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Abstract

We introduce the Phonetics-Semantics Eval-
uation Testbed (PSET), a new English-based
testbed to evaluate phonetic embeddings. Our
testbed is built on the assumption that pho-
netic embeddings should always prioritize pho-
netics over semantics, and it therefore lever-
ages homophones and synonyms. We use
PSET to test three phonetic embedding mod-
els: articulatory embeddings, Phoneme2Vec,
and XPhoneBERT. The phonetic-based embed-
dings solve the task with varying degrees of suc-
cess, with Phoneme2Vec performing the best.
We also test five recent LLMs, GPT-4o, Gemini
2.5 Flash, Llama 3.1-8B, OLMo-7B and OLMo
2-7B. Gemini 2.5 Flash performs better than
the other models. With this testbed, we hope
to advance the development and evaluation of
phonetic embedding models.

1 Introduction

Embeddings, numeric vector representations of text,
are an important component of modern NLP sys-
tems (Incitti et al., 2023). Most embeddings are
created using techniques that focus on capturing
the meaning of the text and are known as semantic
embeddings. While semantic embeddings are pow-
erful, they are not ideal when dealing with tasks
centered on sound, such as finding sound analogies
(Silfverberg et al., 2018), identifying sound simi-
larities (Parrish, 2017), detecting rhymes (Zouhar
et al., 2024), detecting cognates (Batsuren et al.,
2019) and improving robustness to ASR errors
(Fang et al., 2020). This is where phonetic em-
beddings come into play.

Phonetic embeddings represent text based on the
sound of language (Mortensen et al., 2016; Silfver-
berg et al., 2018; Liu et al., 2019; The Nguyen
et al., 2023). Consider the following words: “hello,”
“yellow,” and “hi,”. Phonetic embeddings should
represent “hello” and “yellow” close to each other
in vector space due to their similar sounds, while

“hi” should be more distant from these two. In con-
trast, with semantic embeddings, “hello” and “hi”
should be close to each other due to their similar
meanings, while “yellow” should be further away.

Despite the many potential uses of phonetic em-
beddings, there are only a few methods to evaluate
them. We propose a new testbed based on the in-
sight that phonetic embeddings should prioritize
phonetic over semantic information. Suppose the
embeddings primarily encode semantic informa-
tion. Then, even if they also encode some pho-
netic information, their effectiveness for phonetic
tasks (e.g., rhyme detection) would be hindered.
However, existing testbeds do not focus on this
issue (Zouhar et al., 2024; Efrat et al., 2023; Ko-
lachina and Magyar, 2019). To address this gap,
we propose the Phonetics-Semantics Evaluation
Testbed (PSET), a simple and fast method to test
the quality of phonetic embeddings. It comple-
ments existing testbeds by assessing not just the
presence but the predominance of phonetic infor-
mation over semantic information in the model’s
encoding. PSET can be used with any method that
can assess similarities between words, including
static embedding models and prompting LLMs.

Contributions. With PSET, we (a) provide a
new testbed for phonetic embeddings that lever-
ages two linguistic phenomena, synonymy and
homophony (§3). We also include phonetic
and grapheme-based distractors based on edit-
distance. (b) We use PSET to evaluate popular
phonetic embeddings (Articulatory Embeddings,
Phoneme2Vec, XPhoneBERT) and semantic em-
beddings (BERT, Word2Vec), see §4). The pho-
netic models perform reasonably well on this
testbed; however, XPhoneBERT performs worse
than the other two models. (c) We also use PSET
as a prompt-based challenge to test five recent large
language models, GPT-4o (OpenAI et al., 2024),
Gemini 2.5 flash (Team et al., 2024), Llama 3.1-8B
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(Dubey et al., 2024), OLMo-7B (Groeneveld et al.,
2024) and OLMo 2-7B (OLMo et al., 2024) (§4.2).
Gemini 2.5 Flash is the best performing model.
The code and data to reproduce the experiments
can be found on the following GitHub folder.

2 Related Work

The most relevant to our research is PWESuite
(Zouhar et al., 2024), a benchmark based on pho-
netic tasks, such as rhyme and cognate detection.
Although PWE is a valuable benchmark, it has lim-
itations. In some cases, test creation is based on
articulatory features and articulatory distance. Ar-
ticulatory features can themselves be used to create
phonetic embeddings of words; some of their tests
thus favor, by design, certain types of embeddings.
PSET, however, is not biased toward any type of
embedding. Moreover, PWESuite tests whether
embeddings encode phonetic information. In con-
trast, we test whether phonetic information takes
precedence over semantic information.

Another approach was proposed by Kolachina
and Magyar (2019) who created 12 artificial lan-
guages. Unlike our approach, their approach is
mainly based on qualitative assessments. Efrat et al.
(2023) developed a testbed for LLMs that tests el-
ementary linguistic tasks, including recognizing
homophones in word triplets. Some of their triplets
contain automatically identified similar words as
distractors. A similar approach was also proposed
by Choi et al. (2024), who automatically selected
word pairs (synonyms, near homophones, random
words, same words and words spoken by the same
speakers) and used these to evaluate self-supervised
speech models (S3Ms). In both cases, the authors
did not specifically focus on phonetic embeddings.
Moreover, we create a more controlled and chal-
lenging testbed, by including manually curated syn-
onyms and edit-distance based phonetic distrac-
tors.

3 The Testbed

Setup Our testbed is based on word quintets, with
each quintet consisting of: (i) A reference word,
referred to as the anchor word (A); (ii) a homo-
phone (H) of the anchor word; (iii) a synonym
(S) of the anchor word, (iv) A phonetic-based dis-
tractor word DP which is an IPA transcribed word
with an edit-distance of 1 from the anchor and (v)
a grapheme-based distractor word DG, which
has an edit-distance of 1 to the the anchor’s spelling,

thus the difference is purely based on graphemes
without considering pronounciation. For example,
“ferry” (anchor), “fairy” (homophone), “boat” (syn-
onym), “barie” (phonetic-based distractor word)
and “berry” (grapheme-based distractor word). Our
setup using anchor words is inspired by a testbed to
test style representations (Wegmann and Nguyen,
2021). Given an anchor word, a phonetic embed-
ding model should assign the highest similarity to
the homophone. Our final testbed contains 250
word quintets.

Homophone and synonym selection First, we
compared several lists of homophones with each
other. Our reasoning was that homophones that ap-
pear in several lists, are more likely to be common
in the English language.1 Second, we manually
examined the words of each homophone pair to de-
termine if they had synonyms using the Thesaurus
dictionary, an online dictionary of synonyms2. We
excluded pairs of homophones in which no word
had synonyms (e.g., the pair their, there). Third, we
used the Cambridge dictionary to ensure the syn-
onym matched the anchor’s meaning precisely, i.e.,
both used in similar contexts with near-identical
meanings. For example, we excluded the term read
because none of its synonyms, such as see and
study, were direct synonyms to it. Details about
the choice of dictionaries and synonyms are in Ap-
pendix A.1. We also checked the absence of seman-
tic overlap between the homophone and the anchor
word. For example, we excluded spelling variants,
such as archaeology and archeology. Despite these
steps, there are cases where the synonym does not
match the meaning of the anchor word exactly, for
example, know (anchor), no (homophone), learn
(synonym), beau (phonetic-based distractor word),
enow (grapheme-based distractor word). However,
this is not a problem for our testing approach, as
long as the anchor is clearly more semantically
similar to the synonym than to the homophone.

Edit-distance distractors Our testbed includes
two types of distractors: phonetic- and grapheme-
based. We include phonetic distractors because
the tested phonetic embedding models (i.e., not the
LLMs) use phonetic transcriptions of text, such as

1The online list with homophone pairs, used as a starting
point, was English Homophones (Gist), accessed 26/08/2025.
Other homophone lists we accessed for comparison are En-
glish Homophones (Singularis), English Homophones (Ox-
ford) and English Homophones (AllaboutLearning), accessed
26/08/2025.

2Thesaurus, accessed 26/08/2025.
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IPA3 or ARPAbet4. To create phonetic distractors,
we first transcribed each word of a full English dic-
tionary5 and all our anchor words to IPA (more on
the choice of IPA in Appendix B). Then, for each
anchor word, we identified words from the dictio-
nary with an edit-distance of 1. We filtered them us-
ing the NLTK word list (Bird et al., 2009) to remove
uncommon entries. We then manually selected the
word from the remaining set that sounded most
similar to the anchor. Phonetic distractor words are
phonetically close to the anchor word, while homo-
phones are phonetically (almost) identical to it. A
model that effectively captures phonetic relation-
ships should associate the homophone more closely
with the anchor word than the distractor. We fur-
thermore include grapheme-based distractors to
assess the extent to which a model relies on indi-
vidual characters as opposed to phonetic features.
The grapheme-based edit-distance distractors were
created using the same procedure, but without the
IPA transcription. All edit-distance words were
also manually checked to ensure they are not syn-
onymous with the anchor word. More details about
the distractors are in Appendix B.

4 Experiments

We discuss two types of tests: one based on pho-
netic embeddings using cosine similarity (§4.1),
the other based on prompting for LLMs (§4.2).

4.1 Testing Embeddings
Models For our experiments, we selected two
semantic models and three phonetic models for
embedding extraction. They represent different
basic approaches to creating embeddings, allowing
us to evaluate a variety of models for capturing
semantic and phonetic information.

As phonetic models, we tested (a) Articulatory
embeddings (C.1), as first proposed by Mortensen
et al. (2016). Articulatory embeddings for a word
are composed of only 21 values, which are the av-
erage of the vectors of each IPA phoneme in the
word. (b) Phoneme2Vec (20 dimensions) (C.2)
(Fang et al., 2020), A version of Word2vec trained
with ARPA symbols which represent the sounds
of speech, and (c) XPhoneBERT (88M param.)
(C.3) (The Nguyen et al., 2023), a language model
based on IPA transcriptions. Its training style,

3the International Phonetic Alphabet.
4a phonetic alphabet developed by the Advanced Research

Projects Agency (Carnegie-Mellon-University, 1993).
5List of English Words, accessed 26/08/2025

which is the same as RoBERTa, could lead the
model to also capture semantic and syntactic el-
ements of the text. Note that XPhoneBERT was
not initially trained for our purpose, but to enhance
Text-To-Speech models. More details about the
models are in Appendix C.

Even though we focus on evaluating phonetic
embeddings, we also included two popular seman-
tic embedding models for comparison. We expect
their performance to be poorer. We included (a)
Word2vec (Mikolov et al., 2013)6, and (b) BERT
(110M param.) in its Base version (Devlin et al.,
2019). BERT and XPhoneBERT are contextual
models. Static embeddings were extracted by aver-
aging the last hidden layer of the target token across
10 sentences. More details about this process in
Appendix C.4.

Using the testbed PSET can be used with any
method that can assess the similarity between two
words. For each quintet, we calculate: (i) sim(A,H),
the similarity between the Anchor (e.g., ‘feat’) and
the Homophone (e.g., ‘feet’); (ii) sim(A,S), the
similarity between the Anchor and the Synonym
(e.g., ‘triumph’); (iii) sim(A, DP), the similarity
between the Anchor and the Phonetic-based Dis-
tractor (e.g., beat); and (iv) sim(A, DG) the similar-
ity between the Anchor and the Grapheme-based
Distractor (e.g., meat). We use cosine similarity to
measure the similarity. As phonetic embeddings
should prioritize phonetic information, sim(A,H)
should receive the highest similarity score for each
quintet.

Models H S DP DG

Art. Phonemes (phon) 0.748 0.020 0.108 0.120
Phoneme2Vec (phon) 0.903 0 0.056 0.036
XPhoneBERT (phon) 0.730 0 0.170 0.090
Word2Vec (sem) 0.072 0.744 0.052 0.132
BERT (sem) 0.050 0.750 0.040 0.140

Table 1: Performance of phonetic (phon) and seman-
tic (sem) models on each word category, showing how
often each was rated most similar to the anchor. Bold
highlights the best models for homophones and syn-
onyms.

Results Our results (Table 1) show that all three
phonetic models perform reasonably well on our
test, since most of the time the homophone re-
ceives the highest similarity score. However, the

6We used the pre-trained word2vec-google-news-300
model using the Gensim library.
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Model Technical Language (TL) Prompt Layman’s Language (LL) Prompt

H S DP DG err. H S DP DG err.

GPT-4o 0.81 ± 0.02 0 0.05 0.07 0.06 0.78 ± 0.06 0.024 0.044 0.058 0.094
Gemini 2.5 Flash 0.87 ± 0 0 0.02 0.02 0.07 0.87 ± 0 0 0.02 0.03 0.06
Llama 3.1–8B 0.49 ± 0.12 0.04 0.07 0.22 0.17 0.34 ± 0.05 0.06 0.09 0.24 0.25
Olmo-7B 0 ± 0 0 0 0 1 0 ± 0 0 0 0 1
Olmo-2-7B 0.22 ± 0.04 0.30 0.08 0.16 0.21 0.17 ± 0.06 0.36 0.07 0.15 0.23

Table 2: LLM performance on homophones (H), synonyms (S), and distractors (DP and DG), showing how often
each was rated most similar to the anchor. We also report extraction errors (err), with mean and standard deviation
on homophone scores. Gemini 2.5 Flash performed the best.

results vary, and unexpectedly, XPhoneBERT is
the model with the worst performance, despite be-
ing the most recent among those selected. Note that
originally XPhoneBERT was developed for another
goal (Text-To-Speech tasks), which could be one
of the causes of its suboptimal performance. Both
semantic models almost never choose homophones
and tend to prefer synonyms, as expected. We also
find that the frequency of words impacts perfor-
mance, e.g., frequent phoneme-based edit-distance
distractors are more likely to cause models to fail
(see Appendix F).

4.2 Prompt-based Testing with LLMs

We also used PSET to test LLMs. Instead of di-
rectly applying PSET to the LLMs’ embeddings,
we use a prompt-based testing approach. This ap-
proach enables us to evaluate whether the LLMs
have acquired phonetic information about words.
Since we do not use their embeddings, the results
are not directly comparable to embedding models.

Models We tested five LLMs of which two are
closed and three are open-weight (Instruct ver-
sions): Gemini 2.5 Flash (Team et al., 2024), GPT4-
o (OpenAI et al., 2024), Llama 3.1-8B (Dubey
et al., 2024), OLMo-7B (Groeneveld et al., 2024)
and OLMo 2-7B (OLMo et al., 2024).

Using the testbed We experimented with the
LLMs using zero-shot prompting and two prompts.
One uses a more Technical language (TL): ‘Which
word is more phonetically similar to [ANCHOR]:
[WORD1], [WORD2], [WORD3] or [WORD4]?
Only respond with the correct word.”; the other
uses more Layman’s language (LL): “Which
word sounds more like [ANCHOR]: [WORD1],
[WORD2], [WORD3] or [WORD4]? Only respond
with the correct word.”. We ran each of the prompts
twice, changing the order of the homophones, syn-
onyms, and distractors (i.e., words 1–4). In total,

each LLM is thus prompted 1000 times, 500 times
for each of the prompt styles.

Results We report results for each prompt style
separately (Table 2). For each style, the results
are obtained by averaging the outcomes of two
prompts with varied word orders. The LLMs some-
times made mistakes: they reproduced the anchor
word, generated misspellings or did not provide
any answer at all. These are reported under the
“Extraction error (err.)” column. Gemini 2.5 Flash
performed best, selecting the homophone in almost
all cases (TL: 0.87, LL: 0.87), while GPT-4o stands
in the second place (TL: 0.81, LL: 0.78). OLMO-
7B fails to provide results in the correct format.
OLMO 2-7B, on the other hand, tends in many
cases to choose the synonym over the homophone.
The results of the technical language prompt are
higher for all LLMs, except OLMo-7B, which had
difficulty with both prompts. Detailed results for
the individual prompts are provided in Appendix E.

5 Conclusion

In our study, we introduce the PSET as a novel
testbed designed to assess phonetic embeddings.
PSET uses homophony, synonymy and edit-
distance based distractors to evaluate whether em-
beddings prioritize phonetics over semantics. Us-
ing PSET, we tested three phonetic models and two
semantic models representing different conceptual
approaches. The most recent model, XPhoneBERT,
performed the worst on PSET, followed by Articu-
latory Embeddings, while Phoneme2Vec appears to
be the most effective. We also show that PSET can
be used as a prompt-based test to assess whether
LLMs can identify the word that sounds most sim-
ilar to an anchor word. Out of the five LLMs we
tested, Gemini 2.5 Flash performed the best.
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Limitations

Our testbed has the following limitations. First,
because we curated each instance in our dataset
to ensure its quality, the dataset’s final size is rela-
tively small. Future work could explore expanding
our dataset using automatic methods.

Second, our testbed is limited to English. How-
ever, many of our tested models, such as the articu-
latory embeddings, XPhoneBERT and the LLMs,
already support many languages. Future work
could focus on extending our testbed to other lan-
guages. However, not all languages have the same
rate of homophony. Consequently, creating a simi-
lar dataset for some other languages can be more
challenging.

Third, due to the criteria we imposed on the se-
lection of words, we also had to include some low-
frequency words. However, word frequency has
an important impact on semantic models (Sahlgren
and Lenci, 2016). For this reason, we have carried
out an analysis of the frequency of words present
in our quintets. Higher frequency distractors often
lead to more errors, while higher frequency ho-
mophones increase correct identification in some
models, with effects varying by embedding type.
See Appendix, section F.

Fourth, our dataset also includes synonyms that
do not always correspond to a word’s most fre-
quent meaning. This could reduce the likelihood
of (semantics-focused) models selecting these syn-
onyms, potentially simplifying the task. Neverthe-
less, we do not anticipate that this will substantially
affect our overall conclusions.

Fifth, there are several potential confounding
factors that may influence the structure of the em-
beddings. These confounding factors include Part-
of-Speech, syntactic dependencies, and polysemy.
For example, whether certain words share the same
Part-of-Speech may affect the embedding results.

Finally, we cannot rule out the possibility that
some of the language models may have been ex-
posed to the word lists used in our paper. However,
we note that their performance was far from perfect,
with some LLMs performing quite poorly.
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A Synonym selection

A.1 Dictionaries
Dictionaries The Thesaurus dictionary is avail-
able at Thesaurus, and the Cambridge Dictionary
can be accessed at Cambridge dictionary. The The-
saurus provides synonyms for a word without defin-
ing its meaning. Cambridge, on the other hand,
lists all the meanings of a word. We checked the
Cambridge dictionary to ensure that at least one of
the meanings of the selected synonyms matched
strongly with that of the anchor word.

Synonyms We excluded those words where the
synonymy relationship could be ambiguous, such
as “read” and “see” 7. “I read a paper” and “I
saw a paper” can be used in similar semantic con-
texts. However, “see” and “read,” if looked up
in English dictionaries, mean profoundly different
things. In short, we aimed to reduce the impact
of synonyms whose similarity depends solely on
the context, rather than having a true general syn-
onymy. In those cases, we preferred to proceed
with a word with a similar semantic sphere, but
with a less ambiguous semantic relationship.

B Edit-distance details

Choice of IPA We used IPA (rather than ARPA-
bet) for distractor construction because it’s widely
supported by automatic transcription tools and
aligns with two of the three phonetic models we
evaluate. The transcription tool we used is Char-
siuG2P (Zhu et al., 2022), the same tool used by
the authors of XPhoneBERT. The model can be
accessed from HuggingFace at the following URL:
Charsiu G2P.

Distractor Exceptions Sometimes, it was not
possible to find distractors with an edit distance
of 1 from the anchor word. To address this, we
allowed minor morphological variations, such as
changes in singular/plural forms, for a small subset
of distractors—specifically, 8 phonetic-based and
18 grapheme-based distractors. For example, the
anchor word principal might have principals as its
phonetic-based distractor. This workaround affects
only a limited number of quintets and does not
compromise the integrity of the task, as the correct
answer remains unchanged. Additionally, some
distractors may belong to specific dialects or take

7The words of this example are taken directly from the
synonymy dictionary Thesaurus: Example for the word read
from the Thesaurus Dictionary, accessed 26/08/2025.

the form of exclamations. This does not impact
the dataset’s quality, since distractors are intended
for use with phonetic models. For instance, in the
quintet new (simplified pronunciation: nu), knew
(nu), recent (ricent), boo (bu), and anew (aenu), the
word boo serves as an exclamation commonly used
to mimic a shout or to startle someone.

C Models

C.1 Articulatory embeddings

Articulatory Embeddings were first proposed by
Mortensen et al. (2016). First, each symbol of
the International Phonetic Alphabet (IPA) is repre-
sented as a 21-size vector, which indicates whether
a particular phonetic feature is present, absent, or ir-
relevant in the production of a sound. For example,
if a sound involves the use of the lips, it is assigned
the value +1; if the lips are not involved, the value
-1 is assigned; if the characteristic is irrelevant, the
value 0 is assigned. To obtain the embeddings
of a word, we take the average of all articulatory
vectors extracted from its IPA symbols. Other artic-
ulatory embeddings approaches were proposed by
Silfverberg et al. (2018) and Kolachina and Magyar
(2019).

C.2 Phoneme2Vec

Phoneme2Vec is a direct transposition of
Word2Vec for phonetics. The goal is to predict
the phonemes that are in the vicinity of a given
phoneme. Although Fang et al. (2020) propose
two more complex versions, we chose the simplest
method to represent this idea.

We trained this model using ARPAbet and the
CMU Pronunciation Dictionary. ARPAbet is a
phonetic transcription system primarily used for
English. It uses ASCII sequences to represent
phonemes and allophones. The CMU (Carnegie
Mellon University) pronunciation dictionary in-
cludes approximately 134k instances manually
mapped from grapheme to ARPAbet. Thus, each
word is represented as a sequence of phonemes.
These sequences serve as the “corpus” for train-
ing the Phoneme2Vec model. In this case, there-
fore, each context is represented by the ARPAbet
phonemes of the word itself in the dictionary, not
by a sentence. The purpose of the training is to cre-
ate vector representations for individual ARPAbet
phonemes by using their surrounding phonemes as
context. By doing this across multiple words, the
Word2Vec model learns meaningful relationships
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between phonemes based on how they are used to-
gether in different words. In our experiment, we
used standard hyperparameters: a vector size of 20,
a context window of 2, and the Skip-Gram model
(sg=1). For our test, we excluded quintets that had
words not present in the CMU.

C.3 XPhoneBERT

XPhoneBERT (The Nguyen et al., 2023) is a lan-
guage model that captures phonetic features. Even
though this language model was trained to improve
other models on Text-To-Speech tasks, we use it
to extract phonetic embeddings. The model was
trained with the RoBERTa pre-training approach
and used BERTBase as an architecture. Specifi-
cally, The Nguyen et al. (2023) transcribed all the
BERT datasets into IPA in the various languages
chosen. They based their training on tokens of
words transcribed into IPA, with a maximum of
512 tokens for each sentence considered. Note that
originally XPhoneBERT was developed for another
goal (Text-To-Speech tasks), which could be one
of the causes of its suboptimal performance.

C.4 Extraction of static embeddings from
contextual models

To extract static embeddings using contextual mod-
els (BERT, XPhoneBERT) we applied an approach
similar to the one described in Bommasani et al.
(2020). Specifically, for each target word in the
quintets, we extracted 10 sentences from Wikitext.8

If fewer than 10 sentences were available for a
word in Wikitext, we used ChatGPT to generate
additional sentences. We extracted the last hidden
layer of the target token for each of the 10 different
sentences. We then used the average across all 10
sentences as our contextual embedding.

D PWE Suite

We also tested the three embeddings models (Artic-
ulatory Phonemes, Phoneme2Vec, XPhoneBERT)
with the recently proposed testbed for phonetic em-
beddings, PWESuite (Zouhar et al., 2024). The
goal is to understand if there are any differences,
and which ones, between our testbed and PWE-
Suite. Although some of the models we reported
are already tested in the original PWESuite paper,
we re-ran the experiments from scratch to have
a directly comparable result in the same setting.
Compared to PSET, in PWESuite the articulatory

8WikiText

embeddings perform better. XPhoneBERT also
performs the worst among the three on this testbed.

E Detailed LLMs results

We analyzed the performance of five language mod-
els using different prompt variants and word orders
(see also Section 4.2). The models are: GPT-4o,
Gemini 2.5 Flash, Llama 3.1-8B, OLMo-7B and
OLMo 2-7B. We experimented with a prompt in
more technical language and varied the order of
the words (i.e., homophones, synonyms, distrac-
tors), resulting in technical prompts 1 and 2. Simi-
larly, we also varied the word order of the layman’s
prompt, resulting in layman’s prompt 1 and 2. The
results of the technical language prompt are higher
for all LLMs, except OLMo-7B, which had diffi-
culty with both prompts. Tables 5, 6, 7 and 8 show
the performance metrics for each single prompt for
all the models.

P. H S DP DG err.

Tech. (1) 0.796 0.000 0.056 0.076 0.072
Tech. (2) 0.832 0.000 0.044 0.064 0.060
Lay. (1) 0.776 0.028 0.040 0.064 0.092
Lay. (2) 0.784 0.020 0.048 0.052 0.096

Average 0.797 0.012 0.047 0.064 0.080

Table 5: Performance of GPT4-o per prompt. For each
category (Homophones, Synonyms, Distractors), we
report the proportion of cases where it was assigned the
highest similarity to the anchor word. We also report
how often an extraction error (err.) occurred.
aliases: P. = Prompt, Tech. = Technical, Lay. = Layman,
(1) = prompt number 1, (2) = prompt number 2.

P. H S DP DG err.

Tech. (1) 0.864 0.0 0.036 0.028 0.072
Tech. (2) 0.884 0.0 0.016 0.024 0.076
Lay. (1) 0.868 0.0 0.032 0.036 0.064
Lay. (2) 0.872 0.0 0.024 0.036 0.068

Average 0.872 0.0 0.027 0.031 0.070

Table 6: Performance of Gemini per prompt.

P. H S DP DG err.

Tech. (1) 0.576 0.064 0.060 0.14 0.16
Tech. (2) 0.404 0.020 0.088 0.304 0.184
Lay. (1) 0.268 0.104 0.104 0.180 0.344
Lay. (2) 0.416 0.020 0.092 0.308 0.164

Average 0.416 0.052 0.086 0.233 0.213

Table 7: Performance of Llama3.1-8B per prompt.
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Model Human Sim. (Pearson) Art. Dist. (Pearson) Retrieval (rank perc.)

Articulatory Phonemes 0.60 0.11 0.84
Phoneme2Vec 0.60 0.06 0.74
XPhoneBERT 0.14 0.14 0.66

Table 3: Results with PWESuite: Intrinsic evaluation of embedding methods.

Model Analogies (Acc@1) Rhyme (accuracy) Cognate (accuracy) Overall

Articulatory Phonemes 0.99 0.85 0.62 0.67
Phoneme2Vec 0.31 0.86 0.60 0.53
XPhoneBERT 0.09 0.59 0.60 0.37

Table 4: Results with PWESuite: Extrinsic evaluation and overall performance of embedding methods.

P. H S DP DG err.

Tech. (1) 0.04 0.04 0.0 0.0 0.992
Tech. (2) 0.0 0.0 0.0 0.0 1.000
Lay. (1) 0.08 0.012 0.0 0.0 0.98
Lay. (2) 0.0 0.0 0.0 0.04 0.996

Average 0.003 0.001 0 0.001 0.992

Table 8: Performance of OLMo-7B per prompt.

P. H S Dp DG err.

Tech. (1) 0.26 0.392 0.116 0.048 0.184
Tech. (2) 0.192 0.216 0.060 0.280 0.252
Lay. (1) 0.124 0.536 0.060 0.028 0.252
Lay. (2) 0.216 0.196 0.092 0.272 0.224

Average 0.198 0.335 0.082 0.157 0.228

Table 9: Performance of OLMo 2-7B per prompt.

F Frequency Analysis

The frequency of words influences the representa-
tional stability of embeddings (Chugh et al., 2018).
To investigate the potential influence of word fre-
quency on correctly identifying the homophone,
we conducted a frequency analysis on the quintets
from our dataset. We used the Subtlex-UK fre-
quency dataset for reference (van Heuven et al.,
2014), specifically focusing on the Zipf scale met-
ric. The Zipf scale is a logarithmic measure that
ranks words on a scale from 1 (infrequent) to 7
(very frequent), corresponding to log10 (frequency
per billion words). We fitted a logistic regression
model. Our dependent variable is whether the
model correctly predicted the homophone (Class
1) or not (Class 0). The independent variables are
the Zipf scale frequencies of the classes. Table 10
shows the coefficients of each independent vari-
able and the intercept, for each model. Across all
models, a higher frequency in Phonetic-based edit-

distance distractors (Edit-Distance P.) increases the
likelihood of incorrectly predicting the homophone
(Edit-Distance P., Edit-distance G., Synonym). The
opposite holds for the Edit-distance G. class, where
higher frequency increases the likelihood of predict-
ing class 1 (Homophone), except for Word2Vec.

Furthermore, in our testbed, anchors and homo-
phones (Section 3) have very different meanings.
For this reason, when the words are semantically
well-represented, it is expected for the semantic
models to select Class 0 (not a homophone). The
coefficients for Word2Vec show that both a higher
frequency of a homophone and a higher frequency
of a synonym reduce the probability of selecting
the homophone. The result for BERT might instead
be related to its contextual training with rather large
datasets, which might have homophones close to
each other in some cases (e.g. Wikipedia is part of
the BERT’s training set, Wikipedia page on homo-
phones).

G Implementation details

For both XPhoneBERT and BERT, we used the
Transformers (version 4.45) implementation from
HuggingFace (Wolf et al., 2019). The same library
was also used to query open-weight LLMs. All
the LLMs were tested in their Instruct version. To
query proprietary LLMs we referred to the APIs
(Gemini: Gemini API, OpenAI: OpenAI API).
Phoneme2Vec was trained using the Word2Vec’s
gensim framework (Rehurek and Sojka, 2011).
For Word2Vec, we used the Google News pre-
trained version, which contains 300-dimensional
vectors for 3 million words and phrases. The pre-
trained Google News Word2Vec model was ac-
cessed within the Gensim library9. The Articu-
latory Embeddings were extracted using the Pan-

9Gensim
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Model Anchor Homophone Synonym Edit-distance P. Edit-distance G. Intercept

XPhoneBERT (phon) 0.089 0.054 0.151 -0.183 0.078 0.138
Phoneme2Vec (phon) -0.256 -0.221 -0.567 -0.177 0.099 6.699
Art. Phonemes (phon) 0.308 0.183 -0.009 -0.289 0.527 -0.098
Word2Vec (sem) -0.174 -0.397 -0.325 -0.072 -0.254 1.597
BERT (sem) 0.087 0.029 0.220 -0.085 0.034 -4.305

Table 10: The effect of word frequency. The table displays the coefficients and the intercept term for five different
models: XPhoneBERT, Phoneme2Vec, Articulatory Phonemes (phonological models), Word2Vec, and BERT
(semantic models). Significant coefficients are marked in bold.

Phon’s library at the following URL: PanPhon.
All the links were accessed on 26/08/2025. All
the experiments were run using an NVIDIA A40.
The extraction of the static version for BERT and
XPhoneBERT embeddings required ~6 hours. The
prompt extraction required ~2 hours. All other
experiments were quickly run on the CPU.

H Copyright

This dataset is available under the Creative Com-
mons Attribution 4.0 International License (CC BY
4.0). You are free to use, share, and adapt the data
with appropriate credit to the author.

I Qualitative Error Analysis

LLMs To explore the nature of incorrect re-
sponses, we conducted a qualitative analysis of
errors for each LLM. For each, three prompts result-
ing in incorrect answers were randomly selected.
The goal was not exhaustive evaluation but a light
diagnostic to identify any notable tendencies. Ta-
bles 11–15 list these prompts, the model outputs,
and correct answers. Note that all the distractors
shown follow the order: (H), (S), (DP), (DG). For
a subset of examples, we visualized the relation-
ship between anchors and distractors by extract-
ing static embeddings for the open-source models
(Olmo-7B, Olmo-2-7B, LLama3.1-8B) with the
same method used for BERT and XPhoneBERT
(see section C.4). Selected embeddings plots are
shown in Figures 1–3. These figures highlight the
models’ semantic tendencies: without prompting,
the extracted embeddings cluster synonyms rather
than other distractors closer to the anchor, such
as cash and money (Fig. 2), and pain and agony
(Fig. 3).

Embedding models We also highlight two quin-
tets where Phoneme2Vec and Word2Vec fail (Fig-
ures 4–5): file (A), phial (H), record (S), bile
(DP), mile (DG) for Phoneme2Vec and border (A),

boarder (H), edge (S), balder (DP), birder (DG)
for Word2Vec. In the Phoneme2Vec case, er-
rors emerge when the homophone and the anchor
ends to be represented differently —e.g., file–phial,
where the word phial was probably represented
with its American and not British pronunciation,
leading to an error. For Word2Vec, the failure mode
is less transparent; a plausible cause is corpus-
driven bias (e.g., frequency or co-occurrence ar-
tifacts) rather than phonetic proximity.

Figure 1: Embeddings for an incorrectly answered quin-
tet - Olmo. Quintet: son (A), sun (H), boy (S), bon (DP),
on (DG).

Figure 2: Embeddings for an incorrectly answered quin-
tet - Olmo2. Quintet: cash (A), cache (H), money (S),
bash (DP), cast (DG).
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Figure 3: Embeddings for an incorrectly answered quin-
tet - Llama3-8B. Quintet: pain (A), pane (H), agony (S),
bain (DP), main (DG).

Figure 4: Embeddings of a quintet for which
Phoneme2Vec produced an incorrect result. We also
show the Word2vec embeddings.

Figure 5: Embeddings of a quintet for which Word2Vec
produced an incorrect result. We also show the
Phoneme2Vec embeddings. Only four points are dis-
played, since two of the words have identical embed-
dings under Phoneme2Vec.

Gemini 2.5 Flash

Prompt
style

Anchor Distractors Given
An-
swer

Correct
An-
swer

TL close clothes, near,
cloak, lose

cloak clothes

LL ferry fairy, boat,
barie, berry

berry fairy

TL vile vial, bad, bile,
aile

bile vial

Table 11: Example prompt results from Gemini 2.5
Flash. All the distractors shown in the examples follow
the order: (H), (S), (DP), (DG).

GPT-4o

Prompt
style

Anchor Distractors Given
An-
swer

Correct
An-
swer

TL cash cache, money,
bash, cast

bash cache

TL rest wrest, vaca-
tion, best, cest

best wrest

TL lead led, guide,
bead, read

bead led

Table 12: Example prompt results from GPT-4o

Llama 3.1-8B

Prompt
style

Anchor Distractors Given
An-
swer

Correct
An-
swer

TL earn urn, acquire,
an, arn

arn urn

LL pain pane, agony,
bain, main

bain pane

LL sail sale, cruise,
bail, ail

ail sale

Table 13: Example prompt results from Llama 3.1-8B.

Olmo-7B

Prompt
style

Anchor Distractors Given
An-
swer

Correct
An-
swer

LL son sun, boy, bon,
on

boy sun

TL faint feint, vague,
fent, paint

faint
feint,

feint

TL cruise crews, sailing,
bruise, bruiser

cruise crews

Table 14: Example prompt results from Olmo-7B.

Olmo-2-7B

Prompt
style

Anchor Distractors Given
An-
swer

Correct
An-
swer

TL cash cache, money,
bash , cast

cast cache
(H)

TL bait bate, torment,
babe, ait

ait bate
(H)

TL rude rued, blunt,
bood, crude,

blunt rued

Table 15: Example prompt results from Olmo-2-7B.
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