TurboRAG: Accelerating Retrieval-Augmented Generation with
Precomputed KV Caches for Chunked Text

Songshuo Lu

Hua Wang Yutian Rong Zhi Chen

Yaohua Tang

Moore Threads Al

lusongshuo97@gmail.com
rytapril@foxmail.com

Abstract

Current Retrieval-Augmented Generation
(RAG) systems concatenate and process
numerous retrieved document chunks for
prefill which requires a large volume of online
computation, therefore leading to significant
latency in time-to-first-token (7TFT). To
reduce the computation overhead as well as
TTFT, we introduce TurboRAG, a hybrid
offline-online paradigm that (i) pre-computes
chunk-level key-value (KV) caches, (ii)
stitches them together at inference time using
independent-attention and reordered-RoPE
techniques, and (iii) preserves answer quality
without changing the model architecture.
Our approach is applicable to most existing
large language models and their applications

wangtianyu.di@gmail.com
cswccz@gmail. com

tangyaohua28@gmail.com

g What's fun in London?
Query

Step 1: Retrive top-K documents

Step 1: Retrive top-K documents

(l ______________ Preprare
= embedding E ~ — E
Fé —)% 1EGt > |
: —
Chunks i_LLM___ KV Caches !
Inference

‘:;t@[Explore Museums: Visit the British Museum...]

g [Iconic Landmarks: See the Tower of London...]

e[HTstory: Walk through the historic streets...]

Step 2: Prompt LLM with K docs and generate

London offers a mix of cultural, historical,

. . . S "
(1] +o+ g Py and recreational activities , including
% - o -

museums, landmarks, theatre, parks,

markets, and scenic views...
LLM ’

(a) Standard RAG

Step 2: Look up

€ :‘r[Explore Museums: Visit the British Museum...] =0=

without any requirement in modification of
models and inference systems. Experimental
results across a suite of RAG benchmarks
demonstrate that TurboRAG reduces TTFT by
up to 9.4x compared to the conventional RAG

g [Iconic Landmarks: See the Tower of London...] e |

e[History: Walk through the historic streets...] =60

Step 2: Prompt LLM with K docs and generate

systems (on an average of 8.6x), but reserving
comparable performance to the standard RAG
systems.

=00 London offers a mix of cultural, historical,
b4 g 3 2 and recreational activities , including
Ea: +Query o - museums, landmarks, theatre, parks,
LLM markets, and scenic views...
(b) TurboRAG

Figure 1: Pipeline of Standard RAG and TurboRAG.

1 Introduction

TurboRAG precompute the KV cache for each chunk of

text and reuse during RAG inference.

Retrieval-Augmented Generation (RAG) couples a
large language model (LLM) with a dense retriever
so that generation can be grounded in external
knowledge (Lewis et al., 2020; Chen et al., 2024).
While effective, the conventional concatenate-then-
prefill paradigm imposes three salient bottlenecks:

1. Redundant recomputation. Frequently re-
trieved chunks must be re-encoded on every
query, duplicating key—value (KV) cache com-
putation.

inflating TTFT and overall latency (Borgeaud
et al., 2022).

. Restricted batch size. Long concatenated

contexts consume disproportionate GPU mem-
ory, limiting per-device batch size and thereby
throughput.

These issues stem from the current prefill
paradigm that computes a single KV cache for

the entire concatenated document set online. A

2. Quadratic prefill cost. Concatenating k
chunks enlarges the input length by O(k);
self-attention therefore scales quadratically,

6600

natural question arises: can we transform prefill
into a hybrid offline—online process by precomput-
ing chunk-level KV caches once and reusing them

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 6600-6613
November 4-9, 2025 ©2025 Association for Computational Linguistics

Attention Mask

[

Attention Mask

Attention Mask

[

12345678 910111213141516

Attention Map

-0.005

123412341234

Attention Map

13 14 15 16

-0.005

12345678 910111213141516

Attention Map

-0.005

-0.004 -0.004 -0.004

- 0.003 -0.003 - 0.003

0.002 0.002 0.002

0.001 0.001 0.001

- 0.000 - 0.000 - 0.000

Query Attention Query Attention Query Attention

i m\l”u

0.00 4 0.00 0.00 i
200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 200 400 600 800 1000 1200

Position IDs Position IDs Position IDs

(a) Casual Attention (b) Composite Positions (c) Reordered Positions

Figure 2: The first row presents three distinct setting of attention mask matrices and position IDs. (a) Lower
triangular casual attention, where the entire context is attended to. (b) Independent Attention and Composite
Positions, which use the original position IDs for each chunk. (c) Independent Attention and Reordered
Positions, where each document can only attend to itself and rearrange the position IDs for tokens in chunk to
standard monotone increasing numbers. In the second and third rows, we present an instance of RAG to visualize
and analyze the distribution of the attention matrices under different settings, as well as the distribution of attention
scores from the query to the context chunks. This instance consists of four text chunks and a user query, as detailed
in Appendix A. In the standard setting shown in the first column of second row, it can be observed that the attention
scores between different chunks are quite sparse; each document primarily focuses on its internal information.
Furthermore, in the third row, the distribution of attention scores from the query to the context chunks indicates that
even when the attention between documents is fully masked, the distribution of attention scores from the query to
the documents does not exhibit significant variation, remaining concentrated in the documents that contain relevant
information.

TurboRAG, a hybrid offline—online RAG frame-
work that:

across queries? The main technical obstacle is that
naively stitching caches produces inconsistent at-
tention masks and position indices, degrading accu-
racy. To address them, we start from two empirical
observations in real-world RAG workloads:

1. precomputes and stores KV caches for each
passage offline;

retrieves the relevant caches at inference time
and stitches them using the independent mask
and reordered positions;

* Sparse inter-chunk attention. Figure 2a 2.
shows that cross-chunk attention weights are
negligible in typical RAG settings. The text
contents between most documents are actually 3

) . performs a lightweight supervised fine-tuning
independent.

so the base LLM can seamlessly consume the

* RoPE depends only on relative offsets. For new cache layout.

rotary position embeddings (RoPE) (Su et al.,
2024), the absolute token index is irrelevant;
only pairwise distance matters.

Compared to the conventional RAG system, ex-
perimental results across the LongBench multi-
document QA benchmarks demonstrate that
we propose TurboRAG reduces TTFT by up to 9.4x (8.6x on

6601

Building on these insights,

average), with comparable accuracy to the base-
line. Simultaneously, during online inference,
TurboRAG reduces computational resource utiliza-
tion by 98.5 % compared to standard RAG, which
significantly increases the maximum supported
batch size and enhances throughput. Additionally,
regression experiments indicate that TurboRAG
does not exhibit any significant degradation in other
general capabilities compared to standard RAG.

These gains make the method especially appeal-
ing in two real-world scenarios: (1) Large-scale
real-time user support—for example web-based
customer service assistants with relatively fixed
documents. Because every passage already has
a KV cache, user queries achieve a 100 % hit-
rate, eliminating redundant prefill computation.
TurboRAG can significantly enhance the user ex-
perience by optimizing latency and efficiency. (2)
Resource-constrained on-device assistants—for
instance, a personal laptop or edge workstation
equipped with a modest, heavily time-shared GPU.
Because that accelerator must also serve other local
workloads (e.g. IDEs, browsers, video rendering),
compute head-room is scarce. By storing chunk-
level caches on disk and eliminating prefill FLOPs,
TurboRAG keeps TTFT well below one second
even when only a small fraction of the GPU is
available, delivering smooth interaction without
relying on cloud resources.

Contributions

* We design a novel pipeline that decomposes
the prefill stage of conventional RAG systems
into offline and online phases to notably re-
duce the overhead of KV cache computation.

* We propose simple yet effective techniques to
handle attention mask and position IDs so that
model accuracy is maintained.

* We achieve a substantial improvement of
9.4x in TTFT over the state-of-the-art multi-
document QA benchmarks without compro-
mising accuracy.

2 Related Work

Retrieval-Augmented Generation (RAG) couples a
dense retriever with a large language model (LLM)
to ground generation in external knowledge, and
has become the de-facto solution for knowledge-
intensive NLP tasks (Lewis et al., 2020). Sub-
sequent studies confirm its gains across question

answering, code synthesis and creative writing
(Borgeaud et al., 2022; Jiang et al., 2024; Trivedi
et al., 2022; Ram et al., 2023).

To curb the latency induced by long concate-
nated contexts, one strand of work reduces the
amount of text delivered to the decoder. Sparse
RAG prunes low-utility passages with an auxiliary
LLM, achieving faster inference without loss of
quality (Zhu et al., 2024). Fusion-in-Decoder (FiD)
encodes passages independently before decoder-
level fusion, thus avoiding quadratic cross-passage
attention (Izacard and Grave, 2020). Parallel Con-
text Windows batch sliding windows but rely on
heuristic position shifts to maintain coherence (Rat-
ner et al., 2022).

A second line accelerates decoding itself. Lin-
ear or sparse-attention Transformers such as Lin-
former (Wang et al., 2020), Reformer (Kitaev et al.,
2020) and Performer (Choromanski et al., 2020)
turn the quadratic cost sub-quadratic, though of-
ten at some accuracy penalty on multi-document
inputs. Complementary techniques compress the
key-value (KV) cache on-the-fly: CacheGen en-
codes caches into compact bitstreams (Liu et al.,
2024), H20 evicts low-utility "Heavy-Hitter" to-
kens (Zhang et al., 2024), and ChunkKYV keeps only
semantically salient sub-chunks (Liu et al., 2025).
Most recently, speculative-decoding variants draft
responses with a small model and verify them with
a larger model—Speculative RAG (Wang et al.,
2024b) and RASD (Quan et al., 2025)—reducing
the computational cost of decoding. These specu-
lative methods reduce decoding FLOPs, whereas
TurboRAG lowers prefill FLOPs via cache reuse;
both directions are orthogonal and could be com-
bined.

A third branch focuses on cache reuse. RAG-
Cache saves query-level KV states but requires
an exact context match, leading to low hit rates
when passage order changes (Jin et al., 2024).
CacheBlend precomputes per-passage caches but
must pipeline disk I/O to hide latency (Yao et al.,
2025). TurboRAG advances this idea by intro-
ducing RoPE-consistent position reordering and
an independent-attention mask, enabling order-
agnostic cache stitching with negligible accuracy
loss.

Concurrent with our work, several accelerators
have emerged which are complementary to, or
share conceptual underpinnings with, TurboRAG.
For instance, Marconi (Pan et al., 2024) focuses
on cross-request prefix caching; this is complemen-

6602

tary, as a TurboRAG-stitched context for a popu-
lar document set can itself be cached by Marconi
for a second-level speedup. Similarly, FlashForge
(Wang et al., 2025) optimizes decoding-phase atten-
tion kernels, which is orthogonal to TurboRAG’s
prefill savings; the two can be stacked to reduce
both TTFT and time-per-output-token. Notably,
Block-Attention (Ma et al., 2024), developed inde-
pendently in the same period, also utilizes chunk-
level attention and RoPE re-ordering. This rep-
resents a conceptually analogous approach to our
independent-attention and reordered-RoPE tech-
niques, validating the efficacy of this strategy for
blocked-context processing.

Finally, position-handling techniques such as
ROPE extrapolation (Su et al., 2024) and position
interpolation (Chen et al., 2023) extend context
length during training. TurboRAG achieves low-
latency, high-quality answers simply by masking
cross-chunk attention and reordering position IDs
at inference time. Loading the precomputed pas-
sage caches from storage to GPU is much faster
than computing long-context prefill. Furthermore,
a targeted fine-tune can be added to eliminate the
small accuracy bias introduced by the changed at-
tention mechanism.

In summary, prior art either reduces how much
text is retrieved, how expensively it is decoded, or
reuses caches under strict ordering. TurboRAG
contributes a complementary axis—KV caches
reuse with correct positional semantics—while re-
maining compatible with retrieval sparsification,
cache compression, and speculative decoding. To
the best of our knowledge, this is the first work that
redesigns the RAG inference paradigm by trans-
forming the online computation of document KV
caches into an offline process. Unlike techniques
that accelerate the online prefill computation it-
self, our hybrid approach aims to eliminate it for
retrieved content entirely. This approach signif-
icantly reduces the computational complexity of
the RAG systems and could become a powerful
enabler for LLM applications that have restricted
latency constraints.

3 Methodology

This section presents TurboRAG, a novel approach
to improve the performance of conventional RAG
systems without sacrificing accuracy. We formalize
the problem in Section 3.1 and discuss the differ-
ences in the attention mask matrix and position IDs

between TurboRAG and existing RAG systems in
Section 3.2. Section 3.3 explains how we trained
the model to adapt to the new attention mask ma-
trix and position IDs. We introduce the TurboRAG
inference pipeline in Section 3.4.

3.1 Problem Formalization

Conventionally, given a user query g, we retrieve
top k document chunks, [c1, . . ., ¢g], and send them
to a LLM that sequentially generates the textual
outputs. We denote the number of tokens in x as
len(z) and we assume len(c;) = [. In existing
RAG, we first compute the prefill using ¢ and the
concatenated c, denoted as a concatenated context
sequence [c1, . .., Ck, ¢, to obtain the correspond-
ing hidden states X “. At each decoding step ¢, the
model computes attention scores based on X ©. Let
X = [X1, Xo, ..., X;] be the hidden states of the
tokens generated so far, where X is the hidden
state for the current token being generated. The
model computes the query Q;, key K, and value
V; matrices for context at position i:

Here, W, Wi, and Wy, are the learned weight
matrices. The attention score is computed using
the dot product of the query and the key, scaled by
the square root of the dimension of the key vectors
d:

QK]

Vd

For RoPE, it is necessary to multiply ; and K; by
their corresponding position embedding separately
as shown in Equation 3:

2

Attention_scores =

q0 cos thy —q1 sin thy
q1 cos thy qo sin thy
G2 cos tf —q3 sin t6y
Q; — qs3 ® cos tf + Q@ ® sin t6y
qd—2 costlyja 1 —qd—1 sintfq/21
dd-1 costfy/a1 qd—2 sintfy/o—1
(3)

where 6,, = 10000~2™/4_ A benefit of this
equation is that the position embedding for @ and
K can be computed independently. Furthermore,
the final result of the multiplication of the two po-
sition embeddings is solely dependent on the po-
sitional difference between them. Since this is an
autoregressive model, we need to apply a causal
mask to ensure that the model does not attend to

6603

future tokens. This is typically achieved by multi-
plying with a lower triangular masking matrix:

Attention_scores = Attention_scores * M (4)

where M is the masking matrix. K and V are
generally referred to as KV cache, which is stored
for the subsequent computation of attention scores
in the later regressive decoding. The attention
scores are then normalized using the softmax func-
tion to obtain attention weights. Finally, the output
for the current token is computed as a weighted
sum of the value vectors.

3.2 Position ID Rearrangement

This section presents the technique we developed
to ensure that the concatenated KV cache com-
puted offline for each document is as effective as
the KV cache computed using the whole originally
retrieved documents. Figure 2 illustrates the differ-
ences in the attention mask matrix and position IDs
between the two methods.

The online concatenation of the KV cache re-
quires that there is no cross-attention between mul-
tiple document chunks during inference, which is
a significant distinction from the lower triangular
mask matrix employed by the current RAG system.
We denote this new attention modality in Figure
2c as Independent Attention, which effectively
simulates the scenario of retrieving the KV caches
and concatenating them. As illustrated in Figure
2c, cross-attention between documents are all set
to zero, and when decoding the answer, attention
scores are computed among query, answer and all
documents.

Another issue arising from TurboRAG is the
computation of position embeddings. The key
cache computed for each ¢; are denoted as K.
If the KV caches are simply concatenated, all K
will consist of position IDs ranging from O to [.
Consequently, the finally combined IDs will be rep-
resented as [0,...,0,0,...,0,0,...,(], which we
refer to as composite positions. This presents a
problem: when decoding at step ¢, the positional
difference between an element in K and ¢t does
not correspond to the actual token index difference.
For instance, the third element in X “2 at this point
has a positional difference of ¢ — 3, while the actual
token index difference should be ¢ — (I + 3).

To resolve this issue, we rearrange the po-
sitions of all key cache to obtain [0,...,[,] +
1,...,20,2141,. .., k-1]. We refer to this new posi-
tions arrangement as reordered positions. Session

2 indicates that RoPE encodes "only the relative
pair-wise offset" ¢ — ¢, not the absolute position
index, so any permutation that preserves those off-
sets leaves the rotary phase term unchanged. Con-
sequently, once the per-chunk K,V from Equa-
tion 1 are saved, we need only re-apply Equation
3 with the new indices to obtain the concatenated
K; the corresponding Q' is produced exactly as
in standard RAG. Implementation details are given
in Appendix B.

However, the new attention mask matrix and
position embedding could lead to a accuracy drop
in question-answering tasks. To mitigate this issue,
we need to specifically train the model to make
the LLLM be able to handle this new setting. To
compare the effects of different positional indices,
we will conduct experiments on both reordered
positions and composite positions in Section 4.
Next, we will introduce the training details.

3.3 Adapting LLMs for Precomputed Cache
Concatenation

Standard supervised fine-tuning (SFT) typically
employs the attention mask matrix and position
embeddings shown in Figure 2a to fine-tune the LM
using the data with the above format. However, to
make sure that the pretrained LM can accommodate
to new patterns exhibited in the mask matrix and
position embedding during inference, TurboRAG
used the mask matrix and position embedding in
Figure 2b and Figure 2c to fine-tune the LM. After
the fine-tuning, the LM would be able to see the
same context KV cache produced from training
while conducting inference. Therefore, it would
not experience the accuracy regression in question-
answering tasks.

3.4 The TurboRAG Pipeline

With the fine-tuned LLM, the inference pipeline of
TurboRAG is enumerated as follows (Figure 1b):

1. Document Encoding (offline): The doc-
uments are encoded into embedding vec-
tors using a transformer-based model like
Bert(Devlin et al., 2019). These document
embeddings are stored in a vector index to
facilitate efficient similarity search.

2. Document Prefill (offline): Use an LLM to
perform prefill offline. It computes the KV
caches for each document and saves them in
the database.

6604

3. Query Encoding: The input query is encoded
into a vector using the same Bert model.

4. Retrieval: The encoded query is used to per-
form a similarity search in the vector database
to retrieve the most relevant documents.

5. Contextual KV cache Formation (online):
Retrieve the stored KV cache corresponding
to the documents and concatenate them in the
way demonstrated in Figure 2. The combined
KV cache forms a comprehensive context for
the query.

6. KV Cache Prefill (online): The LLM pro-
cesses prefill using the combined KV caches
for the input query.

7. Response Generation (online): After the pre-
fill phase is accomplished, the LLM starts to
generate the response and return to the user.

It is evident that the usage process of TurboRAG
is fundamentally consistent with that of standard
RAG, making it highly convenient to use. We will
be releasing the modified implementation code as
open source.

4 Experiments

This section evaluates performance and accuracy of
a number of TurboRAG model variants against the
conventional RAG models. Specifically, we seek
to answer the questions below in this section:

* How does TurboRAG perform on document
question-answering (QA)?

* What is the overall TTFT performance of
TurboRAG compared against the Ndive RAG
system on popular benchmarks?

* How large is the regression in the general ca-
pabilities of TurboRAG models?

* How efficient is TurboRAG in scaling infer-
ence batch sizes?

4.1 Experiment Setup

We selected gpt-40-2024-08-06 as the baseline due
to its excellence in many benchmark suites. For
brevity, we refer the conventional RAG system
as "Naive RAG". We also fine-tuned two models
for TurboRAG, namely TurboRAG-composite and
TurboRAG-reordered corresponding to composite
positions and reordered positions, respectively.

All three models are fine-tuned on a dataset com-
posed of 50% document QA data and 50% general
tasks (e.g., code, dialogue, reasoning). All data are
publicly accessible. For a detailed composition of
the dataset, please refer to Appendix D.

Training Setup We base our training on Qwen2-
7B(Yang et al., 2024), performing SFT on the afore-
mentioned dataset. The fine-tuning was conducted
on 32 NVIDIA A100 80GB GPUs with a batch size
of 256 samples, using a learning rate of 1e-5 and
the AdamW optimizer(Loshchilov, 2017). To quan-
tify the overhead, this entire SFT process completes
in approximately 888 GPU-hours. At current on-
demand cloud rates, this represents a one-time cost
under $3,000 USD, a manageable figure compara-
ble to standard adaptation costs for 7B-parameter
models. Both Naive RAG and TurboRAG models
were trained using the same data proportions to
ensure comparability.

4.2 Document QA Accuracy

Let’s first evaluate the accuracy of document QA
via intensive study on RGB Benchmark(Chen et al.,
2024), a bilingual benchmark designed to test a
model’s ability to answer questions on retrieved
documents. We followed the testing methodology
provided by the official guidelines and let each
query extract five documents during the evaluation.
In addition, we also measured the accuracy with
varying noise levels from 0.2 to 0.8 (e.g., Noise Ra-
tio = 0.6 means 3 out of 5 retrieved documents are
irrelevant or noisy). In order reveal the effective-
ness of fine-tuning, we gauged accuracy of each
TurboRAG configuration with and without fine-
tuning.

As Table 1 shows, TurboRAG-reordered is ro-
bust even without any fine-tuning: its average ac-
curacy falls by only 4.2% (92.6 vs 96.8) and never
more than 6% even at the highest noise ratio 0.8, so
it can be used out-of-the-box in many applications.
By contrast, TurboRAG-composite incurs a larger
drop (5.8%) and nearly 20% as the task difficulty
increases. Because the relative offsets that RoPE re-
lies on are no longer preserved with duplicated po-
sition IDs. After fine-tuning, TurboRAG-reordered
and TurboRAG-composite can effectively maintain
the benchmark accuracy gap within 1% compared
to the Naive RAG. They also demonstrated compa-
rable performance to GPT-40 across both Chinese
and English datasets even under high-noise con-
ditions. This highlights the effectiveness of the
proposed modifications in preserving high accu-

6605

Model Chinese English
02 04 06 08 Ave | 02 04 06 08 Avg
GPT-40-2024-08-06 983 98.0 966 87.7 952]99.0 993 983 963 982
Naive RAG 99.0 980 967 873 953 | 997 993 993 943 982
TurboRAG-composite g 3 g0 3 937 790 91.8 | 980 963 913 750 902
w/o fine-tuning
TurboRAG-reordered g0 g0 7 933 813 923 | 980 973 907 857 929
w/o fine-tuning
TurboRAG-composite 99.0 97.3 96.0 86.7 94.8 | 99.3 98.0 96.7 92.7 96.7
TurboRAG-reordered 987 97.3 96.0 90.7 95.7 | 99.0 983 960 93.7 96.8

Table 1: Performance comparison of different models under various noise ratios in English and Chinese in RGB.

racy when leveraging KV cache in document QA
tasks. Additional experimental data on RGB can
be found in Table 2, which also includes details on
the multi-document integration tasks in the RGB
dataset. The results show that even for queries re-
quiring information synthesis across multiple doc-
uments, TurboRAG-reordered achieves accuracy
comparable to that of Ndive RAG. These results
confirm that (i) the reordered-position scheme is
immediately usable, and (ii) a lightweight SFT step
suffices to eliminate any residual gap for either
masking strategy.

Chinese
Model 02 04 0.6 Avg.
Naive RAG 50 46 29 42

TurboRAG-composite
w/o fine-tuning
TurboRAG—reoFdered 30 21 20 24

w/o fine-tuning
TurboRAG-composite 53 41 32 42
TurboRAG-reordered 56 44 32 44

35 27 18 27

English
Model 02 04 06 Avg.
Naive RAG 57 48 36 47

TurboRAG-composite
w/o fine-tuning
TurboRAG—reoFdered 31 23 19 24

w/o fine-tuning
TurboRAG-composite 58 48 34 47
TurboRAG-reordered 57 51 34 47

40 27 27 31

Table 2: Performance comparison of different models
under various noise ratios in RGB Information Integra-
tion Task.

To validate that our method proposed techniques
are also directly applicable to long text input cases,
we inspected TurboRAG’s accuracy on an addi-
tional long-text RAG benchmark dataset, Long-
Bench(Bai et al., 2023). As shown in Table 3,
TurboRAG also exhibits comparable answer ac-
curacy to that of Naive RAG in such use scenarios.

In all experiments, the performance of
TurboRAG-composite was consistently inferior to
that of TurboRAG-reordered, particularly in more
challenging contexts such as LongBench. This
observation further validates the necessity of main-
taining the accuracy of relative positional differ-
ences in positional encoding.

To further validate the generality of our ap-
proach, we conducted identical experiments on
LLaMA-3.1-8B(Dubey et al., 2024). As shown in
Appendix F, the results are consistent, confirming
the effectiveness of our method across RoPE-based
models.

4.3 General Capability Regression

To ensure that the non-standard attention masks
and position IDs usded in fine-tuning does not neg-
atively affect the models’ general capabilities, we
accomplished regression tests using the OpenCom-
pass' benchmark on various mainstream tasks. As
summarized in Table 4, the modifications had min-
imal impact on the base capabilities of the models.
TurboRAG-reordered showed strong generalization
across tasks, with no significant performance degra-
dation compared to Naive RAG.

4.4 TTFT Performance

Now we assess the impact of TurboRAG on in-
ference speed. All models are evaluated on the

"https://github.com/open-compass/opencompass

6606

Score TTFT (ms)

Subcategory Context Query
(Metric) Token Token Naive Turbo Turbo aive Turbo Speedu
Composite Reordered Reordered “F P

MuSiQue (F1) 16349 18.8 22.12 23.64 27.37 1610 171 9.4x
2WikimQA (F1) 7553 17.0 35.02 34.28 39.51 709 101 7.0x
DuReader (Rouge-L) 10642 6.0 34.57 33.37 33.03 1007 116 8.7x
HotpotQA (F1) 13453 20.1 40.21 35.78 4528 1333 147 9.1x
Avg. 11999 155 3299 31.76 36.29 1165 134 8.6x

Table 3: Performance of Naive RAG and TurboRAG on LongBench multi-document QA (subcategories).

TurboRAG

Metric Naive RAG Sub
-reordered

MMLU 69.57 70.73 +1.16
TriviaQA 56.90 56.47 -0.43
GSM-8K 79.12 79.45 +0.33
MATH 39.54 40.58 +1.04
HumanEval 58.26 57.32 -0.94
AlpacaEval2 7.83 8.32 +0.49

Table 4: Regression experiments of Naive RAG and
TurboRAG. Evaluated by OpenCompass.

LongBench dataset, with specific focus on its multi-
document QA tasks. The experiments were con-
ducted on the Huggingface transformers® using
FlashAttention2(Dao, 2023) and an NVIDIA A100
80GB GPU. As shown in Table 3, TurboRAG-
reordered improves the performance of TTFT by
8.6x on average, with a peak speedup of 9.4x, com-
pared to Naive RAG for long-documents process-
ing. This reduction substantiates that TurboRAG
can significantly reduce TTFT, thereby enhancing
user experience, and consequently enables the ex-
pansion of RAG applications to cases with stringent
latency requirement. The main reason of reduction
in the TTFT is that the online computation over-
head of KV caches for long text is largely alleviated
as TurboRAG shifts the KV cache computation for
each document to offline processing. Table 10 in
Appendix E shows that TurboRAG can still achieve
2.42x speedup on short documents.

4.5 Batch Scaling

Compared to Naive RAG, TurboRAG requires to
transfer KV cache from CPU to GPU, which may
introduce extra communication overhead that de-
grades performance measured by TTFT. To evalu-

Zhttps://huggingface.co/

ate the magnitude of the communication cost, we
carried out experiments under a fixed total recall
text length of 8192 and a query length of 128. We
gathered a series of TTFT numbers with batch size
ranging from 1 to 8 in two settings. One transferred
the KV cache from CPU to GPU using PCIE Gen4,
while the other assumed that the KV cache was
prefetched to the GPU memory thereby excluding
the impact of communication. Additionally, we
measured the computational load for both Naive
RAG and TurboRAG under different settings. The
method for measuring is detailed in Appendix G.

Batch Metric Naive Turbo Speed- Turbo Speedup
Size RAG RAG up w/oh2d w/oh2d
U TEope 13636 200 41X 5y 161
2 Urion o7 a1 X gly 2Ix
4 TTRLOPS sasds 839 43 gag 293
6 TTRLOPs 81820 1258 47X [psy 326%
8 TELOP 100095 1078 41X 1675 3

Table 5: Generation throughput and latency.

From Table 5, it is evident that as the batch size
increases, the speedup ratio (decrease in TTFT)
also increases without any degradation in perfor-
mance. When the batch size is small, the pressure
on computational resources is insufficient, result-
ing in a TTFT speedup value of only 16.1x between
Naive RAG and TurboRAG. As the batch size
increases, GPU becomes over-utilized for naive
RAG, thus leading to substantially higher latency
in TTFT compared to TurboRAG. Table 5 also il-
lustrates that, even in scenarios requiring the trans-
fer of the KV cache from host to device (h2d),

6607

Seq Query Batch

Length Length Size Naive Turbo
256 128 1 44.00 41.62
256 128 2 68.19 195.96
256 128 4 127.19 165.73
256 128 8 24231 120.62
512 128 1 59.16 37.16
512 128 2 101.84 47.58
512 128 4 205.61 133.14
512 128 8 398.18 179.94
1024 128 1 97.89 48.79
1024 128 2 186.02 89.08
1024 128 4 359.95 139.70
1024 128 8 711.19 189.81

Table 6: TTFT (ms) for different context lengths and
batch sizes on an A100 GPU.

TurboRAG still achieves a fourfold speed improve-
ment compared to Naive RAG. In addition to la-
tency, we analyzed the computational overhead in
terms of TFLOPs. Our measurements show that
TurboRAG achieves an approximate 98.46% reduc-
tion in TFLOPs compared to naive RAG, highlight-
ing its profound efficiency.

We provide detailed empirical results in Table 6,
which includes TTFT comparisons for shorter con-
text lengths. Furthermore, Table 7 demonstrates
that TurboRAG’s speedup is consistent across vari-
ous scales of the Qwen-2 model family, from 1.5B
to 72B parameters. Additionally, if each text
chunk contains 200 tokens, recalling 5 segments
results in a total of 1000 tokens. According to the
experimental results, even with a batch size of 1, a
commendable speedup of up to two times can be
achieved.

5 Conclusion and Discussion

This paper presented a novel approach to train-
ing and utilizing RAG that significantly reduces
the time required for prefill computations. Our
method, which involves pre-computing and con-
catenating the KV caches of retrieved text frag-
ments without inter-document cross-attention, ef-
fectively streamlines a critical bottleneck in the
generation pipeline. It is worth noting that other
optimization techniques, such as KV cache com-
pression, are orthogonal to our method and can be
used in conjunction to further reduce latency and
ease storage pressure. Our work raises a funda-

Model Batch Naive Turbo A (ms) Speed
Size Size TTFT(ms) TTFT(ms) §)Speedup

1 197 85 112 2.31

1.5B 2 371 88 289 4.28

’ 4 742 150 592 4.94

8 1479 292 1187 5.06

1 363 96 267 3.78

3B 2 715 117 598 6.11

4 1417 199 1218 7.12

8 2855 491 2364 5.81

1 1413 272 1141 5.19

14B 2 2921 549 2372 5.32

4 5852 1022 4830 5.72

8 11888 2452 9436 4.84

1 2923 383 2540 7.63

32B 2 5766 711 5055 8.10
(2xGPUs) 4 11558 1319 10239 8.76
8 23205 2884 20321 8.04

1 6157 653 5504 942

72B 2 12349 1099 11250 11.23
(4xGPUs) 4 24840 2333 22507 10.64
8 50595 5600 44995 9.03

Table 7: TTFT for different model sizes of Qwen-2.

mental question about the necessity of computa-
tionally intensive cross-attention between different
fragments, suggesting that direct query-document
interactions are often sufficient for effective con-
text aggregation. Furthermore, our findings offer
insights into the adaptability of LLMs to varied po-
sitional embeddings, drawing a parallel to context-
extension techniques and underscoring the models’
flexibility.

Beyond these architectural insights, a practical
deployment must address systems-level challenges.
For instance, managing dynamic knowledge bases
could involve strategies such as versioned cache
entries, an incremental offline pipeline for asyn-
chronous updates, and a graceful fallback to online-
prefill to ensure high availability. Storage pressure
could be further managed by using 4/8-bit quantiza-
tion, yielding a 2-4x reduction in footprint. The de-
sign of a high-throughput K'V-cache store, another
critical component, would likely leverage technolo-
gies such as fast local NVMe SSDs for storage,
lightweight LSM-tree indexing for sub-millisecond
lookups, and bundling chunks to optimize DMA
transfers into GPU memory. In multi-node se-
tups, frameworks like vLLM and technologies like
GPUDirect-RDMA could be used to further man-
age memory and hide network latency. For future
work, a systematic study could explore the perfor-
mance boundaries of this approach across different
task domains.

6608

Limitations

This section discusses some limitations this paper
has that we intentionally leave as the future work
to further improve.

Limitation 1: Storage overhead. TurboRAG de-
liberately trades space for latency. Taking Qwen2-
7B as an example, a 512-token chunk produces a
FP16 KV cache of 2 X 2 x 28 x 8 x 128 x 512=28
MB, so caching one million chunks needs ~28 TB
of disk. Current nearline HDDs cost roughly $10-
$20 per TB 3, meaning the entire 28 TB repository
is well under $600—an order of magnitude cheaper
than the GPUs ordinarily provisioned to meet the
same sub-second latency target. Moreover, most
practical deployments cache far fewer passages:
an internal customer-service knowledge base or a
personal laptop’s local archive typically contains
10*—10° passages, translating to only 0.3-3 TB (or
40-400 GB after 8-bit KV quantisation). Only at
web-scale corpora with tens of billions of passages
would storage grow beyond a few petabytes and
call for additional strategies such as tiered object
storage or aggressive cache compression; for the
vast majority of latency-sensitive workloads, the
modest disk budget is amply justified by the multi-
fold reduction in TTFT. Besides, we have noticed
an increasing number of works to handle KV cache
compression (Wang et al., 2024a; Liu et al., 2024;
Zhang et al., 2024), which can effectively reduce
the storage requirements and are orthogonal to our
work. Integrating these KV cache compression
techniques into TurboRAG will be our next direc-
tion of work. Beyond disk storage, the process
of loading the KV cache from disk to memory in
TurboRAG also puts pressure on memory usage.

Limitation 2: Model fine-tuning. Another Issue
is that the current pipeline still requires fine-tuning
of the model, which limits its applicability and pre-
vents it from being directly used on newly emerging
state-of-the-art LLMs. We are currently exploring
ways to reduce or even eliminate this dependency
on fine-tuning.

References

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. 2023. Longbench:

3A 16 TB Exos X18 enterprise drive lists for $210 on
Amazon ($13/TB), while an 18 TB WD Red Pro sells for
about $350 ($19/TB).

A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoff-
mann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George Bm Van Den Driessche, Jean-Baptiste
Lespiau, Bogdan Damoc, Aidan Clark, et al. 2022.
Improving language models by retrieving from tril-
lions of tokens. In International conference on ma-
chine learning, pages 2206-2240. PMLR.

Jiawei Chen, Hongyu Lin, Xianpei Han, and Le Sun.
2024. Benchmarking large language models in
retrieval-augmented generation. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 38, pages 17754-17762.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and
Yuandong Tian. 2023. Extending context window of
large language models via positional interpolation.
arXiv preprint arXiv:2306.15595.

Krzysztof Choromanski, Valerii Likhosherstov, David
Dohan, Xingyou Song, Andreea Gane, Tamas Sar-
los, Peter Hawkins, Jared Davis, Afroz Mohiuddin,
Lukasz Kaiser, et al. 2020. Rethinking attention with
performers. arXiv preprint arXiv:2009.14794.

Tri Dao. 2023. Flashattention-2: Faster attention with
better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. Preprint, arXiv:1810.04805.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Gautier Izacard and Edouard Grave. 2020. Leverag-
ing passage retrieval with generative models for
open domain question answering. arXiv preprint
arXiv:2007.01282.

Wenqi Jiang, Shuai Zhang, Boran Han, Jie Wang,
Bernie Wang, and Tim Kraska. 2024. Piperag: Fast
retrieval-augmented generation via algorithm-system
co-design. arXiv preprint arXiv:2403.05676.

Chao Jin, Zili Zhang, Xuanlin Jiang, Fangyue Liu, Xin
Liu, Xuanzhe Liu, and Xin Jin. 2024. Ragcache:
Efficient knowledge caching for retrieval-augmented
generation. arXiv preprint arXiv:2404.12457.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, et al. 2020. Retrieval-augmented generation

6609

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805

for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459-9474.

Xiang Liu, Zhenheng Tang, Peijie Dong, Zeyu Li, Bo Li,
Xuming Hu, and Xiaowen Chu. 2025. Chunkkv:
Semantic-preserving kv cache compression for ef-
ficient long-context llm inference. arXiv preprint
arXiv:2502.00299.

Yuhan Liu, Hanchen Li, Yihua Cheng, Siddhant Ray,
Yuyang Huang, Qizheng Zhang, Kuntai Du, Jiayi
Yao, Shan Lu, Ganesh Ananthanarayanan, et al. 2024.
Cachegen: Kv cache compression and streaming for

fast large language model serving. In Proceedings of
the ACM SIGCOMM 2024 Conference, pages 38-56.

I Loshchilov. 2017. Decoupled weight decay regulariza-
tion. arXiv preprint arXiv:1711.05101.

Dongyang Ma, Yan Wang, and Lan Tian. 2024. Block-
attention for efficient prefilling. arXiv preprint
arXiv:2409.15355.

Rui Pan, Zhuang Wang, Zhen Jia, Can Karakus, Luca
Zancato, Tri Dao, Yida Wang, and Ravi Netravali.
2024. Marconi: Prefix caching for the era of hybrid
llms. arXiv preprint arXiv:2411.19379.

Guofeng Quan, Wenfeng Feng, Chuzhan Hao, Guochao
Jiang, Yuewei Zhang, and Hao Wang. 2025. Rasd:
Retrieval-augmented speculative decoding. arXiv
preprint arXiv:2503.03434.

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay,
Amnon Shashua, Kevin Leyton-Brown, and Yoav
Shoham. 2023. In-context retrieval-augmented lan-
guage models. Transactions of the Association for
Computational Linguistics, 11:1316-1331.

Nir Ratner, Yoav Levine, Yonatan Belinkov, Ori Ram,
Inbal Magar, Omri Abend, Ehud Karpas, Amnon
Shashua, Kevin Leyton-Brown, and Yoav Shoham.
2022. Parallel context windows for large language
models. arXiv preprint arXiv:2212.10947.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

Harsh Trivedi, Niranjan Balasubramanian, Tushar
Khot, and Ashish Sabharwal. 2022. Interleav-
ing retrieval with chain-of-thought reasoning for
knowledge-intensive multi-step questions. arXiv
preprint arXiv:2212.10509.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang,
and Hao Ma. 2020. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768.

Zheng Wang, Boxiao Jin, Zhongzhi Yu, and Minjia
Zhang. 2024a. Model tells you where to merge:
Adaptive kv cache merging for 1lms on long-context
tasks. arXiv preprint arXiv:2407.08454.

Zhibin Wang, Rui Ning, Chao Fang, Zhonghui Zhang,
Xi Lin, Shaobo Ma, Mo Zhou, Xue Li, Zhongfeng
Wang, Chengying Huan, et al. 2025. Flashforge:
Ultra-efficient prefix-aware attention for llm decod-
ing. arXiv preprint arXiv:2505.17694.

Zilong Wang, Zifeng Wang, Long Le, Huaixiu Steven
Zheng, Swaroop Mishra, Vincent Perot, Yuwei
Zhang, Anush Mattapalli, Ankur Taly, Jingbo Shang,
et al. 2024b. Speculative rag: Enhancing retrieval
augmented generation through drafting. arXiv
preprint arXiv:2407.08223.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

Jiayi Yao, Hanchen Li, Yuhan Liu, Siddhant Ray, Yihua
Cheng, Qizheng Zhang, Kuntai Du, Shan Lu, and
Junchen Jiang. 2025. Cacheblend: Fast large lan-
guage model serving for rag with cached knowledge
fusion. In Proceedings of the Twentieth European
Conference on Computer Systems, pages 94—109.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan-
dong Tian, Christopher Ré, Clark Barrett, et al. 2024.
H2o: Heavy-hitter oracle for efficient generative in-
ference of large language models. Advances in Neu-
ral Information Processing Systems, 36.

Yun Zhu, Jia-Chen Gu, Caitlin Sikora, Ho Ko, Yinxiao
Liu, Chu-Cheng Lin, Lei Shu, Liangchen Luo, Lei
Meng, Bang Liu, et al. 2024. Accelerating inference
of retrieval-augmented generation via sparse context
selection. arXiv preprint arXiv:2405.16178.

6610

A Document Q&A Example

Query

When is the premiere of *Carole King & James Taylor: Just Call Out My Name’?

Document 1

Duke capped off a remarkable season by beating UCF 30-13 on Wednesday in the
Military Bowl - the program’s first bowl win since 2018. With the win, Duke got to
nine wins for the first time since 2014. Mike Elko has done one of the best coaching
jobs in the country in his first season with the Blue Devils. The program was barely
competitive in David Cutcliffe’s final seasons on the job, going a combined 5-18 (1-17
ACC) in his final two years. With Wednesday’s win, Duke finished the season 9-4
overall with a 5-3 mark in ACC play. It was just the third season in school history that
the Blue Devils had finished with a winning conference record and won a bowl game.
Washington: After going 4-8 in 2021, Washington capped off a tremendous turnaround
by beating Texas 27-20 in the Alamo Bowl. With the win, Washington finished the
season with 11 wins - the most it has had in a season since 2016. That’s the year the
Huskies reached the College Football Playoff...

Document 2

Personal Preference is a 1987 board game created by Donal Carlston that involves
guessing the order in which a player prefers foods, activities, people, and other items
compared to one another. The game was published by Broderbund in the United
States, Playtoy Industries in Canada, and Parker Brothers International in Britain. An
updated version by the original creator was launched on Kickstarter on May 1, 2023.
The new version contains updated cultural references and new categories. The game
contains cards in four categories: Food & Drink, Activities, People, and Potpourri
(miscellaneous). Each card has a photo or drawing on each side and text indicating
what that side represents (e.g., chocolate éclairs, climbing a mountain, Harrison Ford,
spy novels). Each round, one player draws four cards from one category, or one from
each category, depending on the player’s position on the board...

Document 3

However, the concert tour took place in honor of the 40th anniversary. The two might
have aged since they first performed together but neither Carole King nor James Taylor
have lost a beat in all these years!The concert film includes the following songs:(You
Make Me Feel Like) A Natural WomanSomething in the Way She MovesSo Far Away-
Carolina in My MindCountry RoadSmackwater JackWhere You Lead (lyrics changed
up as the city they’re playing in replaces New York)Your Smiling FaceBeautifulShower
The PeopleWay Over YonderSweet Baby James (this kicks off the second half of the
film)Up on the Rooflt’s Too LateFire and Rainl Feel the Earth MoveYou’ve Got a
FriendHow Sweet It Is (To Be Loved by You)You Can Close Your EyesMexico (end
credits)DIRECTOR: Frank MarshallFEATURING: Carole King, James Taylor, Danny
Kortchmar, Peter Asher, Russ Kunkel, Leland SklarADDITIONAL MUSICIANS:
Andrea Zonn, Arnold McCuller, Kate Markowitz, Robbie KondorCarole King & James
Taylor: Just Call Out My Name premiered January 2, 2022, at 9:00pm ET/PT on
CNN...

Document 4

I was also raised to see the correlation between life and the game of football and how
the process of preparation leads to success in both.” Jason earned a bachelors in history,
government and philosophy at Adams State in 2005, and a masters in criminal justice
administration from the University of Phoenix in 2007. He added a second master’s
in educational methods from the University of Tulsa in 2012. He was a defensive
coordinator at the University of Montana, a co-defensive coordinator at Adams State, a
defensive coordinator at Valdosta State and the Colorado School of Mines, a defensive
advisor at Temple University, served as a defensive assistant at Oklahoma State for two
years - after a two-season stay with fellow FBS program Tulsa as outside linebackers
coach...

6611

B Positional-Encoding Options in
TurboRAG

In our paper, we discuss two approaches for han-
dling positional encodings in TurboRAG: Compos-
ite Positions and Reordered Positions:

Composite Positions. This approach applies
ROPE during the precomputation of each chunk’s
key-value cache, making it straightforward to im-
plement.

Reordered Positions. Here, RoPE is applied
at inference time instead of during precomputa-
tion. The additional computational cost is negli-
gible, as shown in the pseudocode from Qwen-
2. The only additional step is the single call to
apply_single_rotary_pos_emb on the stitched
key_states.

query_states, key_states =
apply_rotary_pos_emb(query_states,
key_states, cos, sin, position_ids)

query_states = apply_single_rotary_pos_emb(
query_states, cos, sin, position_ids)

if past_key_value is not None:
...
cache_kwargs = {"sin": sin,
Specific to RoPE models
key_states, value_states = past_key_value.
update(key_states, value_states, self.
layer_idx, cache_kwargs)

n

cos": cos} #

full_position_ids = torch.arange(

0, past_key_value.seen_tokens, dtype=
torch.long, device=query_states.
device

)
full_position_ids = full_position_ids.
unsqueeze (0)
else:
full_position_ids = position_ids

key_states = apply_single_rotary_pos_emb(
key_states, cos, sin, full_position_ids)

C Data Format

You are an accurate and reliable Al
assistant capable of answering questions
by referencing external documents. Please
note that the external documents may not
always be related to the question. The
documents are as follows:
<|]doc_start|>{chunk_13}<|doc_end|>
<|doc_start|>{chunk_23}<|doc_end|>
<|]doc_start|>{chunk_33}<|doc_end|>

If the information in the documents contain

the correct answer, you will provide an
accurate response. If the documents do
not contain the answer, you will refuse to
answer.

Question: {que}

D Data Proportions

Data Type Sampling Ratio
Document Q&A 50%
General Dialogue 25%
Reasoning 10%
Code 10%
Others 5%

Table 8: Sampling Ratios of Different Data Types during
Model Fine-tuning

Data Name Language Quantity
glave-rag-vl English 51,153
MS Marco English 10,000
HotpotQA English 17,796
BaiduSTI Chinese 4,032
DuReader Chinese 30,000
BaiduBaike Chinese 13,615
Wiki Chinese 9,265

Table 9: Specific Data and Quantities of Document
Q&A

E Supplementary Information for RGB

Context TTFT
Model Tokens (ms) Speedup
Naive RAG 87
TurboRAG 7 36 2.42x

Table 10: Comparison of TTFT in RGB for Naive RAG
and TurboRAG.

6612

F LLaMA-3.1-8B Experimental Results

In this section, we present the experimental results
on the LLaMA-3.1-8B model, further validating
the effectiveness of our method across RoPE-based
models.

Chinese
Model 02 04 06 08 Ave
Naive RAG 99.7 99.0 98.0 91.7 97.1
Tf;fﬁf;f 99.0 97.7 953 88.0 95.0
English
Model 02 04 06 08 Avg
Naive RAG 99.0 99.0 99.0 967 98.4
T:;fg:gg 99.0 97.7 967 960 97.4

Table 11: Performance comparison of different models
based on LLaMA-3.1-8B under various noise ratios in
English and Chinese in RGB.

Chinese
Model 0.2 0.4 0.6 Avg.
Naive RAG 61 50 44 51.7
TurboRAG-reordered 56 49 40 48.3
English
Model 0.2 0.4 0.6 Avg.
Naive RAG 71 64 52 623

TurboRAG-reordered 68 66 52 62.0

Table 12: Performance comparison of different models
based on LLaMA-3.1-8B under various noise ratios in
RGB Information Integration Task.

G Computational Load Calculation

Here, we present the method for calculating the
FLOPS, while omitting the computation of the
1m_head (due to its relatively small proportion).
Let njypue denote the number of input tokens and
Neontext the context length. For a large language
model (LLM) employing the Swiglu activation
function, the key parameters are:

L7 H7 K7 dh7 d7 dm1p7

where

* L is the number of layers,
e H is the number of attention heads,
* K is the number of key-value heads,

* d}, is the head dimension,

d is the hidden size, and
* dpp is the intermediate (MLP) size.

For each token, the per-layer computational costs
are defined as follows:

1. QKYV Transformation:
The cost Cgyy is given by

Cyr = 2d (H + 2K) dp.
2. Attention Mechanism:

The cost Cyyy is expressed as

Catn = 2 H djp, Neontext-

3. Output Projection:
The cost C,, is given by

C, =2d>.
4. Multilayer Perceptron (MLP):
The cost Cyyjp can be represented as

Crutp = 6 d dop-

Therefore, the total computational cost (FLOPS)
is expressed as:

FLOPS = Minput L (quv + Catn + Co + lep) .

6613

