@inproceedings{du-etal-2025-investigating,
title = "Investigating Value-Reasoning Reliability in Small Large Language Models",
author = "Du, Xia and
Sun, Shuhan and
Liu, Pengyuan and
Yu, Dong",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.395/",
pages = "7757--7797",
ISBN = "979-8-89176-332-6",
abstract = "Although small Large Language models (sLLMs) have been widely deployed in practical applications, little attention has been paid to their value-reasoning abilities, particularly in terms of reasoning reliability. To address this gap, we propose a systematic evaluation framework for assessing the Value-Reasoning Reliability of sLLMs. We define Value-Reasoning Reliability as comprising: (1) Output consistency under identical prompts, (2) Output Robustness under semantically equivalent prompts, (3) Maintaining stable value reasoning in the face of attacks, and (4) Consistency of value reasoning in open-ended value expression tasks. Our framework includes three core tasks: Repetition Consistency task, Interaction Stability task, and Open-ended Expression Consistency task. We further incorporate self-reported confidence scores to evaluate the model{'}s value reasoning reliability from two perspectives: the model{'}s self-awareness of its values, and its value-based decision-making. Our findings show that models vary significantly in their stability when responding to value-related questions. Moreover, we observe considerable output randomness, which is not always correlated with the self-reported confidence or expressed value preferences. This suggests that current models lack a reliable internal mechanism for stable value reasoning when addressing value-sensitive queries."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="du-etal-2025-investigating">
<titleInfo>
<title>Investigating Value-Reasoning Reliability in Small Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xia</namePart>
<namePart type="family">Du</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shuhan</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pengyuan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dong</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Although small Large Language models (sLLMs) have been widely deployed in practical applications, little attention has been paid to their value-reasoning abilities, particularly in terms of reasoning reliability. To address this gap, we propose a systematic evaluation framework for assessing the Value-Reasoning Reliability of sLLMs. We define Value-Reasoning Reliability as comprising: (1) Output consistency under identical prompts, (2) Output Robustness under semantically equivalent prompts, (3) Maintaining stable value reasoning in the face of attacks, and (4) Consistency of value reasoning in open-ended value expression tasks. Our framework includes three core tasks: Repetition Consistency task, Interaction Stability task, and Open-ended Expression Consistency task. We further incorporate self-reported confidence scores to evaluate the model’s value reasoning reliability from two perspectives: the model’s self-awareness of its values, and its value-based decision-making. Our findings show that models vary significantly in their stability when responding to value-related questions. Moreover, we observe considerable output randomness, which is not always correlated with the self-reported confidence or expressed value preferences. This suggests that current models lack a reliable internal mechanism for stable value reasoning when addressing value-sensitive queries.</abstract>
<identifier type="citekey">du-etal-2025-investigating</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.395/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>7757</start>
<end>7797</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Investigating Value-Reasoning Reliability in Small Large Language Models
%A Du, Xia
%A Sun, Shuhan
%A Liu, Pengyuan
%A Yu, Dong
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F du-etal-2025-investigating
%X Although small Large Language models (sLLMs) have been widely deployed in practical applications, little attention has been paid to their value-reasoning abilities, particularly in terms of reasoning reliability. To address this gap, we propose a systematic evaluation framework for assessing the Value-Reasoning Reliability of sLLMs. We define Value-Reasoning Reliability as comprising: (1) Output consistency under identical prompts, (2) Output Robustness under semantically equivalent prompts, (3) Maintaining stable value reasoning in the face of attacks, and (4) Consistency of value reasoning in open-ended value expression tasks. Our framework includes three core tasks: Repetition Consistency task, Interaction Stability task, and Open-ended Expression Consistency task. We further incorporate self-reported confidence scores to evaluate the model’s value reasoning reliability from two perspectives: the model’s self-awareness of its values, and its value-based decision-making. Our findings show that models vary significantly in their stability when responding to value-related questions. Moreover, we observe considerable output randomness, which is not always correlated with the self-reported confidence or expressed value preferences. This suggests that current models lack a reliable internal mechanism for stable value reasoning when addressing value-sensitive queries.
%U https://aclanthology.org/2025.emnlp-main.395/
%P 7757-7797
Markdown (Informal)
[Investigating Value-Reasoning Reliability in Small Large Language Models](https://aclanthology.org/2025.emnlp-main.395/) (Du et al., EMNLP 2025)
ACL