@inproceedings{wang-etal-2025-rav,
title = "{RAV}: Retrieval-Augmented Voting for Tactile Descriptions Without Training",
author = "Wang, Jinlin and
Ji, Yulong and
Yang, Hongyu",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.315/",
pages = "6198--6205",
ISBN = "979-8-89176-332-6",
abstract = "Tactile perception is essential for human-environment interaction, and deriving tactile descriptions from multimodal data is a key challenge for embodied intelligence to understand human perception. Conventional approaches relying on extensive parameter learning for multimodal perception are rigid and computationally inefficient. To address this, we introduce Retrieval-Augmented Voting (RAV), a parameter-free method that constructs visual-tactile cross-modal knowledge directly. RAV retrieves similar visual-tactile data for given visual and tactile inputs and generates tactile descriptions through a voting mechanism. In experiments, we applied three voting strategies, SyncVote, DualVote and WeightVote, achieving performance comparable to large-scale cross-modal models without training. Comparative experiments across datasets of varying quality{---}defined by annotation accuracy and data diversity{---}demonstrate that RAV{'}s performance improves with higher-quality data at no additional computational cost. Code, and model checkpoints are opensourced at https://github.com/PluteW/RAV."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2025-rav">
<titleInfo>
<title>RAV: Retrieval-Augmented Voting for Tactile Descriptions Without Training</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jinlin</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulong</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongyu</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Tactile perception is essential for human-environment interaction, and deriving tactile descriptions from multimodal data is a key challenge for embodied intelligence to understand human perception. Conventional approaches relying on extensive parameter learning for multimodal perception are rigid and computationally inefficient. To address this, we introduce Retrieval-Augmented Voting (RAV), a parameter-free method that constructs visual-tactile cross-modal knowledge directly. RAV retrieves similar visual-tactile data for given visual and tactile inputs and generates tactile descriptions through a voting mechanism. In experiments, we applied three voting strategies, SyncVote, DualVote and WeightVote, achieving performance comparable to large-scale cross-modal models without training. Comparative experiments across datasets of varying quality—defined by annotation accuracy and data diversity—demonstrate that RAV’s performance improves with higher-quality data at no additional computational cost. Code, and model checkpoints are opensourced at https://github.com/PluteW/RAV.</abstract>
<identifier type="citekey">wang-etal-2025-rav</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.315/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>6198</start>
<end>6205</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T RAV: Retrieval-Augmented Voting for Tactile Descriptions Without Training
%A Wang, Jinlin
%A Ji, Yulong
%A Yang, Hongyu
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F wang-etal-2025-rav
%X Tactile perception is essential for human-environment interaction, and deriving tactile descriptions from multimodal data is a key challenge for embodied intelligence to understand human perception. Conventional approaches relying on extensive parameter learning for multimodal perception are rigid and computationally inefficient. To address this, we introduce Retrieval-Augmented Voting (RAV), a parameter-free method that constructs visual-tactile cross-modal knowledge directly. RAV retrieves similar visual-tactile data for given visual and tactile inputs and generates tactile descriptions through a voting mechanism. In experiments, we applied three voting strategies, SyncVote, DualVote and WeightVote, achieving performance comparable to large-scale cross-modal models without training. Comparative experiments across datasets of varying quality—defined by annotation accuracy and data diversity—demonstrate that RAV’s performance improves with higher-quality data at no additional computational cost. Code, and model checkpoints are opensourced at https://github.com/PluteW/RAV.
%U https://aclanthology.org/2025.emnlp-main.315/
%P 6198-6205
Markdown (Informal)
[RAV: Retrieval-Augmented Voting for Tactile Descriptions Without Training](https://aclanthology.org/2025.emnlp-main.315/) (Wang et al., EMNLP 2025)
ACL