@inproceedings{zhao-etal-2025-detoxifying,
title = "Detoxifying Large Language Models via the Diversity of Toxic Samples",
author = "Zhao, Ying and
Guo, Yuanzhao and
Weng, Xuemeng and
Tian, Yuan and
Wang, Wei and
Chang, Yi",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.298/",
pages = "5869--5882",
ISBN = "979-8-89176-332-6",
abstract = "Eliminating toxicity from Large Language Models (LLMs) is crucial for ensuring user safety. However, current methods have limitations in the analysis and utilization of toxic samples, failing to fully harness their potential. Through comparative analysis of toxic and safe samples, we discover that toxic samples exhibit diversity and, within this diversity, there lies specificity. These findings suggest that leveraging these characteristics of toxic samples could enhance the performance of algorithms in detoxifying LLMs. To this end, we propose a novel diverse detoxification framework, DivDetox, which comprises two innovative components: a Multi-Category-Induced Personalized Sample Generation (MPSG) strategy and a Scaled Contrastive DPO (SC-DPO) approach. The former is designed to elicit a variety of personalized toxic responses from the LLM, while the latter is constructed to precisely and fully utilize these toxic responses. Experiments on benchmark datasets across different model scales and different detoxification tasks verify the effectiveness of our architecture."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhao-etal-2025-detoxifying">
<titleInfo>
<title>Detoxifying Large Language Models via the Diversity of Toxic Samples</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ying</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuanzhao</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuemeng</namePart>
<namePart type="family">Weng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuan</namePart>
<namePart type="family">Tian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yi</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Eliminating toxicity from Large Language Models (LLMs) is crucial for ensuring user safety. However, current methods have limitations in the analysis and utilization of toxic samples, failing to fully harness their potential. Through comparative analysis of toxic and safe samples, we discover that toxic samples exhibit diversity and, within this diversity, there lies specificity. These findings suggest that leveraging these characteristics of toxic samples could enhance the performance of algorithms in detoxifying LLMs. To this end, we propose a novel diverse detoxification framework, DivDetox, which comprises two innovative components: a Multi-Category-Induced Personalized Sample Generation (MPSG) strategy and a Scaled Contrastive DPO (SC-DPO) approach. The former is designed to elicit a variety of personalized toxic responses from the LLM, while the latter is constructed to precisely and fully utilize these toxic responses. Experiments on benchmark datasets across different model scales and different detoxification tasks verify the effectiveness of our architecture.</abstract>
<identifier type="citekey">zhao-etal-2025-detoxifying</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.298/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>5869</start>
<end>5882</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Detoxifying Large Language Models via the Diversity of Toxic Samples
%A Zhao, Ying
%A Guo, Yuanzhao
%A Weng, Xuemeng
%A Tian, Yuan
%A Wang, Wei
%A Chang, Yi
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F zhao-etal-2025-detoxifying
%X Eliminating toxicity from Large Language Models (LLMs) is crucial for ensuring user safety. However, current methods have limitations in the analysis and utilization of toxic samples, failing to fully harness their potential. Through comparative analysis of toxic and safe samples, we discover that toxic samples exhibit diversity and, within this diversity, there lies specificity. These findings suggest that leveraging these characteristics of toxic samples could enhance the performance of algorithms in detoxifying LLMs. To this end, we propose a novel diverse detoxification framework, DivDetox, which comprises two innovative components: a Multi-Category-Induced Personalized Sample Generation (MPSG) strategy and a Scaled Contrastive DPO (SC-DPO) approach. The former is designed to elicit a variety of personalized toxic responses from the LLM, while the latter is constructed to precisely and fully utilize these toxic responses. Experiments on benchmark datasets across different model scales and different detoxification tasks verify the effectiveness of our architecture.
%U https://aclanthology.org/2025.emnlp-main.298/
%P 5869-5882
Markdown (Informal)
[Detoxifying Large Language Models via the Diversity of Toxic Samples](https://aclanthology.org/2025.emnlp-main.298/) (Zhao et al., EMNLP 2025)
ACL