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Abstract

Large Language Models (LLMs) can improve
commonsense reasoning through generating in-
termediate knowledge. However, the effective-
ness of this knowledge introspection is not al-
ways guaranteed. This paper first systemati-
cally investigates and reveals an introspection
paradox: while simple introspection tends to
benefit weaker models, it often degrades the
performance of stronger ones, particularly on
simpler tasks. Our deep analysis indicates that
this paradox arises from a complex interplay
among model capability, task difficulty and
the quality of generated knowledge. Further
interpretability analysis reveals the origins of
low-quality knowledge generation. To better
employ introspected knowledge in LLM, this
paper proposes a training-free Adaptive Intro-
spection Strategy that operates in two stages
using only the model’s internal states: Knowl-
edge Detection, which dynamically identifies
and discards potentially low-quality knowledge,
and Knowledge Regeneration, which employs
attention smoothing to guide the model away
from harmful failure modes during knowledge
generation. Extensive experiments on five
Llama models with different sizes and eight
commonsense reasoning benchmarks demon-
strate that our approach effectively mitigates
the limitations of standard introspection and
has consistent performance gains across almost
all settings.

1 Introduction

Large Language Models (LLMs) have achieved
remarkable progress across a wide range of tasks.
Techniques such as Chain-of-Thought (CoT) (Wei
et al., 2022; Kojima et al., 2022) and Long
CoT (OpenAI, 2024; DeepSeek-AI, 2025), which
prompt the model to generate intermediate reason-
ing steps before producing a final answer, have
been proven to be particularly effective in complex
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James knew that he shouldn't have 
been buying beer for minors. He didn't 
even get paid for it. Why was this bad?
(A) lose money (B) fun
(C) have no money (D) broken law

Generate knowledge 
about the input...

Thought/Knowledge Final AnswerPrompts

Figure 1: Unlike Chain-of-Thought (CoT) reasoning
(top), Knowledge Introspection (KI) outputs relevant
knowledge rather than the thinking process before gen-
erating the final answer. This makes KI more suitable
for knowledge-intensive tasks. However, its effective-
ness is not guaranteed, as the quality of the generated
knowledge can significantly impact performance.

reasoning tasks such as mathematical problem solv-
ing and code generation (Qwen, 2025; Liao et al.,
2025a). However, recent research suggests that be-
yond mathematical or logical domains, CoT offers
limited benefits and even impairs performance for
knowledge-intensive tasks such as commonsense
reasoning (Kambhampati et al., 2024; Liu et al.,
2024; Zheng et al., 2025; Sprague et al., 2025).

In fact, numerous studies (Xu et al., 2024; Yao
et al., 2023; Tang et al., 2023; Liao et al., 2025b)
suggest that the failure of such LLMs in knowledge-
intensive tasks is primarily due to the improper
activation of relevant internal knowledge during
inference, rather than a lack of the required knowl-
edge. Therefore, inspired by CoT-style prompting,
a growing line of work explores knowledge intro-
spection (KI, as shown in Figure 1) (Liu et al.,
2022b,a, 2023; Molfese et al., 2024)—a process in
which the model is guided to generate relevant sup-
porting knowledge before providing a final answer.
Different from previous superficially generating
intermediate texts like CoT, introspection focuses
on eliciting implicit relevant knowledge, including
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facts, concepts, etc., for explicit grounding. These
approaches aim to bridge the gap between knowl-
edge storage and utilization in LLMs, offering a
promising direction for improving LLM reasoning
in knowledge-intensive tasks such as commonsense
reasoning.

Nevertheless, this paper raises important ques-
tions: Is knowledge introspection truly effective?
For which models does it help? Under what task
conditions does it succeed or fail? To explore these
questions, the paper conducts a preliminary analy-
sis on commonsense reasoning tasks and reveals an
introspection paradox. Surprisingly, the analysis
results show that knowledge introspection does not
always improve the reasoning performance. In fact,
it is often beneficial for weaker models, which is
consistent with the conclusion of prior work (Liu
et al., 2022b). However, it also degrades the per-
formance of stronger models, particularly on rela-
tively simple tasks. This contradicts the intuitive
assumption that more capable models, equipped
with richer internal knowledge, should perform bet-
ter on reasoning tasks (Liu et al., 2023; Berti et al.,
2025).

To better understand this counterintuitive phe-
nomenon, this paper carries out more comprehen-
sive experiments and analyses to uncover when and
why knowledge introspection (KI) helps or hurts
the reasoning performance. Our analysis reveals
a nuanced interplay among model capability, task
difficulty, and the quality of generated knowledge,
and has several important observations. First, as
model capability increases, the gains from KI di-
minish, and the risk of performance drops due to
low-quality knowledge grows. Second, harmful
knowledge notably increases prediction uncertainty
for stronger models and leads to performance degra-
dation. Third, introspection becomes more useful
on harder tasks, especially when the model cannot
answer directly. It is because the proportion of help-
ful knowledge will increase when the task becomes
difficult or complex. Finally, harmful knowledge
generation is linked to an over-reliance on localized
context. Attribution analysis shows higher focus
and more concentrated attention during such cases,
shedding light on the roots of these failures.

To address the problem of the aforementioned in-
trospection paradox, the paper proposes a training-
free adaptive knowledge introspection framework
that dynamically adapts and refines the use of intro-
spective knowledge according to the characteristics
of both the task and the model. Specifically, our

method consists of two stages, both leveraging the
model’s internal states without requiring additional
training: (1) Knowledge Detection: Identifies and
discards low-quality knowledge based on the in-
terplay between model capability and task diffi-
culty. (2) Knowledge Regeneration: Replaces
discarded knowledge through refining the attention
distributions. In this way, LLMs are encouraged
to integrate broader contextual information for im-
proved knowledge generation. The experiments on
5 LLMs with different sizes and 8 commonsense
reasoning tasks show the consistent improvements
and demonstrate the robustness of the proposed
adaptive strategy.

The main contributions are as follows:

• The paper empirically identifies the introspec-
tion paradox of LLMs on the commonsense
reasoning tasks. Our findings demonstrate
that the effectiveness of introspection is not
always guaranteed and varies across different
scenarios.

• The paper systematically analyzes the under-
lying reasons. It is attributed to the critical
interplay among task difficulty, model capa-
bility and the quality of generated knowledge.

• The paper proposes an adaptive introspec-
tion exploitation strategy, including Knowl-
edge Detection and Knowledge Regeneration,
which are solely based on model internal
states to dynamically modulate the use of in-
trospection.

2 Related Work

LLMs often benefit from relevant knowledge in
knowledge-intensive reasoning tasks, whether from
external or internal sources. To this end, vari-
ous strategies have been proposed for integrating
knowledge into LLMs.

LLMs Augmented with External Knowledge
A significant body of work focused on augment-
ing LLMs with structured or unstructured exter-
nal knowledge (Kaur et al., 2022; Wang et al.,
2025). This includes integrating structured knowl-
edge graphs like ConceptNet (Speer et al., 2017)
and ATOMIC (Sap et al., 2019). In this context,
graph neural network (GNN) based methods such
as KagNet (Lin et al., 2019), QA-GNN (Yasunaga
et al., 2021), and GreaseLM (Zhang et al., 2022)
aimed to guide and augment reasoning by utiliz-
ing the encoded relations among knowledge units
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(e.g., entities). Another prominent line of work
is retrieval-augmented generation (RAG) (Lewis
et al., 2020), which retrieved relevant textual pas-
sages or facts to support generation for common-
sense reasoning tasks (Yu et al., 2022). Despite
their effectiveness, the performance of such ap-
proaches depends heavily on the quality and cov-
erage of external knowledge resources (Ma et al.,
2019; Mitra et al., 2020; Talmor et al., 2021). More-
over, they often necessitate extra infrastructure,
training, or fine-tuning, without directly leveraging
the extensive internal knowledge embedded within
LLM parameters. In contrast to these methods that
depend on external modules, our work investigates
a complementary approach—one that seeks to har-
ness the internal knowledge inherently encoded
in LLMs through pretraining, thereby offering a
lightweight yet effective alternative.

LLMs Augmented with Internal Knowledge
Recognizing that LLMs implicitly store substan-
tial world knowledge (Davison et al., 2019; Jiang
et al., 2020), another line of research focused on
eliciting and leveraging the internal knowledge
for reasoning tasks (Tang et al., 2023; Liao et al.,
2025b). Prior efforts have largely focused on
explicitly supervising LMs to generate common-
sense knowledge (Bosselut et al., 2019; Zhou et al.,
2021). These methods relied on curated external
knowledge sources and structured generation ob-
jectives. By contrast, later introspective approaches
sought to activate and refine the model’s inter-
nal knowledge through self-supervised learning
and reinforcement mechanisms (Liu et al., 2022a,
2023). Other lines of work have explored the
generation of intermediate textual representations
during inference via prompting strategies. These
include template-based approaches such as Self-
Talk (Shwartz et al., 2020), few-shot prompting
methods like Generated Knowledge Prompting
(GKP) (Liu et al., 2022b), and techniques lever-
aging auxiliary pretrained models (Bosselut et al.,
2021). Alternatively, ZEBRA (Molfese et al., 2024)
retrieved relevant examples to effectively augment
the generation of knowledge.

While promising, existing approaches typically
lack mechanisms to dynamically validate the gener-
ated knowledge or control the introspection process.
In contrast, our work systematically analyzes when
and why introspection improves or impairs perfor-
mance. We further propose an adaptive framework
that can dynamically control this process for off-

the-shelf LLMs, which is distinguished from exist-
ing introspection strategies.

3 Why Introspection Succeeds or Fails

As mentioned above, knowledge introspection
(KI) has been widely proposed as a general-
purpose technique for enhancing LLM reasoning—
particularly in commonsense reasoning tasks. How-
ever, we still wonder whether it has universal effi-
cacy in all scenarios. In this section, we conduct a
systematic investigation into the following research
issues: (1) quantify the impact of KI across diverse
model capabilities and task difficulties (defined by
proxy metrics in Appendix A), and (2) analyze the
underlying mechanisms governing knowledge gen-
eration. Through carefully controlled experiments,
the paper challenges the prevailing assumption of
the universal effectiveness of knowledge introspec-
tion. And it also reveals that the effectiveness of
KI is highly contingent on an intricate interplay
between model capability and task difficulty.

3.1 Introspection Paradox
In this subsection, we perform a comprehensive
evaluation to verify the effectiveness of knowledge
introspection (KI) on different scenarios, includ-
ing (1) LLMs of varying capabilities (from 7B to
70B parameters), and (2) commonsense reasoning
tasks spanning different complexity levels (from
fact retrieval to advanced reasoning).

3.1.1 Experimental setup
We evaluate Llama family models (Touvron et al.,
2023; Grattafiori et al., 2024) on eight diverse com-
monsense reasoning datasets (see details in Ap-
pendix D). Specifically, two primary prompting
conditions are used:

• Direct Answer: Standard zero-shot prompting
where the model directly outputs the final answer.

• Answer with KI: First generate relevant knowl-
edge and then provide the final answer based on
the explicit knowledge.

3.1.2 Introspection is not always beneficial
Table 1 shows the comparison results of Answer
with KI and Direct Answer. From the table, we
have the following important observations:

• Observation 1: Benefit for Weaker Models.
Introspection consistently yields substantial per-
formance gains for weaker models, exemplified
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Model ARC.E ARC.C CSQA CSQA2 OBQA PIQA QASC WG Avg. All

Llama-3-70B-Instruct
97.69

92.47 (-5.22)
92.83

89.59 (-3.24)
81.82

79.85 (-1.97)
75.91

76.78 (+0.87)
91.60

84.20 (-7.40)
89.28

86.18 (-3.10)
90.10

82.83 (-7.27)
69.46

77.90 (+8.44)
86.09

83.72 (-2.37)

Llama-3-8B-Instruct
92.09

91.41 (-0.68)
78.58

78.50 (-0.08)
75.02

74.17 (-0.85)
63.64

66.12 (+2.48)
77.00

76.20 (-0.80)
80.47

75.57 (-4.90)
80.13

80.56 (+0.43)
57.85

61.72 (+3.87)
75.60

75.53 (-0.07)

Llama-2-70b-Chat
85.82

89.52 (+3.70)
73.98

76.88 (+2.90)
72.65

74.69 (+2.04)
60.02

63.75 (+3.73)
74.40

74.20 (-0.20)
79.43

78.24 (-1.19)
71.60

73.00 (+1.40)
52.01

53.99 (+1.98)
71.24

73.03 (+1.79)

Llama-2-13b-Chat
79.29

82.28 (+2.99)
61.95

65.96 (+4.10)
63.55

65.77 (+2.22)
56.51

62.81 (+6.30)
59.80

67.60 (+7.80)
77.15

76.22 (-0.93)
60.58

63.82 (+3.24)
52.64

55.09 (+2.45)
63.94

67.44 (+3.50)

Llama-2-7b-Chat
71.42

74.75 (+3.33)
53.58

57.85 (+4.27)
52.25

59.21 (+6.96)
52.03

54.35 (+2.32)
51.40

55.60 (+4.20)
60.66

60.72 (+0.06)
43.41

48.81 (+5.40)
50.83

52.17 (+1.34)
54.45

57.93 (+3.48)

Table 1: Accuracy comparison: Direct Answer vs. Answer with KI. Each cell shows: Direct Answer Score (top
line); Answer with KI Score and Accuracy Change (bottom line). Positive values (green) indicate improvement
with introspection, while negative values (red) indicate performance degradation.

by average improvements of +3.48, +3.50, and
+1.79 for Llama-2-7b-Chat, Llama-2-13b-Chat,
and Llama-2-70b-Chat respectively across most
tasks.

• Observation 2: Detriment for Stronger Mod-
els. However, the effect is markedly differ-
ent for more capable models like Llama-3-70B-
Instruct (-2.37) and Llama-3-8B-Instruct (-0.07),
which frequently experience performance degra-
dation. This phenomenon is particularly pro-
nounced on simpler tasks such as ARC-Easy,
ARC-Challenge, and PIQA.

• Observation 3: Benefit for Harder Tasks. Fi-
nally, these stronger models can still benefit from
introspection, particularly on more complex tasks
(e.g., CSQA2, WG).

These findings demonstrate that the benefits
of knowledge introspection are highly context-
dependent rather than universally applicable. Cru-
cially, its effectiveness emerges from a nuanced
interaction between model capability and task
difficulty—a relationship that demands systematic
examination. This insight compels us to investigate
the fundamental mechanisms governing when and
why introspection succeeds or fails. In the follow-
ing section, we will conduct a systematic inves-
tigation through two complementary approaches:
(1) Quantitative statistical analysis of the success
and failure of KI, and (2) Interpretability analysis
of intermediate states, aiming to comprehensively
uncover the underlying mechanisms.

3.2 Quantitative Statistical Analysis of the
Success and Failure of KI

To deeply understand the introspection paradox
observed in Section 3.1, we analyze the quality
of the generated knowledge and verify its subse-
quent impact on reasoning. In specific, according

to the factual correctness and the relevance to the
problem, the generated knowledge is identified as
Useful and Harmful types (details in Appendix B).
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Figure 2: Gain Rate and Risk Rate trends across differ-
ent Model Capabilities.
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Figure 3: Percentage of generated useful knowledge
when direct answering fails, with a regression line for
each model.

Formally, let CI and CD be the events of cor-
rect answers for Answer with KI and Direct An-
swer, respectively. And KUseful, KHarmful are
the events of useful and harmful knowledge genera-
tion, respectively. Two metrics are used to quantify
the potential influence associated with KUseful,
KHarmful, respectively:
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Figure 4: Information Gain across four models on different tasks.

• Gain Rate (GR): The proportion of sam-
ples where useful knowledge helps correct
a direct answering error: GR = P (¬CD ∧
CI |KUseful)

• Risk Rate (RR): The proportion of samples
where harmful knowledge causes a correct
direct answer to become incorrect: RR =
P (CD ∧ ¬CI |KHarmful)

This analysis aims to reveal the distinct trends
in knowledge generation quality relative to model
capability. Figure 2 shows that as model capabil-
ity increases, GR has a generally downward trend
while RR displays an upward trend. Stronger mod-
els exhibit reduced gains but increased risks relative
to weaker ones. This result aligns with the afore-
mentioned Observation 1 and Observation 2 and
suggests that stronger models gain less from use-
ful knowledge and are more vulnerable to harmful
knowledge generated through introspection.

Furthermore, we investigate how task difficulty
influences the quality of generated knowledge, par-
ticularly in scenarios where introspection is most
needed (i.e., when direct answering fails). Specif-
ically, we measure the percentage of generated
useful knowledge given that the direct answer is
incorrect, formally defined as P (KUseful|¬CD).
Figure 3 shows that this percentage tends to in-
crease as task difficulty increases across different
models. Their regression lines exhibit a positive
slope, respectively. This phenomenon supports Ob-
servation 3 that when tasks are harder, LLMs are
more likely to generate useful knowledge through
introspection. Such a finding is more obvious in
difficult instances.

To further quantify the impact on the model’s
prediction confidence, we measure the Information
Gain (IG) derived from introspection and offer an-
other perspective on Observation 1 and Observa-
tion 2: IG = H(A|Q)−H(A|Q,K). Here, H(·)
represents Shannon entropy. A, Q and K denote
the predicted answers, question and knowledge.
Figure 4 shows that introspection tends to decrease
uncertainty for weaker models but increase uncer-

tainty for stronger models, especially when generat-
ing harmful knowledge. It means that introspection
often introduces conflicting signals for stronger
models, rather than providing clear grounding.

Figure 5: Layer-wise attribution scores from question
context to generated knowledge on the CSQA.
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Figure 6: Average normalized entropy of attribution
scores across different models.

3.3 Interpretability Analysis of the Success
and Failure of KI

To understand the mechanisms of knowledge in-
trospection, particularly the origins of generating
harmful knowledge, we employ attribution tracing
(Hao et al., 2021; Dai et al., 2022; Li et al., 2024) to
quantify the influence of the input question context
q on the generation of the knowledge k.

Since the attention module involves interactions
between different tokens, we compute the attribu-
tion score matrix for the h-th attention head in layer
l, i.e. Attr(A(l)

h ), via Riemann approximation of
the integration. Here, m is the number of approxi-
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mation steps (Sundararajan et al., 2017):

Attr(A(l)
h ) = A

(l)
h ⊙

∫ 1

α=0

∂F (αA
(l)
h )

∂A
(l)
h

dα

≈ A
(l)
h ⊙

(
1

m

m∑

s=1

∂F ( s
mA

(l)
h )

∂A
(l)
h

) (1)

where ⊙ denotes element-wise multiplication and
F (·) represents the model’s output. Each element
[Attr(A(l)

h )]i,j represents the attribution of the i →
j token interaction for head h in layer l.

To obtain the total information flow from the
question q to the knowledge k within layer l, we
aggregate scores across all H heads and relevant
token pairs following (Hao et al., 2021; Li et al.,
2024):

Attr(l)(q → k) =
∑

(i,j)∈Cqk

(
H∑

h=1

∣∣∣[Attr(A(l)
h )]i,j

∣∣∣
)

(2)
where Cqk = {(i, j)|qs ≤ i ≤ qe, ks ≤ j ≤ ke}
includes pairs with token i in the question and to-
ken j in the knowledge statement. We sum the
absolute values across all H attention heads to get
the final score. By comparing Attr(l)(q → k) val-
ues for useful and harmful knowledge, we assess
how question information is leveraged during intro-
spection.

Figure 5 illustrates the experimental results
of Llama-2-7b-Chat and Llama-3-8B-Instruct on
CSQA (full results shown in Appendix C.1).
Both models exhibit consistently higher attribu-
tion scores from the question context to generated
knowledge when producing harmful knowledge
(red line) compared to the useful one (blue line).
This difference is particularly pronounced in the in-
termediate layers, which are crucial for the model
to extract contextual information. This observa-
tion reveals a failure mode where the generation of
harmful knowledge might be linked to an intensi-
fied, yet misguided focus on the context.

To further investigate this, we analyze the distri-
bution of the attribution scores matrix. Specifically,
we calculate the normalized Shannon entropy of
the attribution matrix (details on the calculation
and full results in Appendix C.2). Figure 6 shows
that harmful knowledge exhibits lower normalized
entropy than useful knowledge. This lower en-
tropy suggests that the influence is concentrated on
fewer specific (question token, knowledge token)
pairs, reflecting a more peaked distribution. We

also conduct case studies to visualize the attribu-
tion heatmaps (Figure 7). From the heatmaps of
harmful knowledge, we observe exceptionally high
attribution scores concentrated on specific question
tokens when generating some knowledge tokens.
It means that the model is overly dependent on lo-
calized cues from the question context. Conversely,
the attribution heatmaps for useful knowledge tend
to display a smoother pattern. It indicates that the
influence from the question context is more evenly
distributed across relevant semantic parts.

Re
ad

ing

ne
wspa

pe
r

on
e of

man
y

way
s to

pra
cti

ce yo
ur

wha
t ?

Reading
is
a

way
to

improve
your
voc
ab
ul

ary
and

compreh
ension

skills
.

He
was

be
gin

nin
g to

reg
ret
tak

ing the fig
ht
whe

n he saw ho
w
wha

t his
op

po
n en

t
was ?

O
pp
on

ents
in
a

fight
usually

have
a

weapon
.

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

Whe
re

wou
ld yo

u
fin

d
mag az ine

s
alo

ng sid
e

man
y

oth
er

pri
nte

d
work

s ?

Mag

az

ines

are

typically

found

in

libraries

.

Th
e
man ha

d a
fea

r of ill
ne

ss , so he
ne

ve
r

vis
ite

d
frie

nd
s
whowere a

wha
t ?

The

man

had

a

fear

of

hosp

it

als

.
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 7: Attention attribution heatmaps in intermediate
layer from question context tokens (X-axis) to gener-
ated knowledge tokens (Y-axis) for Llama-2-7b-chat on
CSQA examples. The left column illustrates examples
of useful knowledge generation, and the right column
illustrates harmful ones.

4 How to Modulate and Enhance
Introspection

Based on our analysis in section 3, this paper pro-
poses an Adaptive Introspection strategy (Fig-
ure 8) to exploit introspected knowledge well. It
consists of two stages: knowledge detection and
knowledge regeneration, after the original knowl-
edge generation.

4.1 Stage 1: Knowledge Detection

Goal: Selectively identify and remove potentially
low-quality knowledge before it influences the final
answer.

Method: We assess each generated knowledge
statement along the two dimensions used in our an-
notation: Correctness and Relevance. Specifically,
we employ the following solution to compute these
two metrics (details in Appendix D):

• Correctness: We use the prediction entropy
of the generated knowledge as a proxy for the
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Figure 8: Workflow of the proposed Adaptive Introspec-
tion Strategy. It dynamically filters low-quality initial
knowledge and optionally regenerates knowledge be-
fore providing the final answer.

model’s confidence. Higher entropy suggests
lower confidence, indicating uncertainty or
factual incorrectness.

• Relevance: We measure the cosine similar-
ity between the hidden states of the generated
knowledge and the question context for con-
textual relevance.

We normalize these scores using z-score normal-
ization. Knowledge pieces with scores under a
dynamic threshold related to model capability and
task difficulty are filtered out.1

Rationale: This stage leverages our findings in
Section 3.2 that stronger models exhibit a higher
Risk Rate and lower Gain Rate from introspection,
and are prone to be negatively impacted by low-
quality knowledge. Meanwhile, introspection is
more likely to yield useful knowledge on harder
tasks when direct answering fails. Therefore, we
aim to control the model’s reliance on generated
knowledge in different scenarios, from favoring
direct answering to introspection.

4.2 Stage 2: Knowledge Regeneration
Goal: Regenerate higher-quality knowledge alter-
native when the initially generated knowledge was
filtered out.

Method: Inspired by the use of temperature
to shape a probability distribution (Ackley et al.,
1985), we apply an analogous concept to the atten-
tion scores to guide the generation process away
from failure modes as we discovered in Section 3.3.

1In this work, we consider the linear relationships based
on the observations in Section 3.2 and empirically calibrate
the threshold by linearly combining scalar proxy values for
task difficulty and model capability.

The attention temperature τi for head i is computed
using the following formula:

τi = 1 + α

(
1− Hi

Hmax
i

)
(3)

Here, Hi represents the Shannon entropy of the cur-
rent attention distribution for head i. This entropy
value is normalized by the maximum possible en-
tropy Hmax

i (typically log l for a sequence of length
l). α is a hyperparameter controlling the intensity
of the temperature scaling (α ≥ 0). We apply
this temperature to the original attention scores S
for head i to obtain the final attention distribution
Afinal:

Afinal = Softmax
(
S

τi

)
(4)

Its quality will also be evaluated using the criteria
from Stage 1 before final answer generation.

Rationale: This stage leverages the analysis re-
sults in Section 3.3 that harmful knowledge gen-
eration may correlate with overly sharp attention
distributions. By smoothing these distributions dur-
ing the regeneration attempt, we encourage the
model to integrate broader contextual information
and avoid the pitfalls that led to the initial low-
quality knowledge generation.

4.3 Experimental Setup

To evaluate the effectiveness of our proposed two-
stage method, we conducted experiments across
the 8 commonsense reasoning benchmarks and 5
LLMs described in Section 3.1.1. More imple-
mentation details are reported in Appendix D. We
compare against several baselines:

• Direct Answer: The model answers directly
without any intermediate knowledge.

• CoT: Standard zero-shot Chain-of-Thought
approach (Kojima et al., 2022)

• Supervised Introspection: Approaches in-
volve training specialized models to act as in-
trospectors, including Rainier-large (Liu et al.,
2022a), Crystal-3B and Crystal-11B (Liu
et al., 2023).

• Unsupervised Introspection: The model gen-
erates intermediate knowledge itself, includ-
ing Self-Talk (Shwartz et al., 2020), GKP (Liu
et al., 2022b) and ZEBRA (Molfese et al.,
2024).
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Table 2: Performance comparison across models and methods (%). ↑ and ↓ indicate the change compared to
the respective model’s Direct Answer baseline. Green background indicates improvement, red background
indicates degradation compared to baseline. For brevity, the Chat and Instruct suffixes for the models are omitted.

Category Method (Model) ARC-E ARC-C CSQA CSQA2 OBQA PIQA QASC WG Avg.

Baseline

Direct Answer (Llama-2-7b) 71.4 53.6 52.3 52.0 51.4 60.7 43.4 50.8 54.4
Direct Answer (Llama-2-13b) 79.3 61.9 63.6 56.5 59.8 77.1 60.6 52.6 63.9
Direct Answer (Llama-2-70b) 85.8 74.0 72.6 60.0 74.4 79.4 71.6 52.0 71.2
Direct Answer (Llama-3-8B) 92.1 78.6 75.0 63.6 77.0 80.5 80.1 57.9 75.6
Direct Answer (Llama-3-70B) 97.7 92.8 81.8 75.9 91.6 89.3 90.1 69.5 86.1

CoT

CoT (Llama-2-7b) 65.8 (↓5.6) 48.6 (↓5.0) 53.8 (↑1.5) 48.5 (↓3.5) 49.2 (↓2.2) 53.1 (↓7.6) 44.9 (↑1.5) 45.9 (↓4.9) 51.2 (↓3.2)
CoT (Llama-2-13b) 74.8 (↓4.5) 61.9 (↑0.0) 56.8 (↓6.8) 59.5 (↑3.0) 57.6 (↓2.2) 70.2 (↓6.9) 56.8 (↓3.8) 50.3 (↓2.3) 61.0 (↓2.9)
CoT (Llama-2-70b) 85.1 (↓0.7) 75.9 (↑1.9) 72.6 (↑0.0) 64.7 (↑4.7) 73.6 (↓0.8) 74.3 (↓5.1) 70.4 (↓1.2) 56.4 (↑4.4) 71.6 (↑0.4)
CoT (Llama-3-8B) 92.4 (↑0.3) 81.1 (↑2.5) 75.4 (↑0.4) 64.5 (↑0.9) 76.8 (↓0.2) 79.5 (↓1.0) 79.8 (↓0.3) 58.0 (↑0.1) 75.9 (↑0.3)
CoT (Llama-3-70B) 97.3 (↓0.4) 93.5 (↑0.7) 80.9 (↓0.9) 78.2 (↑2.3) 89.6 (↓2.0) 88.7 (↓0.6) 89.2 (↓0.9) 75.5 (↑6.0) 86.6 (↑0.5)

Supervised
Introspection

Rainier-L (Llama-2-7b) 70.6 (↓0.8) 52.0 (↓1.6) 55.8 (↑3.5) 52.2 (↑0.2) 49.0 (↓2.4) 61.4 (↑0.7) 46.2 (↑2.8) 51.4 (↑0.6) 54.9 (↑0.5)
Rainier-L (Llama-2-13b) 79.4 (↑0.1) 62.2 (↑0.3) 65.4 (↑1.8) 53.8 (↓2.7) 61.0 (↑1.2) 75.0 (↓2.1) 63.3 (↑2.7) 53.9 (↑1.3) 64.2 (↑0.3)
Rainier-L (Llama-2-70b) 82.6 (↓3.2) 68.6 (↓5.4) 66.3 (↓6.3) 53.7 (↓6.3) 66.8 (↓7.6) 74.4 (↓5.0) 66.1 (↓5.5) 52.4 (↑0.4) 66.4 (↓4.8)
Rainier-L (Llama-3-8B) 87.2 (↓4.9) 73.5 (↓5.1) 71.3 (↓3.7) 58.5 (↓5.1) 71.8 (↓5.2) 77.1 (↓3.4) 72.9 (↓7.2) 61.9 (↑4.0) 71.8 (↓3.8)
Rainier-L (Llama-3-70B) 94.1 (↓3.6) 87.8 (↓5.0) 76.9 (↓4.9) 62.0 (↓13.9) 83.8 (↓7.8) 83.4 (↓5.9) 76.7 (↓13.4) 74.0 (↑4.5) 79.8 (↓6.3)

Crystal-3B (Llama-2-7b) 72.2 (↑0.8) 52.9 (↓0.7) 58.2 (↑5.9) 53.0 (↑1.0) 53.0 (↑1.6) 61.3 (↑0.6) 47.7 (↑4.3) 50.7 (↓0.1) 56.1 (↑1.7)
Crystal-3B (Llama-2-13b) 81.0 (↑1.7) 62.4 (↑0.5) 66.0 (↑2.4) 54.1 (↓2.4) 65.4 (↑5.6) 75.4 (↓1.7) 64.1 (↑3.5) 54.1 (↑1.5) 65.3 (↑1.4)
Crystal-3B (Llama-2-70b) 82.3 (↓3.5) 68.1 (↓5.9) 69.7 (↓2.9) 54.9 (↓5.1) 73.6 (↓0.8) 77.3 (↓2.1) 70.1 (↓1.5) 52.2 (↑0.2) 68.5 (↓2.7)
Crystal-3B (Llama-3-8B) 87.5 (↓4.6) 73.6 (↓5.0) 73.9 (↓1.1) 59.0 (↓4.6) 75.8 (↓1.2) 78.2 (↓2.3) 75.2 (↓4.9) 61.5 (↑3.6) 73.1 (↓2.5)
Crystal-3B (Llama-3-70B) 93.3 (↓4.4) 86.9 (↓5.9) 79.0 (↓2.8) 64.9 (↓11.0) 86.6 (↓5.0) 86.0 (↓3.3) 80.2 (↓9.9) 74.7 (↑5.2) 81.4 (↓4.7)

Crystal-11B (Llama-2-7b) 75.2 (↑3.8) 55.8 (↑2.2) 56.7 (↑4.4) 53.4 (↑1.4) 54.8 (↑3.4) 62.7 (↑2.0) 49.2 (↑5.8) 52.2 (↑1.4) 57.5 (↑3.1)
Crystal-11B (Llama-2-13b) 82.7 (↑3.4) 64.2 (↑2.3) 67.0 (↑3.4) 55.8 (↓0.7) 67.4 (↑7.6) 77.4 (↑0.3) 66.4 (↑5.8) 54.8 (↑2.2) 66.9 (↑3.0)
Crystal-11B (Llama-2-70b) 86.1 (↑0.3) 72.6 (↓1.4) 70.5 (↓2.1) 57.0 (↓3.0) 74.2 (↓0.2) 79.9 (↑0.5) 72.4 (↑0.8) 53.0 (↑1.0) 70.7 (↓0.5)
Crystal-11B (Llama-3-8B) 89.6 (↓2.5) 76.5 (↓2.1) 74.1 (↓0.9) 60.8 (↓2.8) 76.4 (↓0.6) 80.1 (↓0.4) 78.9 (↓1.2) 61.0 (↑3.1) 74.7 (↓0.9)
Crystal-11B (Llama-3-70B) 94.9 (↓2.8) 89.2 (↓3.6) 78.6 (↓3.2) 66.2 (↓9.7) 89.0 (↓2.6) 87.4 (↓1.9) 82.3 (↓7.8) 77.5 (↑8.0) 83.1 (↓3.0)

Unsupervised
Introspection

Self-Talk (Llama-2-7b) 63.2 (↓8.2) 48.2 (↓5.4) 51.8 (↓0.5) 51.2 (↓0.8) 41.6 (↓9.8) 59.3 (↓1.4) 40.3 (↓3.1) 50.5 (↓0.3) 50.8 (↓3.6)
Self-Talk (Llama-2-13b) 78.1 (↓1.2) 59.5 (↓2.4) 61.7 (↓1.9) 55.5 (↓1.0) 62.0 (↑2.2) 75.2 (↓1.9) 60.2 (↓0.4) 53.7 (↑1.1) 63.2 (↓0.7)
Self-Talk (Llama-2-70b) 74.9 (↓10.9) 62.8 (↓11.2) 64.3 (↓8.3) 55.4 (↓4.6) 60.4 (↓14.0) 76.0 (↓3.4) 61.8 (↓9.8) 51.7 (↓0.3) 63.4 (↓7.8)
Self-Talk (Llama-3-8B) 89.0 (↓3.1) 75.8 (↓2.8) 70.6 (↓4.4) 63.1 (↓0.5) 71.0 (↓6.0) 77.7 (↓2.8) 75.2 (↓4.9) 59.8 (↑1.9) 72.8 (↓2.8)
Self-Talk (Llama-3-70B) 95.7 (↓2.0) 89.5 (↓3.3) 80.9 (↓0.9) 70.1 (↓5.8) 86.8 (↓4.8) 88.1 (↓1.2) 86.0 (↓4.1) 75.5 (↑6.0) 84.1 (↓2.0)

GKP (Llama-2-7b) 74.7 (↑3.3) 57.8 (↑4.2) 59.2 (↑6.9) 54.3 (↑2.3) 55.6 (↑4.2) 60.7 (↑0.0) 48.8 (↑5.4) 52.2 (↑1.4) 57.9 (↑3.5)
GKP (Llama-2-13b) 82.3 (↑3.0) 66.0 (↑4.1) 65.8 (↑2.2) 62.8 (↑6.3) 67.6 (↑7.8) 76.2 (↓0.9) 63.8 (↑3.2) 55.1 (↑2.5) 67.4 (↑3.5)
GKP (Llama-2-70b) 89.5 (↑3.7) 76.9 (↑2.9) 74.7 (↑2.1) 63.8 (↑3.8) 74.2 (↓0.2) 78.2 (↓1.2) 73.0 (↑1.4) 54.0 (↑2.0) 73.0 (↑1.8)
GKP (Llama-3-8B) 91.4 (↓0.7) 78.5 (↓0.1) 74.2 (↓0.8) 66.1 (↑2.5) 76.2 (↓0.8) 75.6 (↓4.9) 80.6 (↑0.5) 61.7 (↑3.8) 75.5 (↓0.1)
GKP (Llama-3-70B) 92.5 (↓5.2) 89.6 (↓3.2) 79.9 (↓1.9) 76.8 (↑0.9) 84.2 (↓7.4) 86.2 (↓3.1) 82.8 (↓7.3) 77.9 (↑8.4) 83.7 (↓2.4)

ZEBRA (k=5) (Llama-2-7b) 75.0 (↑3.6) 55.9 (↑2.3) 60.8 (↑8.5) 54.3 (↑2.3) 53.6 (↑2.2) 66.1 (↑5.4) 46.8 (↑3.4) 52.9 (↑2.1) 58.2 (↑3.8)
ZEBRA (k=5) (Llama-2-13b) 82.8 (↑3.5) 65.8 (↑3.9) 67.4 (↑3.8) 59.8 (↑3.3) 65.2 (↑5.4) 75.7 (↓1.4) 63.5 (↑2.9) 53.0 (↑0.4) 66.7 (↑2.8)
ZEBRA (k=5) (Llama-2-70b) 87.9 (↑2.1) 76.6 (↑2.6) 75.6 (↑3.0) 61.3 (↑1.3) 73.4 (↓1.0) 77.4 (↓2.0) 72.2 (↑0.6) 55.4 (↑3.4) 72.5 (↑1.3)
ZEBRA (k=5) (Llama-3-8B) 92.3 (↑0.2) 78.4 (↓0.2) 77.5 (↑2.5) 62.1 (↓1.5) 74.4 (↓2.6) 76.1 (↓4.4) 77.4 (↓2.7) 60.6 (↑2.7) 74.8 (↓0.8)
ZEBRA (k=5) (Llama-3-70B) 94.1 (↓3.6) 87.7 (↓5.1) 80.8 (↓1.0) 75.1 (↓0.8) 86.6 (↓5.0) 83.2 (↓6.1) 79.6 (↓10.5) 75.9 (↑6.4) 82.9 (↓3.2)

Proposed

Adaptive Intro (Stage 1) (Llama-2-7b) 74.8 (↑3.4) 57.5 (↑3.9) 56.6 (↑4.3) 53.2 (↑1.2) 53.8 (↑2.4) 60.7 (↑0.0) 44.7 (↑1.3) 50.8 (↑0.0) 56.5 (↑2.1)
Adaptive Intro (Stage 1) (Llama-2-13b) 82.2 (↑2.9) 65.3 (↑3.4) 65.7 (↑2.1) 62.9 (↑6.4) 67.8 (↑8.0) 76.1 (↓1.0) 63.3 (↑2.7) 54.9 (↑2.3) 67.3 (↑3.4)
Adaptive Intro (Stage 1) (Llama-2-70b) 88.2 (↑2.4) 74.5 (↑0.5) 73.4 (↑0.8) 62.9 (↑2.9) 76.2 (↑1.8) 78.5 (↓0.9) 73.0 (↑1.4) 53.4 (↑1.4) 72.5 (↑1.3)
Adaptive Intro (Stage 1) (Llama-3-8B) 91.8 (↓0.3) 79.7 (↑1.1) 76.3 (↑1.3) 64.2 (↑0.6) 77.8 (↑0.8) 79.4 (↓1.1) 79.5 (↓0.6) 60.7 (↑2.8) 76.2 (↑0.6)
Adaptive Intro (Stage 1) (Llama-3-70B) 97.9 (↑0.2) 92.7 (↓0.1) 82.4 (↑0.6) 75.6 (↓0.3) 92.4 (↑0.8) 89.3 (↑0.0) 89.8 (↓0.3) 71.6 (↑2.1) 86.5 (↑0.4)

Adaptive Intro (Stage 1+2) (Llama-2-7b) 75.3 (↑3.9) 57.8 (↑4.2) 57.0 (↑4.7) 53.4 (↑1.4) 54.0 (↑2.6) 61.0 (↑0.3) 45.2 (↑1.8) 50.8 (↑0.0) 56.8 (↑2.4)
Adaptive Intro (Stage 1+2) (Llama-2-13b) 82.4 (↑3.1) 67.0 (↑5.1) 66.3 (↑2.7) 63.2 (↑6.7) 69.2 (↑9.4) 76.6 (↓0.5) 63.8 (↑3.2) 55.2 (↑2.6) 67.9 (↑4.0)
Adaptive Intro (Stage 1+2) (Llama-2-70b) 88.6 (↑2.8) 76.5 (↑2.5) 74.3 (↑1.7) 63.2 (↑3.2) 78.4 (↑4.0) 79.5 (↑0.1) 73.3 (↑1.7) 54.5 (↑2.5) 73.5 (↑2.3)
Adaptive Intro (Stage 1+2) (Llama-3-8B) 92.3 (↑0.2) 80.8 (↑2.2) 77.6 (↑2.6) 65.9 (↑2.3) 79.6 (↑2.6) 80.0 (↓0.5) 79.8 (↓0.3) 61.6 (↑3.7) 77.2 (↑1.6)
Adaptive Intro (Stage 1+2) (Llama-3-70B) 97.9 (↑0.2) 93.0 (↑0.2) 82.6 (↑0.8) 75.8 (↓0.1) 92.4 (↑0.8) 89.7 (↑0.4) 89.7 (↓0.4) 71.9 (↑2.4) 86.6 (↑0.5)

4.4 Main Results

Table 2 presents the main experimental results. We
can get the following conclusions: (1) Vanilla
introspection and CoT often exhibit inconsis-
tent performance and can degrade accuracy.
While beneficial for weaker models, introspection
methods frequently fail with stronger models and
simpler tasks compared to direct answer. Simi-
larly, CoT also displays mixed results, with no-
table degradation in specific settings. (2) Our pro-
posed strategy effectively overcomes these lim-
itations and yields performance improvements
across diverse models and tasks. By modulat-
ing the introspection process, our two-stage ap-
proach achieves positive accuracy gains (indicated
by green backgrounds) in almost all evaluated sce-
narios. The strategy effectively mitigates the limita-
tions of vanilla introspection and demonstrates su-
perior performance compared to existing methods.
This consistent improvement underscores the effi-
cacy of our strategy in reliably leveraging knowl-

edge introspection for commonsense reasoning.

4.5 Ablation Study and Analysis

Contribution of Knowledge Detection. While
vanilla introspection frequently degrades the perfor-
mance, especially for stronger models and simpler
tasks, Adaptive Intro (Stage 1) significantly miti-
gates this degradation by identifying and filtering
potentially low-quality knowledge. For Llama-3-
70B-Instruct, Stage 1 reverses the -2.4 average drop
of GKP into a positive average gain of +0.4. While
GKP improves weaker models significantly (e.g.,
Llama-2-7b: +3.5), Stage 1 also provides competi-
tive gains (Llama-2-7b: +2.1). This demonstrates
that detection is beneficial even when starting from
a positive baseline.

Contribution of Knowledge Regeneration. As
Stage 1 effectively prevents performance drops,
Stage 2 aims to provide further enhancement by
regenerating higher-quality knowledge. Across all
models, Stage 1+2 achieves higher average accu-
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racy. However, we observe a slight decrease in
performance for Llama-3-70B-Instruct on QASC
when moving from Stage 1 (-0.3) to Stage 1+2
(-0.4). This suggests that while the regeneration
techniques in Stage 2 prove effective in most cases,
there are still instances where direct answer re-
mains a better alternative. We leave a more fine-
grained study for future work.

Table 3: Comparison of average scores for original and
regenerated Knowledge. Scores for correctness and
relevance can be 0, 1, or 2.

Type Version Correctness Relevance

Harmful Original 0.3083 0.6293
Regenerated 1.3795 1.2428

Useful Original 1.7002 1.8360
Regenerated 1.6123 1.4969

Validation of Regeneration Quality. To directly
validate the quality of regenerated knowledge, we
compare it with the original knowledge using the
same annotation standard discussed in Appendix B.
Table 3 shows that while regeneration results in a
slight decrease for already useful knowledge, it sig-
nificantly improves the correctness and relevance
of original harmful knowledge. This aligns with
our goal of improving low-quality knowledge and
mitigating the interference of harmful information.

5 Conclusion

We investigate the effectiveness of knowledge intro-
spection for commonsense reasoning in LLMs, un-
covering the introspection paradox. Analysis indi-
cates that the effectiveness of introspection results
from the interplay among model capability, task
difficulty, and the quality of generated knowledge.
To address this, we proposed a novel, training-
free strategy. It optimizes introspection via two
stages: Knowledge Detection and Knowledge Re-
generation. Extensive experiments across 5 LLMs
and 8 benchmarks demonstrate that our method
effectively mitigates the performance degradation,
achieving robust gains across diverse models and
tasks. Our results validate that managing the intro-
spection process is crucial for reliably harnessing
its potential to enhance LLMs.

Limitations

While our proposed approach demonstrates promis-
ing results in mitigating the introspection paradox
and improving commonsense reasoning, there are

several aspects that could be improved. Firstly,
our experiments are confined to the Llama family,
including Llama-2-Chat and Llama-3-Instruct vari-
ants across different scales. The impact of differ-
ent model architectures or alternative post-training
strategies requires future investigation. Further-
more, certain hyperparameters in our method rely
on empirical calibration. Future research could ex-
plore more theoretically grounded or automated
methods for setting these parameters. Additionally,
our reliance on a series of proxy metrics and model
annotations might not fully capture all subtle rela-
tionships. Exploring alternative, potentially more
nuanced metrics is a direction for future work.
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A Proxy Metrics

A.1 Task Difficulty
We use the model’s prediction uncertainty on ques-
tions from a specific task as a proxy for task dif-
ficulty. Specifically, we examine the relationship
between the model’s accuracy on a task and the
mean entropy of its predictions for questions in
that task. As shown in Figure 9, higher confidence
for a given model generally correlates with higher
accuracy. This suggests that the metric can reflect
the relative difficulty of tasks. Based on the metric,
the tasks rank from easiest (ARC-Easy) to hardest
(WinoGrande).

A.2 Model Capability
To quantify model capability, we follow recent
works (Bhagia et al., 2024; Grattafiori et al., 2024)
and use the normalized negative log-likelihood
(NLL) loss on the MMLU benchmark’s test set
(Hendrycks et al., 2021) as a proxy metric. MMLU
is a widely recognized benchmark designed to as-
sess a model’s general knowledge across a broad
range of subjects, making it a suitable proxy for
assessing commonsense reasoning tasks. Lower
NLL on this benchmark indicates stronger capa-
bility. Figure 10 shows the MMLU NLL for the
evaluated models. Figure 11 provides a more gran-
ular view, showing the NLL for each model across
the specific commonsense reasoning tasks used in
this paper. In our experiments, we take the negative
of this NLL value, such that a higher value indi-
cates a stronger model, aligning with the intuitive
understanding of capability. Based on the metric,
the models rank from weakest (Llama-2-7b-Chat)
to strongest (Llama-3-70B-Instruct).

B Knowledge Annotation

For each generated knowledge statement, we em-
ploy Deepseek-V3 (DeepSeek-AI, 2024) to assign
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a numerical score for both factual correctness and
relevance according to the criteria provided in the
prompts below. A knowledge statement was classi-
fied as Harmful if both correctness and relevance
scores were less than 2; otherwise, it was classified
as Useful.

Correctness

Please evaluate the factual correctness of the
following statement: {knowledge}
Use the following criteria to determine your
response:
*Incorrect: The statement contains factual
inaccuracies or contradictions.
*Uncertain: The statement cannot be clearly
verified as true or false based on the given
information.
*Correct: The statement is factually accurate
and consistent with reliable knowledge.
Your response must be a single number: 0
for Incorrect, 1 for Uncertain and 2 for Cor-
rect. Do not include any additional text in
your answer; only provide the number.

Relevance

Please determine if the following knowledge
is helpful for solving the problem:
*Knowledge: {knowledge}
*Question: {question}
*Answer: {answer}
Knowledge is related to the final answer in
the following ways. Use the following crite-
ria to determine your response:
*Helpful: The knowledge can be part of a
non-trivial reasoning chain that supports the
predicted answer or a trivial paraphrase of
the question and the predicted answer.
*Unrelated: Any of the following: The
knowledge is a mere repetition of known in-
formation given in the question; The knowl-
edge is topically related to the question
and/or the choices, but cannot be part of
a reasoning chain to support or refute any of
the choices; The knowledge is unrelated to
the question.
*Contradict: The knowledge can be part of
a reasoning chain that refutes the predicted
answer, or supports a different choice.
Your response must be a single number: 0
for Contradict, 1 for Unrelated and 2 for
Helpful. Do not include any additional text
in your answer; only provide the number.

C Attribution Tracing

C.1 Attribution Scores Across Layers

As discussed in Section 3.3, we employ attribution
tracing to understand the information flow from the
input question context to the generated knowledge
statement. Figure 12 provides a comprehensive
visualization of these attribution scores across dif-
ferent layers for all models and tasks evaluated in
this study.

C.2 Normalized Entropy Calculation

In this appendix, we provide a detailed description
of the method used to quantify the distribution of
attribution scores between the question and the gen-
erated knowledge, and present the comprehensive
results across all models and tasks.

We analyze the attribution matrix A ∈ RK×Q

obtained from the method described in Sec-
tion 3.3, where A

(l)
i,j represents the aggregated at-

tribution score from question token qi to knowl-
edge token kj for a specific layer l (i.e., A(l)

i,j =
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∑H
h=1

∣∣∣[Attr(A(l)
h )]i,j

∣∣∣). K and Q are the lengths
of the knowledge and question sequence, respec-
tively. We normalize the matrix A(l) by its L1 norm
to obtain a probability distribution P (l) ∈ RK×Q:

P
(l)
i,j =

A
(l)
i,j∑K

m=1

∑Q
n=1A

(l)
m,n

(5)

We then compute the normalized Shannon entropy
of this distribution as follows:

Hnorm(l) =
−∑K

j=1

∑Q
i=1 P

(l)
j,i logP

(l)
j,i

log(KQ)
(6)

During implementation, we focus on the layer
that exhibits the maximal difference in attribution
scores between useful and harmful knowledge in-
stances, as identified by the preliminary analysis
presented in C.1.

D Implementation Details

Tasks and Models We use 8 diverse common-
sense reasoning datasets: ARC-Easy and ARC-
Challenge (Clark et al., 2018), PIQA (Bisk et al.,
2020), OpenBookQA (Mihaylov et al., 2018),
QASC (Khot et al., 2020), CSQA (Talmor et al.,
2019), CSQA2 (Talmor et al., 2022), and Wino-
Grande (Sakaguchi et al., 2019). These bench-
marks are chosen to represent a range of task dif-
ficulties. We evaluate Llama family models (Tou-
vron et al., 2023; Grattafiori et al., 2024) across
different scales and versions: Llama-2-7b-Chat,
Llama-2-13b-Chat, Llama-2-70b-Chat, Llama-3-
8B-Instruct and Llama-3-70B-Instruct.

Our Method In stage 1, the mean and variance
for z-score normalization are calculated from the
training set of each task. For correctness calcula-
tion, the model generates a knowledge statement
K = (k1, k2, . . . , kLK

) of length LK . For each
token kt ∈ K (for t = 1, . . . , LK), let Pintro be
the introspective prompt and pt = P (·|Pintro, k<t)
be the probability distribution over the vocabulary
V predicted by the model for the t-th token of the
knowledge. The entropy of this distribution is

H(pt) = −
∑

v∈V
pt(v) log2 pt(v) (7)

The correctness metric is defined as the average
entropy over the generated knowledge tokens:

Correctness =
1

LK

LK∑

t=1

H(pt) (8)

For relevance calculation, e(wi) denotes the final
layer hidden state embedding for a token wi. We
obtain aggregated hidden state representations for
the knowledge K and question Q as:

hK = Mean({e(ki)}LK
i=1) (9)

hQ = Mean({e(qj)}LQ

j=1) (10)

where Mean(·) denotes the mean pooling function.
The relevance metric is the cosine similarity be-
tween these representations:

Relevance =
hK · hQ

∥hK∥∥hQ∥
(11)

In stage 2, the hyperparameter α is set to 1.7. The
layer selected is based on the maximal difference
in attribution scores between useful and harmful
knowledge. Specifically, we use 6 layers for Llama-
2-7b-Chat and Llama-3-8B-Instruct, 7 layers for
Llama-2-13b-Chat, and 8 layers for Llama-2-70b-
Chat and Llama-3-70B-Instruct.

Prompts For the knowledge generation step, we
follow the original settings specified by each base-
line. For few-shot knowledge generation, we
aligned ZEBRA’s (Molfese et al., 2024) prompt
format with GKP’s (Liu et al., 2022b). For the
Question Answering step, we employ standardized
prompt templates and use greedy decoding for an-
swer generation across all models and methods.
The prompts are as follows:

Direct Answering

System: You are a helpful assistant for ques-
tion answering. You are given a question
and up to 4 options (labeled A, B, C, and D).
Your task is to choose the label correspond-
ing to the best answer for the question.

User: Do you understand the task?

Assistant: Yes, I understand. Please pro-
vide the question and the possible choices.

User:
Question: {question}
Options: {choices}
You must always give an answer and only
pick one answer choice.

Assistant: Among A through D, the answer
is
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Knowledge-Utilized Answering

System: You are a helpful assistant for ques-
tion answering. You are given a question,
up to 4 options (labeled A, B, C, and D),
and a list of explanations. Your task is to
choose the label corresponding to the best
answer for the question based on the given
explanations.

User: Do you understand the task?

Assistant: Yes, I understand. Please pro-
vide the question and the possible choices.

User:
Question: {question}
Options: {choices}
Explanations: {knowledge}
You must always give an answer and only
pick one answer choice.

Assistant: Among A through D, the answer
is

Figure 9: Model accuracy versus mean question entropy.
Each point represents a (model, task) pair. Dashed lines
are regression lines for each model. Generally, lower
entropy correlates with higher accuracy.

Figure 10: Normalized Negative Log-Likelihood (NLL)
scores of different models on the MMLU benchmark.
Lower scores indicate stronger overall model capabil-
ity. This metric is used to rank models (from weakest:
Llama-2-7b-chat to strongest: Llama-3-70B-Instruct).

Figure 11: Normalized Negative Log-Likelihood (NLL)
scores of different models across the specific common-
sense reasoning tasks. This heatmap illustrates perfor-
mance variations across tasks for each model, indirectly
reflecting the relative difficulty of these tasks for differ-
ent models.
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Figure 12: Layer-wise attribution scores from the input question context to the generated knowledge across all
evaluated models and tasks.
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