@inproceedings{matsuda-etal-2025-vela,
title = "{VELA}: An {LLM}-Hybrid-as-a-Judge Approach for Evaluating Long Image Captions",
author = "Matsuda, Kazuki and
Wada, Yuiga and
Hirano, Shinnosuke and
Otsuki, Seitaro and
Sugiura, Komei",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.438/",
pages = "8691--8707",
ISBN = "979-8-89176-332-6",
abstract = "In this study, we focus on the automatic evaluation of long and detailed image captions generated by multimodal Large Language Models (MLLMs). Most existing automatic evaluation metrics for image captioning are primarily designed for short captions and are not suitable for evaluating long captions. Moreover, recent LLM-as-a-Judge approaches suffer from slow inference due to their reliance on autoregressive inference and early fusion of visual information. To address these limitations, we propose VELA, an automatic evaluation metric for long captions developed within a novel LLM-Hybrid-as-a-Judge framework. Furthermore, we propose LongCap-Arena, a benchmark specifically designed for evaluating metrics for long captions. This benchmark comprises 7,805 images, the corresponding human-provided long reference captions and long candidate captions, and 32,246 human judgments from three distinct perspectives: Descriptiveness, Relevance, and Fluency. We demonstrated that VELA outperformed existing metrics and achieved superhuman performance on LongCap-Arena."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="matsuda-etal-2025-vela">
<titleInfo>
<title>VELA: An LLM-Hybrid-as-a-Judge Approach for Evaluating Long Image Captions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kazuki</namePart>
<namePart type="family">Matsuda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuiga</namePart>
<namePart type="family">Wada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shinnosuke</namePart>
<namePart type="family">Hirano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seitaro</namePart>
<namePart type="family">Otsuki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Komei</namePart>
<namePart type="family">Sugiura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>In this study, we focus on the automatic evaluation of long and detailed image captions generated by multimodal Large Language Models (MLLMs). Most existing automatic evaluation metrics for image captioning are primarily designed for short captions and are not suitable for evaluating long captions. Moreover, recent LLM-as-a-Judge approaches suffer from slow inference due to their reliance on autoregressive inference and early fusion of visual information. To address these limitations, we propose VELA, an automatic evaluation metric for long captions developed within a novel LLM-Hybrid-as-a-Judge framework. Furthermore, we propose LongCap-Arena, a benchmark specifically designed for evaluating metrics for long captions. This benchmark comprises 7,805 images, the corresponding human-provided long reference captions and long candidate captions, and 32,246 human judgments from three distinct perspectives: Descriptiveness, Relevance, and Fluency. We demonstrated that VELA outperformed existing metrics and achieved superhuman performance on LongCap-Arena.</abstract>
<identifier type="citekey">matsuda-etal-2025-vela</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.438/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>8691</start>
<end>8707</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T VELA: An LLM-Hybrid-as-a-Judge Approach for Evaluating Long Image Captions
%A Matsuda, Kazuki
%A Wada, Yuiga
%A Hirano, Shinnosuke
%A Otsuki, Seitaro
%A Sugiura, Komei
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F matsuda-etal-2025-vela
%X In this study, we focus on the automatic evaluation of long and detailed image captions generated by multimodal Large Language Models (MLLMs). Most existing automatic evaluation metrics for image captioning are primarily designed for short captions and are not suitable for evaluating long captions. Moreover, recent LLM-as-a-Judge approaches suffer from slow inference due to their reliance on autoregressive inference and early fusion of visual information. To address these limitations, we propose VELA, an automatic evaluation metric for long captions developed within a novel LLM-Hybrid-as-a-Judge framework. Furthermore, we propose LongCap-Arena, a benchmark specifically designed for evaluating metrics for long captions. This benchmark comprises 7,805 images, the corresponding human-provided long reference captions and long candidate captions, and 32,246 human judgments from three distinct perspectives: Descriptiveness, Relevance, and Fluency. We demonstrated that VELA outperformed existing metrics and achieved superhuman performance on LongCap-Arena.
%U https://aclanthology.org/2025.emnlp-main.438/
%P 8691-8707
Markdown (Informal)
[VELA: An LLM-Hybrid-as-a-Judge Approach for Evaluating Long Image Captions](https://aclanthology.org/2025.emnlp-main.438/) (Matsuda et al., EMNLP 2025)
ACL