,
Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu,
Chenggang Zhao, Chengqi Deng, Chenyu Zhang,
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji,
Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo,
Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang,
Han Bao, Hanwei Xu, Haocheng Wang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li,
Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L.
Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai
Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai
Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong
Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Meng Li,
Miaojun Wang, Mingming Li, Ning Tian, Panpan
Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen,
Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan,
Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen,
Shanghao Lu, Shangyan Zhou, Shanhuang Chen,
Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng
Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing

5633

https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:263134555
https://api.semanticscholar.org/CorpusID:235755472
https://api.semanticscholar.org/CorpusID:235755472
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass

Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun,
T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu,
Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao
Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin
Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li,
Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin,
Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxi-
ang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang,
Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang
Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi,
Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang,
Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo,
Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yu-
jia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You,
Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu,
Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu,
Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan,
Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean
Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao,
Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zi-
jia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song,
Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. 2025. Deepseek-r1: Incen-
tivizing reasoning capability in llms via reinforce-
ment learning. Preprint, arXiv:2501.12948.

DeepSeek-AI, Aixin Liu, Bei Feng, Bin Wang, Bingx-
uan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr,
Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fuli
Luo, Guangbo Hao, Guanting Chen, Guowei Li,
H. Zhang, Hanwei Xu, Hao Yang, Haowei Zhang,
Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li,
Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Ji-
aqi Ni, Jiashi Li, Jin Chen, Jingyang Yuan, Junjie
Qiu, Junxiao Song, Kai Dong, Kaige Gao, Kang
Guan, Lean Wang, Lecong Zhang, Lei Xu, Leyi Xia,
Liang Zhao, Liyue Zhang, Meng Li, Miaojun Wang,
Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,
Peng Zhang, Qihao Zhu, Qinyu Chen, Qiushi Du,
R. J. Chen, R. L. Jin, Ruiqi Ge, Ruizhe Pan, Runxin
Xu, Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan
Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng
Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuip-
ing Yu, Shunfeng Zhou, Size Zheng, T. Wang, Tian
Pei, Tian Yuan, Tianyu Sun, W. L. Xiao, Wangding
Zeng, Wei An, Wen Liu, Wenfeng Liang, Wenjun
Gao, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xi-
anzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang,
Xiaojin Shen, Xiaokang Chen, Xiaosha Chen, Xiao-
tao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Liu,
Xin Xie, Xingkai Yu, Xinnan Song, Xinyi Zhou,
Xinyu Yang, Xuan Lu, Xuecheng Su, Y. Wu, Y. K.
Li, Y. X. Wei, Y. X. Zhu, Yanhong Xu, Yanping
Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui
Li, Yaohui Wang, Yi Zheng, Yichao Zhang, Yiliang
Xiong, Yilong Zhao, Ying He, Ying Tang, Yishi Piao,
Yixin Dong, Yixuan Tan, Yiyuan Liu, Yongji Wang,
Yongqiang Guo, Yuchen Zhu, Yuduan Wang, Yuheng
Zou, Yukun Zha, Yunxian Ma, Yuting Yan, Yuxiang
You, Yuxuan Liu, Z. Z. Ren, Zehui Ren, Zhangli

Sha, Zhe Fu, Zhen Huang, Zhen Zhang, Zhenda Xie,
Zhewen Hao, Zhihong Shao, Zhiniu Wen, Zhipeng
Xu, Zhongyu Zhang, Zhuoshu Li, Zihan Wang, Zihui
Gu, Zilin Li, and Ziwei Xie. 2024. Deepseek-v2: A
strong, economical, and efficient mixture-of-experts
language model. Preprint, arXiv:2405.04434.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Huawen Feng, Pu Zhao, Qingfeng Sun, Can Xu,
Fangkai Yang, Lu Wang, Qianli Ma, Qingwei Lin,
Saravan Rajmohan, Dongmei Zhang, et al. 2024.
Warriorcoder: Learning from expert battles to aug-
ment code large language models. arXiv preprint
arXiv:2412.17395.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,
Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder:
When the large language model meets programming–
the rise of code intelligence. arXiv preprint
arXiv:2401.14196.

Dong Huang, Qingwen Bu, Jie M. Zhang, Michael Luck,
and Heming Cui. 2023. Agentcoder: Multi-agent-
based code generation with iterative testing and opti-
misation. ArXiv, abs/2312.13010.

Siming Huang, Tianhao Cheng, Jason Klein Liu, Jiaran
Hao, Liuyihan Song, Yang Xu, J. Yang, J. H. Liu,
Chenchen Zhang, Linzheng Chai, Ruifeng Yuan,
Zhaoxiang Zhang, Jie Fu, Qian Liu, Ge Zhang, Zili
Wang, Yuan Qi, Yinghui Xu, and Wei Chu. 2024.
Opencoder: The open cookbook for top-tier code
large language models.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, An Yang, Rui Men, Fei Huang,
Xingzhang Ren, Xuancheng Ren, Jingren Zhou, and
Junyang Lin. 2024. Qwen2.5-coder technical report.
ArXiv, abs/2409.12186.

Md Ashraful Islam, Mohammed Eunus Ali, and
Md Rizwan Parvez. 2024. Mapcoder: Multi-agent
code generation for competitive problem solving.
arXiv preprint arXiv:2405.11403.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia
Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-
codebench: Holistic and contamination free eval-
uation of large language models for code. arXiv
preprint arXiv:2403.07974.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and
Sunghun Kim. 2024. A survey on large language
models for code generation. ArXiv, abs/2406.00515.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,
Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih, Daniel
Fried, Sida Wang, and Tao Yu. 2023. Ds-1000: A

5634

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://api.semanticscholar.org/CorpusID:266374622
https://api.semanticscholar.org/CorpusID:266374622
https://api.semanticscholar.org/CorpusID:266374622
https://arxiv.org/pdf/2411.04905
https://arxiv.org/pdf/2411.04905
https://api.semanticscholar.org/CorpusID:272707390
https://api.semanticscholar.org/CorpusID:270214176
https://api.semanticscholar.org/CorpusID:270214176

natural and reliable benchmark for data science code
generation. In International Conference on Machine
Learning, pages 18319–18345. PMLR.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023. Starcoder: may the source be with you! arXiv
preprint arXiv:2305.06161.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct. arXiv preprint arXiv:2306.08568.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2023. Codegen: An open large language
model for code with multi-turn program synthesis.
ICLR.

Juan Altmayer Pizzorno and Emery D Berger. 2024.
Coverup: Coverage-guided llm-based test generation.
arXiv preprint arXiv:2403.16218.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle,
Sten Sootla, Itai Gat, Xiaoqing Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, I. Evtimov, Joanna Bitton, Manish P
Bhatt, Cristian Cantón Ferrer, Aaron Grattafiori, Wen-
han Xiong, Alexandre D’efossez, Jade Copet, Faisal
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. 2023. Code
llama: Open foundation models for code. ArXiv,
abs/2308.12950.

Gabriel Ryan, Siddhartha Jain, Mingyue Shang, Shiqi
Wang, Xiaofei Ma, Murali Krishna Ramanathan, and
Baishakhi Ray. 2024. Code-aware prompting: A
study of coverage-guided test generation in regres-
sion setting using llm. Proceedings of the ACM on
Software Engineering, 1(FSE):951–971.

Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank
Tip. 2023. An empirical evaluation of using large
language models for automated unit test generation.
IEEE Transactions on Software Engineering.

Yuxiang Wei, Federico Cassano, Jiawei Liu, Yifeng
Ding, Naman Jain, Zachary Mueller, Harm de Vries,
Leandro Von Werra, Arjun Guha, and Lingming
Zhang. 2024a. Selfcodealign: Self-alignment for
code generation. arXiv preprint arXiv:2410.24198.

Yuxiang Wei, Hojae Han, and Rajhans Samdani. 2024b.
Arctic-snowcoder: Demystifying high-quality data in
code pretraining. Preprint, arXiv:2409.02326.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding,
and Lingming Zhang. 2024c. Magicoder: Empow-
ering code generation with oss-instruct. Preprint,
arXiv:2312.02120.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin
Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang
Lin, Kai Dang, Keming Lu, Ke-Yang Chen, Kexin
Yang, Mei Li, Min Xue, Na Ni, Pei Zhang, Peng
Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu,
Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng,
Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin
Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yunyang Wan, Yunfei Chu, Zeyu Cui, Zhenru
Zhang, and Zhi-Wei Fan. 2024a. Qwen2 technical
report. ArXiv, abs/2407.10671.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. 2024b. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

Zhaojian Yu, Xin Zhang, Ning Shang, Yangyu Huang,
Can Xu, Yishujie Zhao, Wenxiang Hu, and Qiufeng
Yin. 2023. Wavecoder: Widespread and versatile en-
hancement for code large language models by instruc-
tion tuning. In Annual Meeting of the Association for
Computational Linguistics.

Daoguang Zan, Ailun Yu, Bo Shen, Jiaxin Zhang, Tai-
hong Chen, Bing Geng, B. Chen, Jichuan Ji, Yafen
Yao, Yongji Wang, and Qianxiang Wang. 2023. Can
programming languages boost each other via instruc-
tion tuning? ArXiv, abs/2308.16824.

Kechi Zhang, Ge Li, Yihong Dong, Jingjing Xu, Jun
Zhang, Jing Su, Yongfei Liu, and Zhi Jin. 2024.
Codedpo: Aligning code models with self gen-
erated and verified source code. arXiv preprint
arXiv:2410.05605.

Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin. 2023.
Self-edit: Fault-aware code editor for code genera-
tion. arXiv preprint arXiv:2305.04087.

Qingfu Zhu, Xianzhen Luo, Fang Liu, Cuiyun Gao,
and Wanxiang Che. 2022. A survey on natu-
ral language processing for programming. ArXiv,
abs/2212.05773.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu,
Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani
Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al.
2024. Bigcodebench: Benchmarking code genera-
tion with diverse function calls and complex instruc-
tions. arXiv preprint arXiv:2406.15877.

A More Discussions

A.1 Experiments on Code Specialized Models
Although UnitCoder is designed for generating
post-training data for base models, to provide
a more comprehensive evaluation of model per-
formance, we supplement our experiments with

5635

https://api.semanticscholar.org/CorpusID:261100919
https://api.semanticscholar.org/CorpusID:261100919
https://arxiv.org/abs/2409.02326
https://arxiv.org/abs/2409.02326
https://arxiv.org/abs/2312.02120
https://arxiv.org/abs/2312.02120
https://api.semanticscholar.org/CorpusID:271212307
https://api.semanticscholar.org/CorpusID:271212307
https://api.semanticscholar.org/CorpusID:270258158
https://api.semanticscholar.org/CorpusID:270258158
https://api.semanticscholar.org/CorpusID:270258158
https://api.semanticscholar.org/CorpusID:261397124
https://api.semanticscholar.org/CorpusID:261397124
https://api.semanticscholar.org/CorpusID:261397124
https://api.semanticscholar.org/CorpusID:254564474
https://api.semanticscholar.org/CorpusID:254564474

Model BigCodeBench-Hard

Qwen-2.5-Coder-7B-Base 15.9
+UnitCoder (1 epoch) 16.9

DeepSeek-Coder-6.7B-Base 11.5
+UnitCoder (1 epoch) 15.5

Table 7: Performance improvement with UnitCoder on
code-specialized base models.

Dataset Line Coverage

Subset-2K 97.2

Table 8: Line coverage of the unit test generator on raw
code corpus.

results from further fine-tuning code-specialized
models, as shown in Table 7. We observe that
our synthetic data can further improve the perfor-
mance of code-optimized models like Qwen2.5-7B-
Coder-Base and DeepSeek-Coder-6.7B-Base on
BigCodeBench-Hard, indicating that our data can
still enhance the capabilities of already powerful
code-specialized models on complex API calling
tasks.

A.2 Experiments on Unit Test Generator

We further test the coverage of our unit test genera-
tor on a subset of the original code corpus. Specif-
ically, we randomly sample 2000 code snippets
from the original code dataset after filtering, and
test the line coverage of our unit test generator on
these code snippets. The results are shown in Ta-
ble 8.

A.3 Further Statistics of the Post-training
Dataset

To complement our analysis of function call distri-
bution, we provide additional statistics on the post-
training dataset, as shown in Table 8. Overall, the
statistics reveal several key characteristics. The av-
erage length of the function completions is approx-
imately 17 lines, while the average prompt length
is around 24 lines. On average, each data sample
includes at least one import statement, and the total
number of unique function call types reaches 373.

A.4 Performance of Code Specialized LLMs

To provide a more comprehensive performance
comparison, we also evaluate the performance of
several code-specialized LLMs on HumanEval and
MBPP in Table 10.

Table 9: Statistics of the Post-training Dataset

Metric Value
Total Number of Samples 500,000
Average Prompt Lines 24.2
Average Output Lines 17.1
Average Prompt Tokens 196.9
Average Output Tokens 164.7
Average Import Count 1.1
Unique Import Count 373

Table 10: Performance of Code-Specialized LLMs on
HumanEval and MBPP (pass@1)

Model HumanEval MBPP
Qwen2.5-Coder 88.4 83.5
DeepSeek-Coder 78.6 65.4

B Demonstration of the Pipeline

In this section, we demonstrate our synthetic
pipeline through several examples. The demon-
strations include:

• A demonstration of unit test generation, show-
ing the original function, its generated unit
tests, and the test execution output format.

• The bug-fixing process, demonstrating how
the system handles failed test cases.

• The complete refined function after all itera-
tions and improvements.

• Prompts for the unit test generator and the
agents.

5636

Unit Test Demo

Function:
import numpy as np

def drawWeights(size, distribution):
Validate the size parameter
if not isinstance(size, (int, tuple)) or (isinstance(size, int) and size <=

0):
raise ValueError("Size must be a positive integer or a tuple of positive

integers.")

Validate the distribution parameter
if distribution not in ['lognormal', 'normal', 'uniform']:

raise ValueError("Distribution must be one of 'lognormal', 'normal', or
'uniform'.")

weights = None
if distribution == 'lognormal':

hyp = 1.0
m = np.log(0.2) + hyp
s = hyp
weights = (np.random.lognormal(m, s, size) * (255 / 20.0)).astype(int)

elif distribution == 'normal':
m = 10
s = 5
weights = np.random.normal(m, s, size).astype(int)

elif distribution == 'uniform':
weights = np.random.uniform(0, 255, size).astype(int)

return weights

Unit Test:
import unittest
import numpy as np
class TestCases(unittest.TestCase):

def test_lognormal_weights(self):
np.random.seed(42)
weights = drawWeights(10, 'lognormal')
self.assertIsInstance(weights, np.ndarray)
self.assertEqual(len(weights), 10)
self.assertTrue(all(0 <= w <= 255 for w in weights))

def test_normal_weights(self):
np.random.seed(42)
weights = drawWeights(10, 'normal')
self.assertIsInstance(weights, np.ndarray)
self.assertEqual(len(weights), 10)
self.assertTrue(all(-5 <= w <= 20 for w in weights))

def test_uniform_weights(self):
np.random.seed(42)
weights = drawWeights(10, 'uniform')
self.assertIsInstance(weights, np.ndarray)
self.assertEqual(len(weights), 10)
self.assertTrue(all(0 <= w <= 255 for w in weights))

def test_invalid_size(self):
with self.assertRaises(ValueError):

drawWeights(-1, 'lognormal')
def test_invalid_distribution(self):

with self.assertRaises(ValueError):
drawWeights(10, 'invalid_distribution')

Execution Result:
["pass",{}]

Table 11: Demo of a function, its corresponding unit test, and the execution result.

5637

Debug Demo

Failed Test Case:
def test_data_file_with_non_image_entries(self):

Create a data file with non-image entries
mixed_data_file_path = os.path.join(self.test_dir, "mixed_data.txt")
with open(mixed_data_file_path, 'wt') as f:

f.write("input_image3.png annotation_image3.png\n")
f.write("non_image_data.txt\n")

Try to load the mixed data file
with self.assertRaises(ValueError):

_load_data_files(mixed_data_file_path)

Original Execution Result:
[

"fail",
{

"test_data_file_with_non_image_entries": "Traceback (most
recent call last):\n File \"__test__.py\", line 140, in
test_data_file_with_non_image_entries\nAssertionError: ValueError not raised\n",

"test_invalid_data_file_format": "Traceback (most recent call last):\n
File \"__test__.py\", line 117, in test_invalid_data_file_format\nAssertionError:
ValueError not raised\n"

}
]

Fix Bug Accorrdingly:
import numpy as np
import os
import logging
Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s -
%(message)s')
def _load_data_files(data_file_path):

input_path_list = []
annotation_path_list = []
Check if the data file exists
if not os.path.exists(data_file_path):

logging.error(f"Data file not found: {data_file_path}")
raise FileNotFoundError(f"Data file not found: {data_file_path}")

data_folder_path = os.path.dirname(os.path.abspath(data_file_path))
try:

with open(data_file_path, 'rt') as f:
for line in f:

Split the line into input and annotation paths
parts = line.strip().split(' ')
if len(parts) != 2:

logging.warning(f"Skipping invalid line: {line.strip()}")
raise ValueError(f"Invalid line format: {line.strip()}")

input_path, annotation_path = parts
Construct full paths
full_input_path = os.path.join(data_folder_path, input_path)

full_annotation_path = os.path.join(data_folder_path, annotation_path)
Validate paths

if not os.path.exists(full_input_path) or not
os.path.exists(full_annotation_path):

logging.warning(f"Skipping non-existent paths: {full_input_path}
or {full_annotation_path}")

raise ValueError(f"Non-existent paths: {full_input_path} or
{full_annotation_path}") ##### ValueError raise added here #####

input_path_list.append(full_input_path)
annotation_path_list.append(full_annotation_path)

except Exception as e:
logging.error(f"Error reading data file: {e}")
raise

return np.array(input_path_list), np.array(annotation_path_list)

Table 12: Demo of the code enhancement pipeline.

5638

Refine Demo

import numpy as np

def get_var(data):
"""
Calculates the variance of a given list of numbers.

Parameters:
- data (list of float or int): A list of numerical values for which to calculate

the variance.

Returns:
- float: The variance of the input data.

Requirements:
- numpy

Example:
>>> var = get_var([1, 2, 3, 4, 5])
>>> print(var)
2.0
"""
Calculate the mean of the data
mean = np.mean(data)

Calculate the variance using the formula: sum((x - mean)^2) / n
var = sum([np.power(x - mean, 2) for x in data]) / len(data)

return var

Table 13: Demo of the code snippet after refinement.

5639

Prompt for the unit test generator

You are a professional software testing expert. Your task is to write comprehensive
unit tests for the given function.

Please follow these guidelines:
1. Write tests that cover different scenarios including:

- Normal/expected inputs
- Edge cases
- Invalid/unexpected inputs
- Boundary conditions

2. Each test case should:
- Have a clear and descriptive name
- Include assertions that verify both return values and expected behavior
- Be independent of other test cases
- Include brief comments explaining the test purpose

3. Test structure requirements:
- Use the unittest framework
- Create a proper test class inheriting from unittest.TestCase
- Include setUp/tearDown methods if necessary
- Write self-contained tests that don't rely on external resources

4. Important:
- Only output the test code within Python code blocks
- Ensure all necessary imports are included
- Focus on functionality testing rather than implementation details
- Write tests that are maintainable and readable

Please analyze the given function and generate appropriate unit tests following
these guidelines.
Your output format should be like this:
```python
import unittest
class TestCases(unittest.TestCase):

def test_case_1(self):
# Test purpose: Verify the function handles normal inputs correctly
self.assertEqual(function_name(input1, input2), expected_output1)

def test_case_2(self):
...

```
Do not modify the class name(TestCases).

Table 14: Prompt for unit test generator.

5640

Prompt for the bug-fix agent.

You are a powerful coding expert specialized in code debugging and optimization.
Your task is to fix the given code based on unit test results and error messages.

Please follow these guidelines:
1. Carefully analyze:

- The original code implementation
- Failed test cases and their error messages
- Test requirements and expected behavior

2. When fixing the code:
- Make minimal necessary changes to fix the issues
- Maintain the original code structure when possible
- Ensure the solution is efficient and clean

3. Important:
- Only output the fixed code within Python code blocks
- Ensure the solution passes all test cases
- Focus on addressing the specific test failures
- Maintain code readability and best practices

Please analyze the code and test failures, then provide the corrected
implementation.
Your output format should be like this:
```python
# imports
def function_name(params):

# Fixed implementation
...

```

Table 15: Prompt for bug-fix agent.

5641

Prompt for the refine agent.

You are a powerful coding expert specialized in code documentation and optimization.
Given a code snippet and its unit tests, please enhance the code with comprehensive
documentation while maintaining its functionality.

Requirements:
1. Documentation Enhancement:

- Add clear function description
- Document parameters and return values
- List required dependencies
- Provide usage examples
- Document potential exceptions (if applicable)

2. Code Refinement Guidelines:
- Add concise inline comments at key points
- Maintain code functionality
- Ensure code remains readable and well-styled
- Add necessary error handling without affecting core logic
- Keep function names unchanged

3. Documentation Format:
- Function description
- Parameters
- Returns
- Requirements
- Raises (if applicable)
- Examples

Your output should follow this structure:
```python
def function_name(params):

# Core documentation
# Implementation with inline comments
...

```

Table 16: Prompt for refine agent.

5642

