@inproceedings{chen-etal-2025-topicattack,
title = "{T}opic{A}ttack: An Indirect Prompt Injection Attack via Topic Transition",
author = "Chen, Yulin and
Li, Haoran and
Li, Yuexin and
Liu, Yue and
Song, Yangqiu and
Hooi, Bryan",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.372/",
pages = "7338--7356",
ISBN = "979-8-89176-332-6",
abstract = "Large language models (LLMs) have shown remarkable performance across a range of NLP tasks. However, their strong instruction-following capabilities and inability to distinguish instructions from data content make them vulnerable to indirect prompt injection attacks. In such attacks, instructions with malicious purposes are injected into external data sources, such as web documents. When LLMs retrieve this injected data through tools, such as a search engine and execute the injected instructions, they provide misled responses. Recent attack methods have demonstrated potential, but their abrupt instruction injection often undermines their effectiveness. Motivated by the limitations of existing attack methods, we propose **TopicAttack**, which prompts the LLM to generate a fabricated conversational transition prompt that gradually shifts the topic toward the injected instruction, making the injection smoother and enhancing the plausibility and success of the attack. Through comprehensive experiments, TopicAttack achieves state-of-the-art performance, with an attack success rate (ASR) over 90{\%} in most cases, even when various defense methods are applied. We further analyze its effectiveness by examining attention scores. We find that a higher injected-to-original attention ratio leads to a greater success probability, and our method achieves a much higher ratio than the baseline methods."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2025-topicattack">
<titleInfo>
<title>TopicAttack: An Indirect Prompt Injection Attack via Topic Transition</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yulin</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haoran</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuexin</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yangqiu</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bryan</namePart>
<namePart type="family">Hooi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Large language models (LLMs) have shown remarkable performance across a range of NLP tasks. However, their strong instruction-following capabilities and inability to distinguish instructions from data content make them vulnerable to indirect prompt injection attacks. In such attacks, instructions with malicious purposes are injected into external data sources, such as web documents. When LLMs retrieve this injected data through tools, such as a search engine and execute the injected instructions, they provide misled responses. Recent attack methods have demonstrated potential, but their abrupt instruction injection often undermines their effectiveness. Motivated by the limitations of existing attack methods, we propose **TopicAttack**, which prompts the LLM to generate a fabricated conversational transition prompt that gradually shifts the topic toward the injected instruction, making the injection smoother and enhancing the plausibility and success of the attack. Through comprehensive experiments, TopicAttack achieves state-of-the-art performance, with an attack success rate (ASR) over 90% in most cases, even when various defense methods are applied. We further analyze its effectiveness by examining attention scores. We find that a higher injected-to-original attention ratio leads to a greater success probability, and our method achieves a much higher ratio than the baseline methods.</abstract>
<identifier type="citekey">chen-etal-2025-topicattack</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.372/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>7338</start>
<end>7356</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T TopicAttack: An Indirect Prompt Injection Attack via Topic Transition
%A Chen, Yulin
%A Li, Haoran
%A Li, Yuexin
%A Liu, Yue
%A Song, Yangqiu
%A Hooi, Bryan
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F chen-etal-2025-topicattack
%X Large language models (LLMs) have shown remarkable performance across a range of NLP tasks. However, their strong instruction-following capabilities and inability to distinguish instructions from data content make them vulnerable to indirect prompt injection attacks. In such attacks, instructions with malicious purposes are injected into external data sources, such as web documents. When LLMs retrieve this injected data through tools, such as a search engine and execute the injected instructions, they provide misled responses. Recent attack methods have demonstrated potential, but their abrupt instruction injection often undermines their effectiveness. Motivated by the limitations of existing attack methods, we propose **TopicAttack**, which prompts the LLM to generate a fabricated conversational transition prompt that gradually shifts the topic toward the injected instruction, making the injection smoother and enhancing the plausibility and success of the attack. Through comprehensive experiments, TopicAttack achieves state-of-the-art performance, with an attack success rate (ASR) over 90% in most cases, even when various defense methods are applied. We further analyze its effectiveness by examining attention scores. We find that a higher injected-to-original attention ratio leads to a greater success probability, and our method achieves a much higher ratio than the baseline methods.
%U https://aclanthology.org/2025.emnlp-main.372/
%P 7338-7356
Markdown (Informal)
[TopicAttack: An Indirect Prompt Injection Attack via Topic Transition](https://aclanthology.org/2025.emnlp-main.372/) (Chen et al., EMNLP 2025)
ACL