@inproceedings{chen-etal-2025-eqa,
title = "{EQA}-{RM}: A Generative Embodied Reward Model with Test-time Scaling",
author = "Chen, Yuhang and
Tan, Zhen and
Chen, Tianlong",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.48/",
pages = "927--945",
ISBN = "979-8-89176-332-6",
abstract = "Reward Models (RMs), vital for large model alignment, are underexplored for complex embodied tasks like Embodied Question Answering (EQA) where nuanced evaluation of agents' spatial, temporal, and logical understanding is critical yet not considerred by generic approaches. We introduce EQA-RM, a novel generative multimodal reward model specifically architected for EQA, trained via our innovative Contrastive Group Relative Policy Optimization (C-GRPO) strategy to learn fine-grained behavioral distinctions. The generative nature of EQA-RM provides interpretable, structured reward feedback (beyond simple scalars), uniquely enabling test-time scaling to dynamically adjust evaluation granularity, from concise scores to detailed critiques of reasoning and grounding, at inference without retraining. Concurrently, we introduce EQARewardBench, a new benchmark built on OpenEQA for standardized EQA reward model assessment. Demonstrating high sample efficiency, EQA-RM (fine-tuning Qwen2-VL-2B-Instruct) achieves 61.9{\%} accuracy on EQA-RM-Bench with 700 samples, outperforming strong proprietary baselines, including Gemini-2.5-Flash, GPT-4o, Claude-3.5-Haiku, and open-sourced state-of-the-art models such as RoVRM and VisualPRM."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2025-eqa">
<titleInfo>
<title>EQA-RM: A Generative Embodied Reward Model with Test-time Scaling</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuhang</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhen</namePart>
<namePart type="family">Tan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tianlong</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Reward Models (RMs), vital for large model alignment, are underexplored for complex embodied tasks like Embodied Question Answering (EQA) where nuanced evaluation of agents’ spatial, temporal, and logical understanding is critical yet not considerred by generic approaches. We introduce EQA-RM, a novel generative multimodal reward model specifically architected for EQA, trained via our innovative Contrastive Group Relative Policy Optimization (C-GRPO) strategy to learn fine-grained behavioral distinctions. The generative nature of EQA-RM provides interpretable, structured reward feedback (beyond simple scalars), uniquely enabling test-time scaling to dynamically adjust evaluation granularity, from concise scores to detailed critiques of reasoning and grounding, at inference without retraining. Concurrently, we introduce EQARewardBench, a new benchmark built on OpenEQA for standardized EQA reward model assessment. Demonstrating high sample efficiency, EQA-RM (fine-tuning Qwen2-VL-2B-Instruct) achieves 61.9% accuracy on EQA-RM-Bench with 700 samples, outperforming strong proprietary baselines, including Gemini-2.5-Flash, GPT-4o, Claude-3.5-Haiku, and open-sourced state-of-the-art models such as RoVRM and VisualPRM.</abstract>
<identifier type="citekey">chen-etal-2025-eqa</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.48/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>927</start>
<end>945</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T EQA-RM: A Generative Embodied Reward Model with Test-time Scaling
%A Chen, Yuhang
%A Tan, Zhen
%A Chen, Tianlong
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F chen-etal-2025-eqa
%X Reward Models (RMs), vital for large model alignment, are underexplored for complex embodied tasks like Embodied Question Answering (EQA) where nuanced evaluation of agents’ spatial, temporal, and logical understanding is critical yet not considerred by generic approaches. We introduce EQA-RM, a novel generative multimodal reward model specifically architected for EQA, trained via our innovative Contrastive Group Relative Policy Optimization (C-GRPO) strategy to learn fine-grained behavioral distinctions. The generative nature of EQA-RM provides interpretable, structured reward feedback (beyond simple scalars), uniquely enabling test-time scaling to dynamically adjust evaluation granularity, from concise scores to detailed critiques of reasoning and grounding, at inference without retraining. Concurrently, we introduce EQARewardBench, a new benchmark built on OpenEQA for standardized EQA reward model assessment. Demonstrating high sample efficiency, EQA-RM (fine-tuning Qwen2-VL-2B-Instruct) achieves 61.9% accuracy on EQA-RM-Bench with 700 samples, outperforming strong proprietary baselines, including Gemini-2.5-Flash, GPT-4o, Claude-3.5-Haiku, and open-sourced state-of-the-art models such as RoVRM and VisualPRM.
%U https://aclanthology.org/2025.emnlp-main.48/
%P 927-945
Markdown (Informal)
[EQA-RM: A Generative Embodied Reward Model with Test-time Scaling](https://aclanthology.org/2025.emnlp-main.48/) (Chen et al., EMNLP 2025)
ACL