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Abstract

The rapid growth of video platforms has trans-
formed information dissemination and led to
an explosion of multimedia content. However,
this widespread reach also introduces risks, as
some users exploit these platforms to spread
hate speech, which is often concealed through
complex rhetoric, making hateful video detec-
tion a critical challenge. Existing detection
methods rely heavily on unimodal analysis or
simple feature fusion, struggling to capture
cross-modal interactions and reason through
implicit hate in sarcasm and metaphor. To ad-
dress these limitations, we propose HVGUARD,
the first reasoning-based hateful video detec-
tion framework with multimodal large language
models (MLLMs). Our approach integrates
Chain-of-Thought (CoT) reasoning to enhance
multimodal interaction modeling and implicit
hate interpretation. Additionally, we design
a Mixture-of-Experts (MoE) network for ef-
ficient multimodal fusion and final decision-
making. The framework is modular and exten-
sible, allowing flexible integration of different
MLLMs and encoders. Experimental results
demonstrate that HVGUARD outperforms all ex-
isting advanced detection tools, achieving an
improvement of 6.88% to 13.13% in accuracy
and 9.21% to 34.37% in M-F1 on two public
datasets covering both English and Chinese.

Disclaimer: This paper contains harmful con-
tent, which has the potential to be offensive and
may disturb readers.

1 Introduction

Video platforms like YouTube (Google, 2005),
Bilibili (Kuanyu, 2009), and TikTok (ByteDance,
2016) have transformed information dissemination
and fueled multimedia growth. However, this also
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Figure 1: A typical example of hateful video. The
offender mocks a bald individual using a pun that plays
on the phonetic similarity between "hair" and "hare".

brings risks, as some users exploit these platforms
to spread harmful content like hate speech (Ottoni
et al., 2018). Hate speech refers to language that
targets individuals or groups on the basis of charac-
teristics such as race, religion, or gender (Hee et al.,
2024b; Fortuna and Nunes, 2018), thereby fuel-
ing social tension and posing tangible risks to both
individuals and communities. Thus, effectively de-
tecting hate speech on video platforms (Alcântara
et al., 2020; Das et al., 2023; Wu and Bhandary,
2020) has become an urgent challenge.

The multimodal nature of video, which com-
bines visual, auditory, and textual elements, en-
ables subtle and indirect expressions of hate. As
shown in Figure 1, implicit hate speech is often dif-
ficult to detect, as it relies heavily on cross-modal
cues and contextual understanding. Content that ap-
pears harmless within a single modality may reveal
its offensive intent only when multiple modalities
are analyzed together. Current hateful video de-
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tection methods typically encode modalities sepa-
rately or concatenate their features superficially (Yu
et al., 2022; Wu and Bhandary, 2020; Wang et al.,
2024a; Das et al., 2023), limiting their ability to
capture nuanced interactions. Additionally, rhetori-
cal devices such as metaphors, irony, and sarcasm
frequently occur in hateful videos (Xu et al., 2024;
Ge et al., 2023), further complicating detection
tasks. Given the rapid proliferation of culturally
contextualized hateful videos online (Ottoni et al.,
2018), effective detection requires integrating mul-
timodal interactions with advanced reasoning capa-
bilities and external knowledge, underscoring the
practical significance of improving hateful content
moderation.

Recent multimodal large language models
(MLLMs) (Bai et al., 2023; Team et al., 2024; Liu
et al., 2024; Wang et al., 2024b) show strong poten-
tial for hateful video detection, given their deep
semantic comprehension and rich world knowl-
edge (Tang et al., 2025). To fully exploit their ca-
pabilities, we incorporate Chain-of-Thought (CoT)
reasoning, guiding MLLMs to systematically an-
alyze interactions across visual, auditory, and tex-
tual modalities. In this work, we first explore
how effectively MLLMs with CoT reasoning han-
dle multimodal interactions and rhetorical devices,
such as metaphors, in hateful videos. Motivated
by these insights, we propose HVGUARD1, the first
reasoning-based hateful video detection framework.
HVGUARD leverages MLLMs to generate multi-
modal rationales via CoT reasoning, explicitly mod-
eling cross-modal and rhetorical elements. Further-
more, we introduce a Mixture-of-Experts (MoE)
network (Jacobs et al., 1991) that integrates low-
level multimodal features with high-level semantic
rationales for robust detection. Extensive experi-
ments demonstrate that HVGUARD achieves up to
0.86 accuracy, significantly outperforming existing
state-of-the-art methods.

The key contributions of this paper are as fol-
lows:

• First Exploration of MLLMs and CoT in
Hateful Video Understanding. This is the
first work to explore the potential of MLLMs
and CoT reasoning for hateful video under-
standing, demonstrating their effectiveness in
managing multimodal interactions and com-
plex rhetorical devices, such as metaphors.

1https://github.com/yihengjingWHU/HVGuard

• Novel Reasoning-Based Hateful Video De-
tection Framework. We propose the
first reasoning-based hateful video detection
framework, integrating MLLMs with CoT
reasoning to enhance multimodal interaction
modeling and implicit hate interpretation. Ad-
ditionally, we introduce a MoE network to ef-
ficiently fuse multimodal representations and
MLLM-generated rationales, optimizing the
decision-making process.

• Extensive Evaluation of HVGUARD. Exper-
imental results show that HVGUARD achieves
up to 0.86 accuracy, outperforming all existing
detection tools with accuracy gains of 6.88%
to 13.13% and M-F1 improvements of 9.21%
to 34.37%. Extensive experiments on two pub-
lic datasets, covering both English and Chi-
nese, further validate its effectiveness in bi-
nary and ternary classification settings against
five state-of-the-art baselines, including ad-
vanced MLLMs and existing detection tools.

2 Related Work

2.1 Hate Speech Detection
Modern hate speech detection systems can be cate-
gorized into unimodal and multimodal approaches
based on data types. Unimodal detection is further
divided into three primary modalities:

Text-based detection primarily addresses binary
classification tasks, with advanced frameworks ex-
tending to ternary classification (hate speech, of-
fensive speech, and normal speech). Foundational
work by (Davidson et al., 2017) and (Founta et al.,
2018) established robust text classification base-
lines, while recent studies have enhanced detection
by analyzing contextual discourse (Yu et al., 2022)
and decoding black humor nuances (Hee et al.,
2024a).

Image-based detection focuses on visual hate
expression, particularly in meme culture. Re-
searchers have developed specialized datasets (Gas-
parini et al., 2022; Bhandari et al., 2023) and ad-
vanced methods like Pro-Cap (Cao et al., 2023)
for implicit hate detection, with architectures such
as MR.HARM (Lin et al., 2023) addressing multi-
modal hate meme analysis.

Audio-based detection employs CNNs to pro-
cess spectral features, where studies like (Med-
ina et al., 2022) and (Yousefi and Emmanouilidou,
2021) have advanced feature extraction techniques
for improved acoustic hate speech identification.
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Multimodal detection synergistically combines
text, visual, and auditory cues, proving particularly
effective for video analysis. Contemporary works
(Das et al., 2023; Wang et al., 2024a) demonstrate
superior performance through cross-modal fusion,
though most approaches simply concatenate modal-
ity features. Our work advances this paradigm by
modeling deep inter-modal interactions to capture
the complex semantics of hate speech videos.

2.2 Multimodal Large Language Models
(MLLMs)

The emergence of large language models (LLMs)
has led to significant advances in natural language
processing, enabling models like Gemini (Team
et al., 2024) to handle multimodal inputs, such
as images and text. While LLMs excel at reason-
ing and world knowledge, they lack the ability to
"see" images, making them less effective at un-
derstanding multimodal data. Conversely, large
visual models (VLMs) excel in image recognition
but are limited in reasoning and world knowledge
(Kirillov et al., 2023; Shen et al., 2024). The com-
bination of LLMs and VLMs in MLLMs allows
for more robust multimodal understanding, making
them highly effective in tasks like image reasoning
and video understanding (Wu et al., 2023). In our
research, we leverage MLLMs to analyze and un-
derstand the complex interaction patterns in hate
speech videos, providing valuable insights for rea-
soning models.

This integrated approach allows for more nu-
anced detection by simultaneously considering ver-
bal content, visual context, and auditory cues, while
explicitly modeling their synergistic relationships -
a critical advancement for understanding sophisti-
cated hate speech in multimedia environments.To
further demonstrate the importance of multimodal
information and MLLM rationale in hateful video
understanding, we conducted preliminary study in
Appendix A.

3 Method

3.1 Task Definition
The goal of hateful video detection is to extract
features from videos and classify them based on
these features. The video dataset is represented
as V = {v1, . . . , vi, . . . , v|V|}, where |V| is the
number of videos. The task can be expressed as:

arg max
c∈{1,2,...,|C|}

P (c|vi) (1)

where c ∈ {1, 2, . . . , |C|} represents the classifica-
tion categories. Our work focuses on utilizing ratio-
nale generated by MLLM and multimodal informa-
tion from the video itself for detection. Therefore,
this task can be re-expressed as:

arg max
c∈{1,2,...,|C|}

P (c|vTi , vAi , vFi , vMi ) (2)

where vTi represents the text information in the
video (such as title, subtitles, or transcript), vAi
represents the audio information of the video, vFi
represents the frame information of the video, and
vMi represents MLLM-derived rationales.

3.2 Overview
The overview of our framework, HVGUARD, is
shown in Figure 2. Based on preliminary study,
we design this novel framework for hateful video
detection, leveraging MLLM-derived rationales to
address challenges in multimodal interaction and
the interpretation of metaphors and rhetorical de-
vices. This framework extracts text, audio, and
video frames from the input video, providing a com-
prehensive semantic representation of the video. A
CoT-based reasoning approach is then applied, pro-
gressively reasoning through the individual modal-
ities and their interactions, to generate rationale
from MLLM. In the final stage, these embeddings
are ultimately integrated using a MoE network to
yield the final classification results.

3.3 Multimodal Extraction Module
Considering that hateful videos encompass mul-
tiple modalities, we first extract features from
the three main modalities: text, audio, and video
frames.

For the audio signal vAi , we process it as a com-
bination of semantic and emotional information.
Specifically, we use FunASR (Gao et al., 2023),
an open-source audio processing tool, to transcribe
the spoken content into text vtransi and extract the
corresponding emotional cues vemo

i .
For the visual modality, we uniformly sample

32 frames per video at fixed intervals, following
prior works such as ViViT (Arnab et al., 2021),
VideoChat (Li et al., 2023), and Video-LLaVA (Lin
et al., 2024), which demonstrate strong perfor-
mance with this setting. Although using more
frames may slightly improve accuracy, it signif-
icantly increases computational cost with limited
gains. In our case, 32 frames offer an effective
trade-off between efficiency and performance, as
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Figure 2: Overview of the proposed framework, consisting of three modules: Multimodal Extraction, MLLM
Reasoning, and Multimodal Fusion. The original video is processed by Multimodal Extraction to extract information
from different modalities. The MLLM then interprets this information and generates rationales, after which a
Mixture-of-Experts (MoE) network is employed to fuse and process the multimodal data.

also validated by our baseline Multihateclip (Wang
et al., 2024a).

vAi , v
F
i = extract(vi),

vtransi , vemo
i = trans(vAi )

(3)

where vAi represents the original audio signal, vFi
represents the video frames, and vtitlei represents
the video title.

Next, we construct the textual content vTi using
the video title and transcript:

vTi = {vtitlei , vtransi } (4)

3.4 MLLM Reasoning Module

To address the challenges in hateful video detection,
such as metaphors, cultural contexts, and the com-
plexity of multimodal interactions, it is necessary
to leverage MLLMs to extract deep semantic infor-
mation from the video. Based on preliminary study
(Appendix A), we find that hateful video detec-
tion is a complex process, requiring the extraction
of key cues from multiple modalities, including
text, visuals, and audio. Inspired by the works of
(Xu et al., 2024; Vishwamitra et al., 2024), we em-
ploy carefully designed CoT prompts to decompose
this complex task, thereby enabling the understand-
ing of multimodal hateful content within the video.
Specifically, our CoT prompt is as follows:

Adaption Prompt. In the field of hateful con-
tent detection, domain alignment, role description
and task-specific adaptation is critical, as it equips
MLLMs with essential cultural context and con-
textual comprehension. This focuses the model’s
capabilities on addressing the specific challenges

of understanding both nuanced and overt hateful
content, thereby improves its performance and reli-
ability (Csurka, 2017; Qi et al., 2024). We employ
the prompt:

This is a video that may contain harmful
content, such as hate speech, explicit vi-
olence, discrimination, or other forms of
harmful behavior. You are a content moder-
ation specialist. Your task is to identify any
instances of hate speech, violent imagery,
discriminatory actions, or any other content
that could be considered harmful, abusive,
or offensive. Ensure the answer’s accuracy
while keeping it concise and avoiding over-
explanation.

Visual Meaning Understanding. To guide the
model to analyze the video progressively, starting
with the visual information while ignoring the sub-
titles in the video frames. The focus is placed on
analyzing the characters and scenes in the frames.
To achieve this, we employ the following prompt:

Describe the video content based on {video
frames}, ignoring subtitles in the frames.
Pay attention to any special characters or
scenes.

Given the video frames vFi and this prompt
XF

prompt , the output computation is as follows:

res1 = MLLM(vFi , X
F
prompt) (5)

Textual Meaning Understanding. We guide
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the model to focus on textual information by ana-
lyzing the video titles and transcripts, paying spe-
cial attention to the presence of rhetorical devices
such as puns and homophonic wordplay used as
promotional strategies. Based on this, we employ
the following prompt:

The video title is {video title}. The text in
the video is {video transcript}. Please an-
alyze the meaning of this text. Note that
there may be homophonic memes and puns;
distinguish and explain them.

Given the textual input vTi and the prompt
XT

prompt , the output computation is as follows:

res2 = MLLM(vTi , X
T
prompt) (6)

Fusion Meaning Understanding. Given the
complex relationships between semantics across
different modalities, it is essential to comprehen-
sively consider the meaning conveyed by the video
after multimodal fusion. As illustrated by figure
1, some videos may contain no obvious offensive
content in their text or visuals individually, yet their
combination can give rise to new meanings. There-
fore, we aim for the model to synthesize the results
from the first two steps and further integrate the
video’s raw information, including video frames,
text, and extracted emotions of spoken content.
This approach seeks to uncover deeper cross-modal
interactions and analyze potential new metaphors.
We employ the following prompt:

Please combine the {video title}, {video
transcript}, {video frames}, {voice emo-
tion}, {response1}, {response2} and analyze
both the visual, textual and audio elements
of the video to detect and flag any hateful
content. No need to describe the content of
the video, only answer implicit meanings
and whether this video expresses hateful
content further.

The MLLM rationale is as follows:

vMi = MLLM(vTi , v
F
i , v

emo
i , res1, res2) (7)

3.5 Multimodal Fusion Module

After obtaining rationale generated by MLLM rea-
soning module, we designed a multimodal fusion

module to fuse information from the aforemen-
tioned modalities. We employ modality-specific
encoders for each type of modality to obtain their
respective embedding representations:

ET
i = fT (v

T
i ),

EA
i = fA(v

A
i ),

EF
i = fF (v

F
i )

(8)

where fT , fA, and fF represent the text, audio, and
vision modality encoders, while ET

i , EA
i , and EF

i

represent corresponding embeddings. To reduce
the inference burden, we designed an embedding
cache, allowing the above process to be executed
only once on the dataset.

The rationale vMi generated by the MLLM is
presented in textual form. We treat it as additional
textual input and feed it into the text modality en-
coder to obtain embeddings:

EM
i = fT (v

M
i ) (9)

To fuse the embeddings from different modal-
ities, we designed a mixture of experts network.
First, all embeddings are concatenated into a single
long vector as the representation embedding Ei for
the entire video:

Ei = concat(ET
i , E

A
i , E

F
i , E

M
i ) (10)

Next, we constructed n identical expert networks
and one gating network, where n is the number of
experts. These experts and the gating network share
the same input Ei. Each expert network extracts
high-level information specific to certain feature.
The output of the k-th expert is denoted as Ok and
is computed as follows:

Ok = fk(Ei; θk), k ∈ {1, 2, . . . , n} (11)

where fk represents the mapping function of the
k-th expert network, and θk denotes its parameters.

Simultaneously, the gating network g(Ei;ϕ) dy-
namically generates weights wk to adjust the con-
tribution of each expert’s output. To prevent weight
polarization, dropout is applied to the gating net-
work’s output weights. The gating network com-
putes these weights as:

wk = Dropout

(
exp(gk(Ei;ϕ))∑n
j=1 exp(gj(Ei;ϕ))

)
,

k ∈ {1, 2, . . . , n}
(12)

where gk(Ei;ϕ) is the unnormalized weight pro-
duced by the gating network, and ϕ represents the
parameters of the gating network.
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The final fused output Ofusion is obtained by
combining the weighted outputs of all experts:

Ofusion =
n∑

k=1

wk ·Ok (13)

3.6 Final Decision
During training, we optimize the parameters of the
expert and gating networks by minimizing a loss
function. Assuming the ground truth labels are
y and the final decision outputs are ŷ, we use a
cross-entropy loss function:

L = − 1

m

m∑

i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)]

(14)
where m denotes the number of samples.

4 Experiments

4.1 Dataset
In our study, we employ two high-quality, up-to-
date public datasets for hateful video detection:

HateMM(Das et al., 2023). The HateMM
dataset consists of 1,083 videos sourced from
BitChute, a platform with lenient content moder-
ation, resulting in a higher prevalence of hateful
content. Videos are labeled as either Hate or Non-
Hate.

MultiHateClip(Wang et al., 2024a). The Mul-
tiHateClip dataset is a multilingual benchmark
dataset for hateful video detection, including 2,000
videos from YouTube and Bilibili, with 1,000
videos in English and 1,000 in Chinese. Each video
is classified as Hateful, Offensive, or Normal.

Dataset Language Total H O N
HateMM English 1,066 427 0 639

Multihateclip
English 891 72 218 601
Chinese 897 112 180 605

Table 1: Overview of datasets. H:hateful, O:offensive,
N:normal

To enhance data reliability, we filtered out cor-
rupted and blurry videos. Additionally, to ensure
high-quality textual information, we re-annotated
the video transcripts using the speech transcription
tool FunASR (Gao et al., 2023), improving the ac-
curacy of multimodal analysis. The dataset we use
is summarized in Table 1.

4.2 Experiment Settings
We randomly split all datasets into training, test-
ing, and validation sets with a 7:2:1 ratio. For the

ternary classification task on the MultiHateClip
dataset, the labels used are Hateful, Offensive, and
Normal. For binary classification on both the Multi-
HateClip and HateMM datasets, we combine Hate-
ful and Offensive into a single category, keeping
the Normal label unchanged.

All models are trained with a learning rate of 1e-
4, a batch size of 32, and early stopping after 100
epochs. Experiments are conducted on three Tesla
V100-32G GPUs. Model performance is primarily
evaluated using macro-averaged F1 score (M-F1)
and accuracy (acc). We employ GPT-4o(Achiam
et al., 2023), XLM(Conneau et al., 2020),
Vit(Dosovitskiy, 2020), and Wav2Vec(Baevski
et al., 2020) as the fundamental MLLM and modal-
ity encoders.

4.3 Baseline Models
We evaluate HVGUARD with five baselines, includ-
ing three advanced MLLMs and two state-of-the-
art methods in hateful video detection: (1) GPT-4o
(Achiam et al., 2023): An advanced MLLM by
OpenAI, with high-level reasoning capabilities. (2)
Gemini-1.5-pro (Team et al., 2024): A sophis-
ticated multimodal model by Google DeepMind,
capable of handling diverse reasoning tasks and
understanding multiple modalities, including au-
dio, images, videos, and text. (3) Qwen-VL-7B
(Bai et al., 2023): An open-source vision-language
model by Alibaba Cloud, excelling in tasks like
image captioning, question answering, and visual
localization. (4) HateMM (Das et al., 2023): A
multimodal hateful video detection model that com-
bines text, audio, and visual pretrained models
through a trainable fusion layer to make final pre-
dictions. (5) MultiHateClip (Wang et al., 2024a):
A model that processes each modality’s features
through independent fully connected layers, con-
catenates them, and performs final classification to
determine whether the video contains hate speech.

For the MLLMs used, we employ a generalized
prompt to detect hateful videos: "Analyze whether
the video contains hateful content." To ensure test
consistency, we reproduced all the baselines and
conducted a unified evaluation.

4.4 Evaluation Results
To evaluate the effectiveness of HVGUARD, we re-
port results in Table 2. The Multihateclip dataset,
containing both English and Chinese videos, is
used to test cross-lingual generalization. We con-
sider both binary and ternary classification to reflect
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Dataset Number of categories Model Acc M-F1 F1(H) R(H) P(H) F1(O) R(O) P(O)

Multihateclip(English)

3

GPT-4o 0.7326 0.3280 0.2957 0.2361 0.3953 0.4923 0.4486 0.5455
Gemini-1.5-pro 0.6319 0.4458 0.2143 0.2000 0.2308 0.3409 0.3488 0.3333

Qwen-VL 0.5618 0.4060 0.2051 0.6154 0.1231 0.2258 0.1556 0.4118
HateMM 0.6966 0.4894 0.1333 0.1667 0.1111 0.5217 0.5516 0.5345

Multihateclip 0.7079 0.4946 0.1667 0.1667 0.1667 0.4928 0.5780 0.4750
HVGuard 0.8090 0.6646 0.4556 0.4722 0.5000 0.6488 0.6270 0.6994

2

GPT-4o 0.7989 0.5019 / / / 0.6455 0.5699 0.7443
Gemini-1.5-pro 0.7198 0.6020 / / / 0.3855 0.2759 0.6400

Qwen-VL 0.6573 0.6549 / / / 0.6258 0.9273 0.4722
HateMM 0.7191 0.6646 / / / 0.5421 0.4722 0.6548

Multihateclip 0.7416 0.6806 / / / 0.5544 0.4861 0.7269
HVGuard 0.8539 0.7714 / / / 0.6308 0.5819 0.7619

Multihateclip(Chinese)

3

GPT-4o 0.6444 0.4460 0.2326 0.1852 0.3125 0.2941 0.3448 0.2564
Gemini-1.5-pro 0.6648 0.4393 0.2069 0.1500 0.3333 0.2985 0.2703 0.3333

Qwen-VL 0.5719 0.4472 0.3333 0.6875 0.2200 0.2491 0.1889 0.3656
HateMM 0.6889 0.4163 0.0741 0.0476 0.1667 0.3667 0.3889 0.4722

Multihateclip 0.7111 0.4573 0.1667 0.1111 0.3333 0.3778 0.3889 0.4167
HVGuard 0.8045 0.5643 0.3563 0.2917 0.5278 0.4417 0.4190 0.6139

2

GPT-4o 0.7389 0.6900 / / / 0.5766 0.5714 0.5818
Gemini-1.5-pro 0.7443 0.6188 / / / 0.4000 0.2632 0.8333

Qwen-VL 0.6704 0.6684 / / / 0.6424 0.9298 0.4907
HateMM 0.7444 0.6908 / / / 0.5694 0.5694 0.5826

Multihateclip 0.7778 0.6904 / / / 0.5299 0.4028 0.7833
HVGuard 0.8603 0.8219 / / / 0.7408 0.6905 0.8274

HateMM 2

GPT-4o 0.7308 0.7306 0.7238 0.8806 0.6144 / / /
Gemini-1.5-pro 0.7874 0.7872 0.7933 0.8554 0.7396 / / /

Qwen-VL 0.7089 0.7089 0.7075 0.8824 0.5906 / / /
HateMM 0.7500 0.7454 0.7430 0.7259 0.7614 / / /

Multihateclip 0.7614 0.7594 0.7611 0.7537 0.7690 / / /
HVGuard 0.8563 0.8597 0.8479 0.8228 0.8809 / / /

Table 2: Results of different methods on the task of hateful video detection. H:hateful, O:offensive, Acc:accuracy,
M-F1:macroF1, R:recall, P:precision.

different moderation needs: binary classification
supports rapid filtering, while ternary classifica-
tion enables finer-grained control by introducing
an "Offensive" category.

Overall, HVGUARD outperformed all other base-
lines, with an improvement of 6.88% to 13.13% in
accuracy and 9.21% to 34.37% in M-F1 compared
to existing SOTA detection tools. We then explored
further conclusions through the following analysis.

HVGUARD achieved SOTA performance on both
English and Chinese hateful video datasets, demon-
strating its multilingual adaptability. Additionally,
it outperformed other baselines in both ternary and
binary classification tasks.

We also achieved superior performance on most
metrics for crucial labels of "Hateful" and "Offen-
sive," demonstrating the HVGUARD ability for hate-
ful video detection. Notably, Qwen-VL achieved
the highest recall rate for "Hate" category, but per-
formed poorly in accuracy and M-F1. This suggests
that Qwen-VL tends to classify videos as "Hate",
leading to the misclassification of some normal
videos. In practical applications, an excessively
high false positive rate may negatively impact nor-
mal information flow within online communities.

To more clearly demonstrate the effectiveness of

the proposed framework, we present a case study
in Appendix B. Moreover, our framework achieves
a very low false positive rate, additional analysis
further indicates that the few remaining misclassifi-
cations are often associated with sensitive terms or
identity-related topics (see Appendix C).

4.5 Effectiveness of Components in HVGUARD

Model Ternary Binary
Acc M-F1 Acc M-F1

w/o Vision encoder 0.7865 0.4760 0.8202 0.7397
w/o Text encoder 0.7753 0.5633 0.8258 0.7090
w/o Audio encoder 0.7697 0.5807 0.8258 0.7413
w/o Modal features 0.7584 0.4816 0.8146 0.7126
w/o CoT 0.7416 0.4715 0.7921 0.5512
MoE→MLP 0.7809 0.5936 0.8371 0.7466
MoE→Cross attention 0.8034 0.6525 0.8427 0.8037
HVGuard 0.8090 0.6646 0.8539 0.7714

Table 3: Ablation study for the components in HV-
GUARD.

Table 3 summarizes the results of the ablation
study on the MultiHateClip(English) dataset us-
ing HVGUARD. Removing the visual, text, or audio
components individually resulted in performance
declines, indicating that each modality plays a cru-
cial role in hate detection. Furthermore, ablation
of all modal features, relying solely on MLLM
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Figure 3: (a) Number of experts hyper-parameter study. (b) Learning rate hyper-parameter study. (c) Batch size
hyper-parameter study.

rationale—led to a noticeable decrease in perfor-
mance. These findings underscore the importance
of integrating comprehensive multimodal informa-
tion for accurate detection.

Moreover, removing the CoT guidance for the
MLLM and relying solely on generalized prompt
templates resulted in a significant performance
drop. This demonstrates that the CoT approach
generates more informative supplementary features,
enabling the multimodal fusion module to make
more accurate predictions.

Furthermore, replacing the MoE in the model
with a standard MLP or a cross attention layer also
led to a performance decline. This indicates that
MoE is crucial for the multimodal tasks in this
context. MoE leverages information from different
modalities, along with the rationale provided by the
MLLM, to enhance hateful video detection. More
details can be found in Appendix D.

In addition, we conducted comprehensive exper-
iments on different combinations of MLLMs, Text
encoders, Vision encoders, and Audio encoders,
demonstrating the deployment flexibility of HV-

GUARD. Details are shown in Appendix E.

4.6 Hyper-parameter Study

To investigate the effects of the hyper-parameters in
HVGUARD, we show the impact of hyper-parameters
on the performance trend.

Figure 3 illustrates the impact of varying num-
bers of experts, learning rate and batch size on
the performance through a line chart, showing that
the model achieves optimal performance when the

number of experts is 8, and the learning rate and
batch size have little to no impact on the perfor-
mance. Despite experimenting with different val-
ues for these hyperparameters, the model’s perfor-
mance remained relatively stable across the varia-
tions, indicating that the performance is primarily
influenced by the number of experts rather than the
learning rate or batch size.

5 Conclusion

In this work, we propose a hateful video detec-
tion framework named HVGUARD, which is the first
reasoning-based hateful video detection framework
with MLLMs. This framework carefully designs
a CoT reasoning strategy to fully leverage the rea-
soning ability of MLLMs and introduces a MoE
network for the efficient utilization of rationale
and multimodal features. Experiments demonstrate
that the proposed framework achieves SOTA per-
formance on two public datasets, containing both
English and Chinese videos. In the future, we aim
to improve the framework by incorporating larger,
more diverse, and multilingual datasets to enhance
its performance and adaptability across different
contexts and languages. This expansion will help
address the complexities of detecting hateful con-
tent in a broader range of scenarios.

Limitations

We only evaluated HVGUARD on the Chinese and
English datasets and did not evaluate other lan-
guages. This limits our further exploration of the
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language generalizability of the framework.
Moreover, we believe that fine-grained detection

of hateful videos is of great importance. Although
we have considered both binary and ternary clas-
sification scenarios, more refined categorization
may be more beneficial for the application of such
research in real-world contexts.

Ethical Considerations

Our work presents HVGUARD, a framework for hate-
ful video detection, with the goal of enhancing on-
line safety by mitigating the spread of hate speech.
While HVGUARD demonstrates effectiveness, auto-
mated moderation inevitably involves trade-offs,
including the possibility of false positives that may
affect benign content and false negatives that may
overlook nuanced hate expressions. The focus
on English and Chinese datasets also limits gen-
eralizability across cultures and languages. We
view HVGUARD as a research contribution that high-
lights the potential and challenges of reasoning-
based multimodal moderation, and we encourage
future work to expand to more diverse datasets,
conduct fairness-oriented evaluation, and explore
human–AI collaboration in practical applications.
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A Preliminary Study

With the advancement of artificial intelligence,
MLLMs have become the focal point of the latest
developments. The complementarity of LLMs and

VLMs has given rise to MLLMs, such as Gemini
1.5(Team et al., 2024) and GPT-4 series (Achiam
et al., 2023). They can receive, reason, and out-
put multi-modal information, showing impressive
capabilities in various multi-modal tasks, includ-
ing image reasoning and video understanding (Wu
et al., 2023; Fu et al., 2025), thus opening up new
ways to solve complex and novel challenges in the
multi-modal field.

Model Hate Offensive
GPT-4o 0.9513 0.8909
Gemini-1.5-pro 0.9120 0.8001

Table 4: Semantic similarity between MLLM and hu-
man definitions

The prerequisite for using MLLM to assist in
the understanding of hateful content in videos is
that the MLLM’s comprehension of terms such as
Hate, Offensive, and Normal aligns with human
understanding of these terms.

We adopted MultiHateCLIP (Wang et al., 2024a)
(one of the baselines) for its definitions of these
terms:

• Hateful: Videos that incite discrimination or
demean individuals or groups based on at-
tributes such as race, ethnicity, nationality, re-
ligion, disability, age, veteran status, sexual
orientation, gender identity, etc.

• Offensive: Videos that may cause discomfort
or distress but do not meet the criteria for
hateful content as defined above.

• Normal: Content free from hatefulness or of-
fensiveness.

We analyzed the MLLM’s comprehension to ver-
ify its alignment with MultiHateCLIP’s definitions.
Taking GPT-4o’s responses as an example:

• Hateful: Videos that promote, incite, or glo-
rify hatred, discrimination, or violence against
individuals or groups based on attributes such
as race, ethnicity, nationality, religion, gen-
der, sexual orientation, disability, or other pro-
tected characteristics. This includes slurs, de-
humanization, and calls for harm against a
group.

• Offensive: Videos that contain derogatory,
profane, or inappropriate language but do not
necessarily incite violence or target protected
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(a) Embeddings from Bert. (b) Embedding from GPT-4o. (c) Embedding from GPT-4o with CoT
reasoning.

Figure 4: Visualization of features used by different methods. (a) Embedding of video titles, transcripts. (b)
Embedding of MLLM rationale. (c) Embedding after incorporating the CoT prompts.

groups. This includes insults, strong language,
or rude remarks that may be considered inap-
propriate but do not meet the threshold of hate
speech.

To further investigate MLLMs’ comprehension
of these terms, we analyze their semantic similarity
to MultiHateCLIP’s definitions in Table 4, demon-
strating that MLLMs can effectively distinguish
between hateful and offensive content.

To more clearly demonstrate how the reason-
ing capability of MLLMs aids in understanding of
hateful content in videos, we conducted a visual
analysis of embedding representations on the hate-
ful video dataset Multihateclip (Wang et al., 2024a).
Figure 4a visualizes the embeddings of pure textual
information (video title and transcript) extracted
using the pre-trained text encoder Bert (Devlin,
2018), which exhibit significant overlap with no
discernible class separability. This indicates the
insufficiency of traditional approaches with single
modality. However, when analyzing videos with
MLLMs (Figure 4b), a certain degree of class sepa-
rability becomes observable. By further incorporat-
ing the CoT prompting strategy (detailed in Section
3.4), we guide the MLLM to clarify rhetorical de-
vices such as metaphors and puns in the videos,
ultimately achieving sharper classification bound-
aries (Figure 4c). Thus, MLLMs provide effective
rationale for hateful video understanding, and the
CoT prompting strategy further amplifies this capa-
bility.

B Case Study

To provide a more comprehensive demonstration
of HVGUARD’s effectiveness, we present a detailed
case study in Figure 5. In this example, a video
titled "When Find Out a Gay Friend Nearby.mp4"

is processed, where understanding the reactions of
different gender groups to homosexuality requires
analyzing both visual and textual modalities. In
HVGUARD, MLLM leverages CoT prompts to guide
reasoning from both video frames and transcripts,
with the analysis from these modalities integrated
to accurately interpret the video content. In con-
trast, baseline methods lacking MLLM reasoning
fail to capture the complementary information be-
tween the visuals and the text, leading to incom-
plete analysis and misclassification.

C False Positive and Bias Analysis

Dataset Number of categories Model F1(N) R(N) P(N)

Multihateclip
3

HateMM 0.7899 0.8547 0.7434

(English)

Multihateclip 0.7521 0.7186 0.8255
HVGuard 0.8895 0.9025 0.8787

2
HateMM 0.7532 0.8321 0.6937

Multihateclip 0.7809 0.8765 0.7178
HVGuard 0.9120 0.9472 0.8815

Multihateclip
3

HateMM 0.8082 0.9373 0.7276

(Chinese)

Multihateclip 0.8273 0.9620 0.7409
HVGuard 0.8948 0.9861 0.8218

2
HateMM 0.8123 0.8158 0.8116

Multihateclip 0.8509 0.9485 0.7723
HVGuard 0.9031 0.9340 0.8786

HateMM 2
HateMM 0.6941 0.6643 0.7393

Multihateclip 0.7578 0.7668 0.7493
HVGuard 0.8715 0.8937 0.8567

Table 5: Results of different methods on the task of
hateful video detection. N:normal, R:recall, P:precision.

In real-world video platform scenarios, it is cru-
cial not only to ensure accurate detection of hate-
ful content but also to minimize the false positive
rate on normal videos, so as to avoid negatively
impacting the user experience of legitimate con-
tent creators. The results for the Normal category
are shown in Table 5. As illustrated, HVGUARD

achieves strong performance in identifying normal
videos, demonstrating its effectiveness in distin-
guishing between hateful and non-hateful content.
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Figure 5: Example of case study.

In addition to overall detection results, we fur-
ther analyzed false positives and potential model
biases. Across all datasets, approximately 74.12%
of false positives involved sensitive terms such
as profanity or emotionally charged expressions.
For instance, in one MultihateClip (English) video
from The Walking Dead, characters used strong
language under stress, leading our model to incor-
rectly flag the clip as hateful despite the absence of
offensive intent. This illustrates that contextually
appropriate but emotive language can be misclassi-
fied as harmful content.

Dataset Sensitive terms LGBTQ+ topics
HateMM 78.29% 6.98%

MultihateClip (Chinese) 54.67% 4.00%
MultihateClip (English) 89.41% 22.35%

Table 6: Proportion of sensitive terms and LGBTQ+
topics in false positive samples across datasets.

We also examined the prevalence of sensitive
topics in false positive samples across datasets,
summarized in Table 6. While a substantial pro-
portion of videos contain sensitive terms (e.g.,
89.41% in MultihateClip-English), the proportion
of videos explicitly involving LGBTQ+ topics is
notably higher in English (22.35%) than in Chi-
nese (4.00%). We observed that the model tends to
overestimate offensiveness in the presence of such
sensitive or identity-related themes, even when the
content is neutral or supportive. This pattern sug-
gests that pretraining biases and limited contextual
reasoning contribute to false positives.

These findings highlight an important fairness
concern: misclassification disproportionately af-
fects creators addressing sensitive identities or so-
cial issues, potentially resulting in over-moderation.

As part of future work, we plan to expand the anal-
ysis to finer-grained hate-related categories, con-
duct cross-cultural sensitivity testing, and explore
bias mitigation strategies such as adaptive prompt-
ing, human-in-the-loop moderation, and culturally
grounded evaluation.

D More Details on the Model
Architecture

Considering that the features of this task are formed
by concatenating multiple modalities, we employ
a MoE network composed of multiple experts for
processing. Different experts focus on different
part of the features, enabling a profound under-
standing of multimodal features. Simultaneously,
we utilize a gating network to modulate the weights
of different experts, ensuring that each expert’s con-
tribution can be dynamically adjusted based on the
properties of the input data.

The design of MoE. Each expert is implemented
as a two-layer feedforward network with ReLU ac-
tivation. The first linear layer projects the input
(concatenated multimodal embeddings) into a hid-
den space, while the second layer produces the
expert-specific output. Multiple experts focus on
different parts of the features, thereby achieving
better utilization of multimodal features.

The design of gating network. The gating net-
work is implemented as a lightweight linear layer
followed by softmax, which computes weights for
combining the expert outputs. Taking the same
input as the experts, it produces a distribution
over the experts to indicate their relevance for the
given input. To prevent polarization—avoiding
over-reliance on or neglect of specific experts—a
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Dataset Categories Model Acc F-F1
Multihateclip 0.7079 0.4946

3 HVGuard(w/o gate) 0.8034 0.5605
Multihateclip HVGuard 0.8090 0.6646

(English) Multihateclip 0.7416 0.6806
2 HVGuard(w/o gate) 0.8315 0.8045

HVGuard 0.8539 0.7714
Multihateclip 0.7111 0.4573

3 HVGuard(w/o gate) 0.7709 0.4402
Multihateclip HVGuard 0.8045 0.5643

(Chinese) Multihateclip 0.7778 0.6904
2 HVGuard(w/o gate) 0.8315 0.8045

HVGuard 0.8603 0.8219
Multihateclip 0.7614 0.7594

Hatemm 2 HVGuard(w/o gate) 0.8218 0.8041
HVGuard 0.8563 0.8597

Table 7: Results of removing gating network

dropout layer is applied to the gating weights,
thereby enhancing generalization ability. During
the forward pass, all experts process the input in
parallel, and their outputs are combined through a
weighted sum based on the gating weights, ensur-
ing MoE’s strong capability in handling complex
inputs. We conducted ablation studies (Table 7) by
removing the gating network entirely and simply
averaging expert outputs, which demonstrated the
necessity of learned gating weights.

For HVGUARD, we adopt a single gating mech-
anism for several reasons. First, since the model
focuses on video classification—a multimodal but
single-task learning scenario—the gate effectively
balances expert contributions across different fea-
ture aspects while maintaining computational effi-
ciency. This design aligns with the original MoE
framework proposed by (Jacobs et al., 1991) and
widely adopted in later work (e.g., (Shazeer et al.,
2017)), where single gating has proven effective
for resource-constrained multi-modal tasks. In
contrast, multiple gating networks are typically re-
served for multi-task learning, as seen in (Ma et al.,
2018), where gates optimize for diverse objectives.

E Flexibility of framework component

Table 8 shows the impact of different combina-
tions of MLLMs and Encoders. We conducted tests
on the ternary classification scenario of Multihate-
clip(English). The combination of GPT-4o(Achiam
et al., 2023), XLM(Conneau et al., 2020),
Vit(Dosovitskiy, 2020), and Wav2Vec(Baevski
et al., 2020) achieved the highest M-f1 value, while
the combination of Qwen-VL(Bai et al., 2023),
Bert(Devlin, 2018), ViViT(Arnab et al., 2021), and
Wav2Vec achieved the highest accuracy. MFCC
as an Audio Encoder significantly lowered the re-

sults, indicating that excellent modality encoders
are necessary.

MLLM
Text
Encoder

Vision
Encoder

Audio
Encoder

Acc M-F1

GPT-4o

XLM
Vit

Wav2Vec 0.8090 0.6646
MFCC 0.7809 0.4762

ViViT
Wav2Vec 0.7921 0.5881

MFCC 0.7865 0.5604

Bert
Vit

Wav2Vec 0.8202 0.5562
MFCC 0.7978 0.5590

ViViT
Wav2Vec 0.8034 0.6175

MFCC 0.8146 0.5384

Qwen-VL

XLM
Vit

Wav2Vec 0.7865 0.6276
MFCC 0.7640 0.4759

ViViT
Wav2Vec 0.7809 0.5744

MFCC 0.7697 0.5637

Bert
Vit

Wav2Vec 0.7921 0.5652
MFCC 0.7753 0.5022

ViViT
Wav2Vec 0.7978 0.5282

MFCC 0.7809 0.4835

Table 8: Results of different model combinations on
Multihateclip(English)

We found that different combinations have vary-
ing impacts on performance, with the capabilities
of the MLLM being the most significant factor.
However, even the least effective combination sig-
nificantly outperformed the baseline, demonstrat-
ing the flexibility and generalizability of our pro-
posed HVGUARD framework.
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