@inproceedings{beauchemin-etal-2025-judgebert,
title = "{JUDGEBERT}: Assessing Legal Meaning Preservation Between Sentences",
author = "Beauchemin, David and
Albert-Rochette, Michelle and
Khoury, Richard and
D{\'e}ziel, Pierre-Luc",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.5/",
pages = "92--118",
ISBN = "979-8-89176-332-6",
abstract = "Simplifying text while preserving its meaning is a complex yet essential task, especially in sensitive domain applications like legal texts. When applied to a specialized field, like the legal domain, preservation differs significantly from its role in regular texts. This paper introduces FrJUDGE, a new dataset to assess legal meaning preservation between two legal texts. It also introduces JUDGEBERT, a novel evaluation metric designed to assess legal meaning preservation in French legal text simplification. JUDGEBERT demonstrates a superior correlation with human judgment compared to existing metrics. It also passes two crucial sanity checks, while other metrics did not: For two identical sentences, it always returns a score of 100{\%}; on the other hand, it returns 0{\%} for two unrelated sentences. Our findings highlight its potential to transform legal NLP applications, ensuring accuracy and accessibility for text simplification for legal practitioners and lay users."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="beauchemin-etal-2025-judgebert">
<titleInfo>
<title>JUDGEBERT: Assessing Legal Meaning Preservation Between Sentences</title>
</titleInfo>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Beauchemin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michelle</namePart>
<namePart type="family">Albert-Rochette</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Richard</namePart>
<namePart type="family">Khoury</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre-Luc</namePart>
<namePart type="family">Déziel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Simplifying text while preserving its meaning is a complex yet essential task, especially in sensitive domain applications like legal texts. When applied to a specialized field, like the legal domain, preservation differs significantly from its role in regular texts. This paper introduces FrJUDGE, a new dataset to assess legal meaning preservation between two legal texts. It also introduces JUDGEBERT, a novel evaluation metric designed to assess legal meaning preservation in French legal text simplification. JUDGEBERT demonstrates a superior correlation with human judgment compared to existing metrics. It also passes two crucial sanity checks, while other metrics did not: For two identical sentences, it always returns a score of 100%; on the other hand, it returns 0% for two unrelated sentences. Our findings highlight its potential to transform legal NLP applications, ensuring accuracy and accessibility for text simplification for legal practitioners and lay users.</abstract>
<identifier type="citekey">beauchemin-etal-2025-judgebert</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.5/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>92</start>
<end>118</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T JUDGEBERT: Assessing Legal Meaning Preservation Between Sentences
%A Beauchemin, David
%A Albert-Rochette, Michelle
%A Khoury, Richard
%A Déziel, Pierre-Luc
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F beauchemin-etal-2025-judgebert
%X Simplifying text while preserving its meaning is a complex yet essential task, especially in sensitive domain applications like legal texts. When applied to a specialized field, like the legal domain, preservation differs significantly from its role in regular texts. This paper introduces FrJUDGE, a new dataset to assess legal meaning preservation between two legal texts. It also introduces JUDGEBERT, a novel evaluation metric designed to assess legal meaning preservation in French legal text simplification. JUDGEBERT demonstrates a superior correlation with human judgment compared to existing metrics. It also passes two crucial sanity checks, while other metrics did not: For two identical sentences, it always returns a score of 100%; on the other hand, it returns 0% for two unrelated sentences. Our findings highlight its potential to transform legal NLP applications, ensuring accuracy and accessibility for text simplification for legal practitioners and lay users.
%U https://aclanthology.org/2025.emnlp-main.5/
%P 92-118
Markdown (Informal)
[JUDGEBERT: Assessing Legal Meaning Preservation Between Sentences](https://aclanthology.org/2025.emnlp-main.5/) (Beauchemin et al., EMNLP 2025)
ACL