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Figure 1: Our proposed framework enhances text data augmentation for low-resource local communities through a
multi-stage pipeline. First, it (a) generates educational data using machine translation. Next, it (b) creates diverse,
culturally-aware texts, such as stories and conversations, by simulating scenarios with local personas through
controlled synthetic data generation. Finally, it (c¢) enriches the model with local knowledge by retrieving and
parsing culturally specific web content. This entire process enables controlled text generation and retrieval-
augmented pre-training, ensuring the cultural and value alignment of large language models for Arabic dialects.

Abstract ology using Egyptian and Moroccan dialects

as testbeds, chosen for their linguistic and

Enhancing the linguistic capabilities of Large cultural richness and current underrepresen-
Language Models (LLMs) to include low- tation in LLMs. As a proof-of-concept, we
resource languages is a critical research area. develop NileChat, a 3B parameter Egyptian
Current research directions predominantly rely and Moroccan Arabic LLM adapted for Egyp-
on synthetic data generated by translating En- tian and Moroccan communities, incorporating
glish corpora, which, while demonstrating their language, cultural heritage, and values.
promising linguistic understanding and trans- Our results on various understanding, transla-
lation abilities, often results in models aligned tion, and cultural and values alignment bench-
with source language culture. These models marks show that NileChat outperforms existing
frequently fail to represent the cultural her- Arabic-aware LLMs of similar size and per-
itage and values of local communities. This forms on par with larger models. This work
work proposes a methodology to create both addresses Arabic dialect in LLMs with a fo-
synthetic and retrieval-based pre-training data cus on cultural and values alignment via con-
tailored to a specific community, considering trolled synthetic data generation and retrieval-
its (i) language, (ii) cultural heritage, and (iii) augmented pre-training for Moroccan Darija
cultural values. We demonstrate our method- and Egyptian Arabic, including Arabizi vari-

- ants, advancing Arabic NLP for low-resource
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communities. We share our methods, data, and
models with the community to promote the in-
clusion and coverage of more diverse commu-
nities in cultural LLM development.'

1 Introduction

Large Language Models (LLMs) have advanced
rapidly, enabling remarkable proficiency across
many tasks. Yet, this success is unevenly dis-
tributed across languages, with substantial perfor-
mance disparities observed for non-English lan-
guages, particularly low-resource languages and
dialectal variants (Navigli et al., 2023). A primary
factor underlying this discrepancy is the limited
representation of diverse multilingual data within
the foundational pre-training corpora of these mod-
els which favors high-resource languages spoken
in regions with high economic influence (Bender,
2011; Joshi et al., 2020).

Beyond linguistic limitations, a more profound
challenge is the inherent risk of cultural encapsu-
lation (Wrenn, 1962) in LLMs. Cultural encapsu-
lation refers to an unconscious tendency to oper-
ate within one’s own cultural lens, leading to mis-
understanding or avoidance of differing perspec-
tives and values. As LLMs are optimized to repli-
cate patterns in their training data—predominantly
sourced from specific cultural contexts (e.g., West-
ern, English-speaking)—they risk internalizing and
propagating these dominant perspectives as the
norm (Dwivedi et al., 2023; Tao et al., 2024; Wang
etal., 2024; Naous et al., 2024). The significance of
cultural context cannot be overstated. As Edward
Sapir noted:

"No two languages are ever sufficiently
similar to be considered as representing
the same social reality. The worlds in
which different societies live are distinct
worlds, not merely the same world with
different labels attached." - Sapir (1929)

This cultural bias is compounded by a funda-
mental mismatch: LLMs typically process data
through a language-centric lens, whereas human
communities are structured around shared social
ties, perspectives, and values (MacQueen et al.,
2001). Current LLMs adaptation techniques for
new languages or communities (Gurgurov et al.,
2024; Joshi et al., 2025) often fall short in bridg-
ing this cultural divide, especially for low-resource

"https://github.com/UBC-NLP/nilechat.

communities (Naous et al., 2024). For instance,
machine translation, while useful for generating
synthetic data to boost linguistic coverage (Joshi
et al., 2025; Shang et al., 2025; Wang et al., 2025),
primarily addresses the linguistic deficit. The trans-
lated content often retains the source language’s
cultural perspective, failing to incorporate authen-
tic local nuances crucial for genuine interaction.
Supervised fine-tuning (SFT) on target language
data (Gala et al., 2024; Shang et al., 2025) can
align models to specific tasks, but small datasets
may not reshape deep-seated cultural biases from
pre-training (Rystrgm et al., 2025) and can encour-
age hallucination with new factual data (Gekhman
etal., 2024). While continued pre-training with cul-
turally rich data could mitigate these issues, it faces
a critical bottleneck for low-resource contexts: the
scarcity of such high-quality digital texts.

This paper addresses the critical need to adapt
multilingual LLMs to low-resource language com-
munities by jointly considering their linguistic char-
acteristics and cultural heritage & values. We
propose a novel pipeline (illustrated in Figure 1)
focused on data augmentation for continued pre-
training. Our approach combines controlled syn-
thetic data generation (Section 3.1.2) with retrieval
(Section 3.1.3) methods. To address linguistic adap-
tation, we translate English pre-training data into
the target local language focusing only on high-
quality data from the educational domain (Sec-
tion 3.1.1). Crucially, to imbue cultural relevance,
we generate diverse texts reflecting specific cul-
tural heritage concepts (e.g., food, celebrations,
proverbs) using local persona descriptions (Sec-
tion 3.1.2) reflecting the local cultural values. We
demonstrate our method on the Moroccan and
Egyptian Arabic dialects as low-resource testbeds.
We further pre-train a multilingual LLM on a cu-
rated mix of real and synthetic data, evaluating its
performance on tasks involving language under-
standing, translation, and alignment with cultural
knowledge and values. Our findings show that the
adapted model significantly outperforms baseline
and existing models that are even bigger in size on
most evaluation tasks.

The main contributions of this work are: (i) A
novel framework for augmenting pre-training cor-
pora tailored to local communities. This framework
considers their unique linguistic features, cultural
heritage, and values by leveraging a teacher LLM.
(ii) The public release of new datasets, representing
the largest publicly available corpora for Egyptian
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and Moroccan Arabic dialects. These resources are
intended to foster further research in these under-
resourced languages. (iii) The development and
public release of NileChat, a robust 3-billion pa-
rameter LLM. This model demonstrates proficiency
in both Egyptian and Moroccan dialectal Arabic
(using Arabic script and Arabizi) while maintain-
ing strong performance in Modern Standard Arabic,
French, and English.

2 Related Work

Adaptation of LLMs. LLMs, despite general
strengths, often require adaptation for specific lan-
guages, domains, or cultures (Bang et al., 2023;
AlKhamissi et al., 2024; Naous et al., 2024; Song
etal., 2025). Adaptation techniques include prompt
engineering (Shen et al., 2024), SFT on culturally
specific datasets (Huang et al., 2024), and contin-
ued pre-training on target-specific data (Fujii et al.,
2024; Huang et al., 2024). A key challenge, es-
pecially for SFT-based cultural adaptation, is the
scarcity of comprehensive cultural datasets, hinder-
ing alignment with under-represented communities
(Ahmad et al., 2024; Shen et al., 2024).

Synthetic Data Augmentation for LLMs. To ad-
dress data limitations, synthetic data augmentation
has shown promise in improving LLM performance
(Ge et al., 2024; Li et al., 2024; Joshi et al., 2025).
Machine-translated data, for instance, can enhance
capabilities in new languages (Joshi et al., 2025;
Shang et al., 2025), and persona-driven synthetic
data generation has also yielded performance gains
(Ge et al., 2024) and aided in tasks like assessing
LLM political alignment (Bernardelle et al., 2024).
However, synthetic data can sometimes degrade
performance (Seddik et al., 2024), necessitating
best practices for its use (Liu et al., 2024).

Arabic LLMs. In Arabic LLM development,
models are either trained from scratch (Bil-
lah Nagoudi et al., 2023; Sengupta et al., 2023)
or adapted from existing ones (Huang et al., 2024;
Bari et al., 2025; Team et al., 2025a). A common
method involves translating English data to Arabic,
which, however, can introduce cultural biases from
the source language (Sengupta et al., 2023; Naous
et al., 2024). Recent work on dialectal Arabic, such
as translating instructions into Moroccan dialect for
SFT, has improved generation tasks (Shang et al.,
2025). Yet, enhanced performance on standard
tasks does not guarantee cultural awareness. While

models like AceGPT (Huang et al., 2024) and Fanar
(Team et al., 2025a) aim for cultural cognizance,
our work uniquely focuses on adapting existing
LLMs to a local community by deeply integrating
its specific linguistic features, cultural heritage, and
values, building upon these prior advancements.

3 Methodology

In this work, we investigate the potential of pre-
training data to imbue LLMs with the specific lo-
cal characteristics of under-represented communi-
ties. We conceptualize these characteristics along
three primary dimensions (Geertz, 1977; Ander-
son, 1991; Bourdieu and Thompson, 1991; Higgins
and Douglas, 2020; Stanlaw and Adachi, 2025):
(i) Language: Encompassing dialectal nuances,
idiomatic expressions, and linguistic structures
unique to the community. (ii) Cultural Heritage:
Reflecting the customs, traditions, social norms,
historical context, and common knowledge preva-
lent within the community. (iii) Cultural Values:
Capturing the ethical standpoints, belief systems,
and societal priorities that define the community.
We refer to these three dimensions as Language-
Heritage-Values dimensions, LHV for short. While
we do not posit these as exhaustive of the attributes
of a given community, we employ them as a vehi-
cle to approximate the LLM communication and
information needs at local levels. To ground our in-
vestigation, we focus on two low-resource varieties
of Arabic—The Egyptian Arabic (EGY) and Mo-
roccan Arabic (MOR)—. These dialects serve as
our primary case studies for evaluating the methods
proposed herein.

3.1 Data Augmentation

The construction of linguistically-rich and
culturally-rich LLMs that can serve a specific
population fundamentally depends on the availabil-
ity of representative data. Recognizing the acute
scarcity of publicly available pre-training corpora
for many low-resource languages, including EGY
and MOR, we propose a novel data production
method encapsulating the LHV dimensions of a
given country-level population. As depicted in
Figure 1, our approach leverages three complemen-
tary strategies intended to collectively capture the
LHYV dimensions: (a) machine translation (MT),
(b) controlled synthetic data generation and (c)
retrieval. We explain these next.
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3.1.1 MT for Knowledge and Fluency

To ensure linguistic fluency and coherence, we
translate structured educational content from En-
glish into the target low-resource language using a
specialized teacher model. Our pipeline preserves
original formatting and includes filtering to remove
unreliable translations identified by repetitive n-
grams. We use educational materials for their topi-
cal breadth (including subjects such as education,
history, health, medicine, and biology).

3.1.2 Controlled Synthetic Data Generation
for Cultural Heritage and Cultural
Values

Linguistic fluency, while a foundational capabil-
ity for LLMs, does not inherently guarantee their
awareness of, or alignment with, the culture and
values of a specific target community (Naous et al.,
2024). To bridge this gap, we employ controlled
synthetic data generation. For controlled genera-
tion, we use the teacher LLM to generate diverse
texts in the target language. These texts are specif-
ically designed to discuss local topics, which are
identified from articles sourced from local news
websites or the target country’s Wikipedia portal.
Furthermore, the generated content is crafted to
reflect distinct personas, each defined by a profile
encompassing specific moral values, demographic
characteristics, and socioeconomic attributes. Our
approach integrates four key components to achieve
this:

Local Contextual Information. We ground our
synthetic data by incorporating local context drawn
from news websites within the target communities.
These sources provide relevant contextual informa-
tion and do not necessarily need to be in the target
local language.

Core Cultural Heritage Concepts. We inte-
grate key local cultural elements, such as cuisine,
landmarks, and celebrations, by extracting relevant
articles from country-specific Wikipedia portals.

Linguistic and Cultural Expressions. To au-
thentically capture local idiomatic styles, we col-
lect common expressions, proverbs, idioms, dia-
logues from TV programs, and local terminology,
pairing each with English translations for accuracy.

Representative Personas. We develop represen-
tative personas reflecting local moral, demographic,
and socioeconomic attributes by leveraging data
from the World Values Survey (WVS) (EVS/WVS,
2024). Selected survey responses are transformed
into textual descriptions, which are further refined

by an LLM to create concise and coherent persona
profiles (see Figure 2).

To produce diverse text genres for pre-training,
we combine data points from the four listed com-
ponents into a unified prompt to guide the teacher
LLM. This prompt instructs the LLM to generate
varied text outputs in the target low-resource lan-
guage, explicitly integrating the selected persona’s
values, the specified cultural concepts, and pro-
vided linguistic cues. Specifically, we focus on
generating the following genres: stories, personal
essays, blog posts, reviews, and conversations. An
example of this process is depicted in Figure 1 (b).

3.1.3 Retrieval for Local Cultural Heritage

This method involves querying a search engine us-
ing a pre-defined list of cultural concepts that span
multiple cultural categories. For each concept, we
extract the top 20 search results, systematically ex-
cluding social media platforms. The textual content
from the retrieved web pages is then parsed and
extracted using Trafilatura (Barbaresi, 2021).
Participant

Response
Extraction

Responses
Parsing into Text

Formatting &
Summarization

Figure 2: Pipeline for generation of persona descriptions
using the WVS.

3.2 Model Training

We evaluate our proposed method on Egyptian
(EGY) and Moroccan (MOR) Arabic dialects. De-
spite their large speaker populations, these dialects
remain low-resource, underscoring the need for spe-
cialized language models. We select Command R+
(Cohere Labs, 2024) (104B) as our teacher model,
as it demonstrates reasonable text-generation capa-
bilities in both target dialects. Additionally, Com-
mand R+ provides open weights, enabling us to
efficiently generate or translate extensive datasets
without incurring API costs.

3.2.1 Continued Pre-Training

Data. We generate pre-training data for EGY and
MOR using the methods outlined in Section 3.1.
Our approach involves three main components: (i)
MT Data. We employ our teacher model to trans-
late English educational content into both dialects.
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Specifically, we sample 5.5 million texts from the
Fineweb-edu dataset (Penedo et al., 2024) and
translate them into EGY and MOR. (ii) Controlled
Synthetic Generation Data. We craft tailored
prompts incorporating personas, local cultural con-
texts, dialectal glosses, expressions, and utterances
to instruct the LLM in generating diverse genres of
text. For persona descriptions, we generate 1,200
descriptions based on data from Egyptian and Mo-
roccan participants in the WVS. For local news con-
text, we leverage an in-house corpus comprising ap-
proximately 1.5 million Egyptian and 800,000 Mo-
roccan news articles, originally published in MSA
by local news websites. Additionally, we include
25,000 Egyptian and 49,000 Moroccan Wikipedia
articles. For dialectal glosses, expressions, and
utterances, we draw from publicly available re-
sources on EGY and MOR proverbs and idiomatic
expressions, each accompanied by English expla-
nations. We further augment this with an in-house
dataset of 600 dialectal utterances from Egyptian
and Moroccan television shows paired with English
translations, as well as 4,000 dialect-to-English
word pairs for each dialect from the Gatitos dictio-
nary (Jones et al., 2023). (iii) Retrieval Data. For
information retrieval, we query the Brave Search
API? using 6,500 cultural concepts from Morocco
and 4,500 cultural concepts from Egypt. These con-
cepts represent the ten cultural heritage categories
in the set {food, clothes, landmarks, festivals &
celebrations, geography, handicrafts, architecture,
fauna, flora, music).

The generated dataset comprises approximately
5.5 million educational articles for both EGY and
MOR. Additionally, for EGY, it includes approxi-
mately 300,000 samples for each category of con-
versations, personal essays, blog posts, reviews,
and stories. For MOR, there are approximately
150,000 samples for each of these same categories.
These latter categories represent the LHV dimen-
sions (§3.1). Table A.3 presents a sample of these
texts.

A filtering process using a repetitive n-gram fil-
ter removed 3.97% of the data. We also conducted
a dialectness check on the generated data using
ALDi (Keleg et al., 2023). The average dialectness
scores for the EGY and MOR educational articles
are 0.45 and 0.32, respectively. In contrast, for the
texts focused on cultural heritage and values, the
average dialectness scores are higher, at 0.84 for

https://brave.com/search/api/

EGY and 0.72 for MOR. We attribute the lower
dialectness levels in the educational articles to the
prevalence of scientific terms that often lack direct
equivalents in EGY and MOR, and were therefore
retained in MSA. We convert 1.5M EGY and 0.5M
MOR samples from the generated data to Arabizi.
For retrieval, we collect 110,000 and 30,000 ar-
ticles about cultural heritage for both EGY and
MOR.

Our final pre-training dataset is a mixture of our
generated and retrieved data, combined with pre-
existing publicly available data for these dialects,
MSA, English, French, Math, and Code. Our ob-
jective is to preserve the data distribution of the
base model’s pre-training data to mitigate catas-
trophic forgetting (Luo et al., 2025). The resulting
pre-training dataset comprises 98.57 billion words,
and its composition is detailed in Table A.1.

Compute. We used a cluster of 4xA100 80GB
GPUs for 1,096 hours to create our augmented pre-
training dataset using the listed inputs.

Continued Pre-training. Rather than pretrain-
ing an LLM from scratch, we continue pretraining
Qwen-2.5-3B (Qwen et al., 2025) with our data.
We select this model due to its competitive per-
formance and good tokenizer compression ratio
on MSA. We continue pretraining the full model
(3.1B parameters) for one whole epoch, which took
750 hours on 4xA100 80GB GPUs. More details
about the base model selection and the training are
in Appendix B.1.

3.2.2 Supervised Fine-Tuning

To adapt our pre-trained model for instruction fol-
lowing, we perform supervised fine-tuning (SFT).

Data. Due to the scarcity of SFT datasets for
EGY and MOR, we construct a comprehensive
training set. This process involves several key steps:
(1) translation of SmolTalk dataset (Allal et al.,
2025) into MOR, EGY, French, and MSA using the
teacher LLM; (ii) synthetic generation of dialectal
question-answer pairs using our retrieved dataset
of local Egyptian and Moroccan cultural heritage;’
(iii) incorporation of the Darija-SFT-Mixture MOR
dataset provided by Shang et al. (2025); and (iv)
translation of TULU-V2-mix dataset (Ivison et al.,
2023) into EGY. Finally, (v) this consolidated SFT

3This data is initially created in Arabic script, and a portion
is subsequently converted to Arabizi.
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dataset is augmented by converting understand-
ing and generation tasks from the training sets of
the ORCA (Elmadany et al., 2023) and Dolphin
(Nagoudi et al., 2023) benchmarks into instruction-
response formats. The final composition of our
instruction dataset is in Table A.2.

Fine-Tuning. For model SFT, we follow recent
approaches (Ramé et al., 2024; Dang et al., 2024)
that leverage model merging techniques to produce
models effective across multiple languages or tai-
lored for particular tasks. Specifically, we fully fine-
tuned two separate variants of the base model—one
specialized for MOR and the other for EGY—each
trained on its respective dialectal data in both Ara-
bic script and Arabizi (plus an amount of shared
data between the two variants from the other lan-
guages; see B.2). We fine-tune each dialect-specific
model for two epochs and employ weighted linear
averaging (Aakanksha et al., 2024) for merging,
dubbing our merged model NileChat.

More information about our model merging is
in B.2 and the prompts used for generating and
translating our pre- and fine-tuning datasets is in E.

4 Experiments

4.1 Evaluation Tasks

We employ a comprehensive evaluation framework
to measure the performance of NileChat for EGY
and MOR. This framework enables comparison
with our baseline and other LLMs across multi-
ple capability dimensions: Understanding, cultural
knowledge, translation, and value alignment.

Understanding. We evaluate understanding ca-
pabilities using MMLU (Hendrycks et al., 2021),
HellaSwag (Zellers et al., 2019), and Bele-
bele (Bandarkar et al., 2024) benchmarks, each
adapted to both EGY and MOR dialects. For MOR,
we directly employ the MMLU and HellaSwag ver-
sions provided by Shang et al. (2025). For EGY, we
follow the translation pipeline described in Shang
et al. (2025), translating the English and MSA
MMLU tasks and the English HellaSwag dataset
into EGY using our teacher model #. A careful

*We have publicly released the
and EgyHellaswag benchmarks for evaluation on
the LM Evaluation Harness Framework at https:
//github.com/EleutherAI/1m-evaluation-harness/
tree/main/1lm_eval/tasks/egymmlu and https:
//github.com/EleutherAI/1m-evaluation-harness/
tree/main/1lm_eval/tasks/egyhellaswag.

EgyMMLU

verification of the translation quality for the gen-
erated EGY MMLU and EGY HellaSwag shows
that the average correctness is 3.85 on a scale from
1-5 and the average dialectness is approximately 4
on a scale from 1-5. Further details are provided in
Appendix C.1. For the Belebele benchmark, we uti-
lize the official Moroccan and Egyptian dialect sets.
Evaluations are conducted in both zero-shot and 3-
shot scenarios, using accuracy as our performance
metric.

Cultural Knowledge. To assess cultural knowl-
edge specific to Morocco and Egypt, we utilize the
publicly available test set from the Palm bench-
mark (Alwajih et al., 2025), focusing on these
two countries only. We adopt an LLM-as-Judge
methodology (Zheng et al., 2023), employing
Gemma-3-27b (Team et al., 2025b) to rate the cor-
rectness of model-generated responses compared to
ground-truth answers on a scale from 0 to 10. The
final evaluation score is calculated as the average
correctness across all responses.

Translation. We evaluate the translation perfor-
mance across multiple directions: dialect<>dialect
(i.e., Moroccan<+Egyptian), dialect<+MSA,
English<dialect, and French<+dialect. Our pri-
mary benchmark is the Flores-200 dataset (Team
et al., 2022), comprising 1,012 test examples per
translation direction. Additionally, we introduce an
in-house, human-curated dataset consisting of 300
authentic EGY and MOR utterances transcribed
from local television programs then translated to
MSA and English. This dataset provides a more
accurate reflection of natural, colloquial language
usage compared to Flores-200, which primarily
contains Wikipedia-based sentences. We conduct
evaluations in both zero-shot and 4-shot settings,
reporting results using ChrF++ (Popovié, 2015)
and spBLEU scores (Goyal et al., 2022).

Value Alignment. To assess alignment with so-
cietal values, we adapt WVS questions into a
multiple-choice format (expressed in the local lan-
guage). The questions are categorized into 13 di-
mensions such as Economic Values (EcoV), Ethi-
cal Values (EthV), and Happiness and Wellbeing
(HW).> We use the Social Value Alignment (SVA)
metric (Lee et al., 2024), which measures align-
ment using the distribution of survey responses. A
model’s alignment score for each question corre-
sponds to the proportion of participants who chose

3See Appendix C.1 for the full list.
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the model-predicted option, averaged across all
questions for the final score.

Baseline Models. We compare NileChat against
a set of 17 instruction-tuned LLMs known for their
strong capabilities in Arabic, capped at 13B param-
eters (see full list in Table C.2 and Appendix C.2
for details).®

4.2 Results and Discussion

Understanding. As Table 1 shows, NileChat
demonstrates SOTA performance on the MMLU,
HellaSwag, and Belebele benchmarks for both
EGY and MOR when compared to similar size
models. Specifically, NileChat surpasses its base-
line model, Qwen2.5-3B-instruct, by a signifi-
cant margin of ~10 points across the majority of
these tasks. Notably, NileChat also outperforms
larger Arabic-focused models such as AceGPT-13B
and Jais-13B. Furthermore, it achieves on-par per-
formance with recent leading Arabic LL.Ms like
ALLaM-7B, with a performance gap of less than
3 points on most tasks, and even surpasses it on
certain benchmarks, including Belebele. Results
for 3-shot are presented in Table D.1 and they show
a similar trend to the zero-shot ones.

Cultural Knowledge. As shown in Table 1, our
approach significantly enhances cultural knowl-
edge (Palm), enabling NileChat to achieve scores
of 5.72 (EGY) and 5.86 (MOR), compared to base-
line Qwen?2.5-3B-instruct scores of 2.86 and 2.31,
respectively. Among similarly sized models, ours
achieves the highest performance on MOR and
ranks second only to Gemma-3-4B for EGY. Al-
though larger models such as Gemma-3-12B ex-
hibit superior overall scores (EGY: 8.71, MOR:
7.09), NileChat notably surpasses AceGPT-7B and
-13B on Moroccan cultural knowledge, despite their
claimed alignment with Arabic cultures. Addition-
ally, it outperforms Atlas-chat-2B and -9B, mod-
els specifically fine-tuned for Moroccan dialects.
These results support our claim that linguistic flu-
ency alone—gained through supervised fine-tuning
or pre-training on potentially biased, translated
datasets—is insufficient for genuine cultural align-
ment with local communities.

Translation. Table 2 summarizes the spBLEU
scores from our zero-shot translation. Overall,

We also evaluate our translation performance against an
NLLB-200’s 3.3B variant (Team et al., 2022).

NileChat achieves the highest average transla-
tion quality (spBLEU: 21.32), outperforming all
evaluated models, including larger alternatives
such as ALLaM-7B (20.60) and NLLB-200-3.3B
(18.29). Specifically, on the Flores benchmark,
NileChat demonstrates comparable performance
to the similarly-sized NLLB-200-3.3B, with only
a marginal 1-point spBLEU difference aggregated
across MOR and EGY. Notably, NileChat surpasses
even larger competitors in all translation directions,
except when translating into MOR, where its per-
formance matches that of Atlas-Chat-9B—a larger,
single-dialect-focused model that is 3X larger.

On our in-house, human-curated dataset—which
closely represents authentic speech patterns from
local populations—~NileChat significantly outper-
forms all baselines, including NLL.B-200-3.3B, in
all translation directions for both EGY and MOR.
This real-world evaluation emphasizes the effective-
ness of our strategy to incorporate local linguistic
and cultural elements into synthetic data generation,
enriching the pre-training data with diverse dialec-
tal expressions and vocabulary. Detailed results for
both zero-shot and 4-shot translation experiments
are provided in Table D.2.

Value Alignment. Figure 3 illustrates the results
of value alignment evaluation based on the WVS.
NileChat demonstrates substantial improvements
over the baseline across most societal-value dimen-
sions for both Moroccan and Egyptian contexts.
Specifically, for Morocco, NileChat surpasses the
baseline in all dimensions except Religious Val-
ues and the Index of Postmaterialism. Similarly,
for Egypt, it outperforms the baseline across all
dimensions except Political Interest and Political
Participation, and the Index of Postmaterialism.
These findings indicate that our approach—where
a teacher LLM engages in role-playing by generat-
ing diverse text genres through personas embody-
ing local community values—successfully steers
responses towards culturally aligned positions. In a
broader comparative analysis against all evaluated
models, ours achieves the best results for Morocco
across several dimensions and remains competi-
tive in others. For Egypt, NileChat notably excels
in Perceptions of Migration, Political Culture and
Political Regimes, Happiness and Wellbeing, and
Perceptions about Science and Technology, though
models such as Jais-13B and ALLaM-7B show
slightly stronger performance in certain other di-
mensions.
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MMLU | HellaSwag | Belebele |  Palm

Model

EGY MOR | EGY MOR | EGY MOR | EGY MOR

Qwen3-1.7B 2853 28.53 | 2844 2747 | 2289 2289 | 361 212

o ar-stablelm-2-chat 41.56 4036 | 3479 3345 | 3889 36.11 | 420 3.62
£ Atlas-Chat-2B 4261 4487 | 29.66 3474 | 5056 55.67 | 3.16 342
S Llama-3.2-3B-Instruct | 40.68 37.54 | 29.16 2827 | 4544 3589 | 321 228
7 gemma-3-4b-it 4079 3270 | 3421 3135|3733 3422 | 7.61 542
2 Qwen3-4B 28.61 2854 3028 29.04 | 22.89 2289 | 451 271
Qwen2.5-3B-Instruct | 43.37 4443 | 31.62 29.58 | 51.33 4144 | 286 231
NileChat (3B) 57.56 57.36 | 37.97 39.33 | 72.67 7033 | 572 5.86
AceGPT-7B-chat 4029 3757 | 3327 3047 | 3267 3200 | 558 3.93
¢ ALLaM-7B-Instruct | 60.04 58.72 | 39.40 37.30 | 69.56 57.78 | 6.78  6.14
= Qwen2.5-7B-Instruct | 49.65 44.98 | 34.67 32.16 | 6422 48.56 | 6.70 4.77
E Qwen3-8B 28.53 2853 | 31.76 3032 | 22.89 22.89 | 588  3.96
@ Atlas-Chat-9B 55.17 58.84 | 3371 4434 | 7033 7411 | 524 484
S gemma-3-12b-it 61.17 60.00 | 38.59 35.66 | 7578 64.89 | 8.76  7.09
AceGPT-13B-chat 4545 40.68 | 3506 3240 | 3878 36.44 | 6.10  4.83
jais-13b-chat 4979 48.10 | 39.02 36.56 | 6422 53.78 | 5.66  4.80

Table 1: Zero-shot performance of models on understanding and cultural knowledge evaluations. Metrics are
accuracy for MMLU, HellaSwag, and Belebele, and a 0-10 correctness score for Palm. Bold values indicate the
highest score among models comparable in size to ours (< 7B). Underlined values represent the highest score in the
entire column, including larger models.

Model Flores-200 In-House Data Average
XX — XX | XX- —XX |
EGY MOR EGY MOR | EGY MOR EGY MOR |
Qwen3-1.7B 1475 1089 1951 1547 | 1141 436 1563 632 | 1229
ar-stablelm-2-chat 1435 707 1110 972 | 923 292 1123 773 | 917
g Atlas-Chat-2B 1520 1340 2139 2111 | 536 7.83 1452 1354 | 14.05
‘s Llama-3.2-3B-Instruct 1425 9.15 1928 1554 | 10.67 3.16 1361 487 | 11.32
£ gemma-3-4b-it 927 522 1246 1013 | 301 0.60 1689 525 | 7.86
g Qwen3-4B 1793 1164 2003 1890 | 13.09 444 2072 852 | 1441
— NLLB-200-3.3B 23.93 1537 2584 2657 | 1677 749 1890 1143 | 1829
Qwen2.5-3B-Instruct ~ 15.14 1127 2052 1737 | 991 419 1924 783 | 13.18
NileChat (3B) 2360 1641 2574 2556 | 2202 1234 2650 1839 | 2132
AceGPT-7B-chat 18.02 1133 2111 1746 | 1473 495 2010 747 | 1440
o ALLaM-7B-Instruct 2391 1588 24.74 23.19 | 1998 9.16 2940 1851 | 20.60
£ Qwen25-7B-Instruct 1441 1023 1981 1895|1043 410 2092 880 | 1346
£ Qwen3-8B 2003 1386 2256 21.33 | 1338 473 2414 927 | 16.16
o Atlas-Chat-9B 1820 16.89 2492 2629 | 536 7.68 1735 1523 | 16.49
S gemma-3-12b-it 13.01 489 1905 19.54 | 786 245 2451 1238 | 1296
AceGPT-13B-chat 1948 1402 2281 19.84 | 1554 556 2351 952 | 1629
jais-13b-chat 880 429 1577 17.12 | 1083 4.02 19.19 1247 | 1156

Table 2: Zero-shot translation performance (spBLEU) on the Flores and in-house datasets. XX — EGY and XX —
MOR denote average over target languages EGY and MOR, respectively. Conversely, EGY — XX and MOR —
XX indicate average over EGY and MOR as source languages. Bold values highlight the top score among models
with fewer than 7 billion parameters. Underlined values indicate the highest score overall in each column. Detailed
results are in Table D.2.

How many pre-training tokens are needed to  NileChat during the pre-training phase on Bele-
reach good performance for a new language? bele and translation tasks. The charts show that
Figure 4 shows the performance evolution of  the model starts to get a large boost in these tasks
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Figure 3: Average SVA scores of evaluated models across societal value dimensions for Egypt and Morocco.

during the first 10B tokens and then continues
to slightly increase until it becomes steady after

around 60B tokens.
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5 Conclusion

‘We introduced a novel method
LLMs to specific communities

of tokens processed.

ology for adapting
by deeply integrat-

ing their unique linguistic characteristics, cultural
heritage, and societal values. Our approach lever-
ages a teacher model proficient in generating low-

resource languages to enable: (i

) translation for the

incorporation of community-specific language and
(ii) controlled generation and retrieval mechanisms
for the authentic inclusion of cultural heritage and
values. We validated our methodology using the
Moroccan and Egyptian Arabic dialects as testbeds
by developing NileChat, an LLM covering these
two dialects. Comprehensive evaluations on under-
standing, translation, and cultural alignment bench-
marks demonstrate that our method significantly
enhances the baseline LLM’s performance in cap-
turing target language nuances and cultural val-
ues. Notably, NileChat also outperforms existing
Arabic-aware LLMs. Our method offers a promis-
ing research direction for fostering inclusivity of
diverse local communities within LLM develop-
ment, thereby emphasizing the critical role of such
an inclusion in the broader democratization of this
technology.

Limitations

* Teacher Model Dependency for Low-
Resource Languages: Our method’s reliance
on a teacher model proficient in generating
even low-resource target languages may not
hold for extremely under-resourced languages
(e.g., Berber, Malayo-Polynesian varieties)
(Team et al., 2022), potentially limiting its
applicability in such contexts.

* Supervised Fine-Tuning Data: SFT phase
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predominantly utilized translated data due to
resource constraints. This reliance on trans-
lated, rather than native, data for SFT might
impact the model’s nuanced performance in
the target languages and their corresponding
cultures.

* Susceptibility to Hallucination: As a 3B pa-
rameter model, our LLM is relatively small,
rendering it more prone to hallucination and
the generation of inaccurate or incomplete in-
formation compared to larger architectures
(Wei et al., 2022).

* Computational Cost of Synthetic Data Gen-
eration: The process of generating synthetic
data is computationally intensive, particularly
when employing large teacher models (e.g.,
Command R+, a 104B parameter model re-
quiring substantial GPU resources: 4x80GB).
This challenge is amplified by the autoregres-
sive generation of long documents from ex-
tensive input contexts (e.g., articles, persona
descriptions, cultural concepts) restricting the
scale of this approach for more languages.

* Absence of Explicit Safety Alignment: The
model has not undergone dedicated safety
alignment. While trained on curated datasets
(Wikipedia, educational, news) largely de-
void of toxic content and leveraging a safety-
aligned teacher LLM, specific safety tuning is
acknowledged as important future work.

* Limited generation of subtle details. While
the controlled generation uses multiple
sources (WVS, news, Wikipedia, TV scripts),
the generated texts are limited in terms of the
very subtle cultural nuances, implicit knowl-
edge, humor, or sarcasm that are often not
explicitly stated in these source materials
(Wikipedia and news articles).

Ethics Statement

Our work contributes to the development of inclu-
sive, linguistically, and culturally diverse LLMs
capable of serving varied communities. While we
generate our pre-training and instruction-tuning
data using a teacher LLM, this process is critically
informed by ground-truth cultural values survey
data from the communities of interest and local
context to control the generation. This approach

aims to imbue our models with specific cultural
nuances relevant to these communities.

As our evaluations demonstrate, the resulting
models exhibit reasonable alignment with the cul-
tural heritage and values of our target communities
and can produce fluent text in their respective di-
alects. Despite these advancements, we have not
conducted explicit safety alignment procedures for
these models. Consequently, we strongly recom-
mend thorough testing and further safety evalua-
tions before any deployment in real-world scenar-
i0s.
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Language Data category Data source Nature # of words

Wikipedia Real 128.71M
MT fineweb-EDU Synthetic 2.08B
General !
Egypt LHV Synthetic  398.89M
Fineweb2 Real 430.46M
Dialectal data Arabizi MT fineweb-EDU (Arabizi) & LHV Synthetic 206.49M
Wikipedia Real 1.67TM
General Translated fineweb-EDU Synthetic  2.02B
Morocco LHV Synthetic 207.41M
Fineweb2 Real 1.64B
Arabizi MT fineweb-EDU (Arabizi) & LHV Synthetic 467.30M
Eovot Cultural Brave API Real 74.67TM
Eyp General Local News Real 346.79M
MSA Morocco Cultural Brave API Real 23.08M
General Local News Real 220.16M
General General Fineweb2 Real 28.80B
Wikipedia Real 318.62M
English General General Fineweb-EDU Real 51.57B
French General General Fineweb2 Real 9.42B
Code & Math Code & Math  MathGenie/MathCode-Pile Real 818.35M

macrocosm-os/code-parrot-github-code

Table A.1: Distribution of the final pre-training data mixture by language, nature (synthetic vs. real), and word
count per dataset. Bold rows highlight data generated via our proposed augmentation pipeline.

A Data
B Training details

B.1 Pre-training

Motivations for choosing Qwen-2.5-3B as our backbone model. We select Qwen-2.5-3B as our base
model to continue pretrain for two primary reasons: its competitive performance on MSA tasks and good
tokenizer compression ratio on Arabic dialect texts. At the time of the selection, the Gemma 2 (Team et al.,
2024) and Qwen 2.5 base models showed the best performance in MSA. Also, both of their tokenizers
have a good compression ratio for Arabic text in both standard and dialectal forms. Our analysis shows a
ratio between 2.7 and 2.8 for Gemma, while Qwen 2.5 has a compression ratio between 2.9 and 3.1. Our
final choice of Qwen 2.5 was based on its better performance on MSA.

Details for continued model pretraining. We continue the pre-training of Qwen-2.5-3B on our curated
pre-training dataset. Subsequently, the model is fully fine-tuned for one epoch using a sequence length of
4,096. To optimize the learning process, the learning rate is linearly decayed from 5 x 1076 to 5 x 1077,
To mitigate overfitting, we apply a weight decay of 0.1, and gradient norms are clipped at a maximum
value of 1.0. The training is performed on a cluster of 4xA100 80GB GPUs.

B.2 Supervised fine-tuning

To enhance model robustness and facilitate effective merging, we augmented each dialect-specific dataset
with a shared multilingual corpus, comprising English SmolTalk, MSA SmolTalk, French SmolTalk, and
additional data from the ORCA and Dolphin datasets. Each dialect-specific model was trained for two
epochs with a sequence length of 4,096 tokens, using a learning rate that linearly decayed from 7 x 1076
to7x 107"

Table B.1 compares the SFT model with models fine-tuned on Egyptian and Moroccan datasets
individually, as well as with our final merged model, NileChat. NileChat performs well on tasks for both
EGY and MOR. The MOR-specific model also demonstrates strong performance on both MOR and, to
some extent, EGY tasks. In contrast, the EGY-specific model does not perform well on MOR tasks.
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Dataset name Language Source # of Instructions

Darija-SFT-Mixture = MOR (Arabic)  Atlas-Chat 458,155
TULU-V2-mix EGY (Arabic)  Ours (MT) 178,109
MOR (Arabic)  Ours (MT) 192,266

MOR (Arabizi) Ours (MT) 93,419

EGY (Arabic) Ours (MT) 195,260

SmolTalk EGY (Arabizi)  Ours (MT) 93,181
French Ours (MT) 99,468

MSA Ours (MT) 96,933

English SmolTalk 149,124

ORCA . Ours (Converted) 460,203
Dolphin MSA +dialects ) ¢ (Converted) 425,703
. . MOR (Arabic)  Ours (Synthetic) 25,159

Cultural instructions oy A abic)  Ours (Synthetic) 107,428

Table A.2: Distribution of the final instruction and response data mixture by language and number of instructions
per dataset. *Ours’ refers to datasets we created via machine translation (MT) or by converting existing datasets into
an instruction/response format.

Table B.1 compares the SFT model with models fine-tuned on Egyptian and Moroccan datasets
individually, as well as with our final merged model, NileChat. NileChat performs well on tasks for both
EGY and MOR. The MOR-specific model also demonstrates strong performance on both MOR and, to
some extent, EGY tasks. In contrast, the EGY-specific model does not perform well on MOR tasks. We
relate this observed asymmetry to the linguistic characteristics of the dialects relative to MSA. During the
SFT phase, each dialect-specific dataset was augmented with a shared multilingual corpus which included
MSA data (e.g., MSA SmolTalk, and data from the ORCA and Dolphin datasets). It is plausible that
EGY is linguistically closer to MSA compared to the MOR, which is often considered more distant from
MSA due to influences such as Berber and French. Consequently, the MOR-tuned model, having been
exposed to this shared MSA data, might more effectively leverage this MSA knowledge to generalize to
EGY tasks. Conversely, the greater linguistic divergence of the Moroccan dialect from MSA could make
it more challenging for the EGY-tuned model to transfer its learning, including the MSA component, to
the distinct features of the Moroccan dialect.

C Evaluation Setup

C.1 Evaluation Tasks

Full list of the 13 categories of WVS questions. Economic Values (EcoV); Ethical Values (EthV);
Happiness and Wellbeing (HW); Index of Postmaterialism (IP); Perceptions about Science and Technology
(PST); Perceptions of Corruption (PC); Perceptions of Migration (PM); Perceptions of Security (PS);
Political Culture and Political Regimes (PCPR); Political Interest and Political Participation (PIPP);
Religious Values (RV); Social Capital, Trust, and Organizational Membership (SCTOM); and Social
Values, Norms, and Stereotypes (SVNS).

The Quality and Validation of Generated Datasets. We rigorously validated the two evaluation
Egyptian Arabic datasets we created using machine translation, namely EgyMMLU and EgyHellaSwag.
A random sample of items from each dataset was rated on two 1-5 scales: (i) Correctness (semantic
accuracy/faithfulness) and (ii) Dialectness (authenticity and naturalness in Egyptian Arabic). Expert
human annotator rated 100 randomly sampled items per dataset. To increase statistical power, a state-of-
the-art LLM judge (Gemini 2.5 Pro) rated the same 100 items plus an additional 300 (400 total) per dataset.
Agreement between human and LLM scores on the 100 shared items yielded an Intraclass Correlation
Coefficient (ICC) of 0.60, indicating good reliability. Summary scores appear in Table C.1. These results,
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together with the inter-evaluator agreement, indicate that the newly created Egyptian benchmarks are of
high quality and suitable for reliable model evaluation.

C.2 Baselines

We evaluate our model NileChat against a set of 17 LLMs that are Arabic-aware; some of these 17 models
are also aligned to Arabic dialects. These models are from the following model families: ALLaM (Bari
et al., 2025), Jais (Sengupta et al., 2023), Atlas-Chat (Shang et al., 2025), ar-stablelm-2-chat (Alyafeai
et al., 2024), Gemma-3 (Team et al., 2025b), Qwen-2.5 (Qwen et al., 2025), Qwen3 (Yang et al., 2025)
(non-thinking mode), and Llama-3.2 (Grattafiori et al., 2024). The full list of models, including their
corresponding size and release date, are presented in Table C.2.

D Full results
E Prompts

The provided figures showcase diverse prompts for language models targeting low-resource languages.
Figure 5 translates English educational content into conversational dialectal Arabic, while Figure 6
converts dialectal Arabic script to Arabizi. English instructions are translated to dialectal Arabic using
the prompt in Figure 7. For content generation, Figure 8 guides the model to create culturally relevant
dialectal Arabic text based on a given persona and context. Figure 9 focuses on summarizing detailed
persona descriptions concisely. Finally, Figure 10 instructs an LLM to generate practical dialectal Arabic
question-answer pairs in JSON format from provided text.

Translate the following text from English to Egyptian Arabic. Ensure that all words
are in Egyptian Arabic, and do not use any Modern Standard Arabic (MSA). Keep
the translation casual, conversational, and reflective of how Egyptians would
naturally speak in everyday situations. Avoid any formal or classical language
structures. Translate only the input paragraph and don't add anything else in
your output.

English: {English_text}

Figure 5: The translation prompt used with a teacher model to convert English educational pre-training data to a
low-resource target language. The placeholder ’{English_text}’ represents the input English text.

Write the following Moroccan dialectal Arabic text in Moroccan Arabizi. Ensure that
all words are written in Moroccan Arabizi. Keep the text casual, conversational,
and reflective of how Moroccans would naturally write in everyday situations
using Arabizi. Translate only the content keys in the following JSON, and output
a json of the same format:

{JSON_OBJECT}

Figure 6: The prompt used with our teacher LLM to convert dialectal Arabic text written in Arabic script into
Arabizi. The placeholder {JSON_OBJECT} represents the input text formatted as a JSON object.

Translate the following text from English to Moroccan Arabic. Ensure that all words
are in Moroccan Arabic, and do not use any Modern Standard Arabic (MSA). Keep
the translation casual, conversational, and reflective of how Moroccans would
naturally speak in everyday situations. Avoid any formal or classical language
structures. Translate only the content keys in the following JSON, and output a
json of the same format:

{JSON_OBJECT}

Figure 7: The translation prompt used with a teacher model to convert SmolTalk and TULU instructions data to a
low-resource target language. The placeholder *{JSON_OBIJECT}’ represents the input text.

10996




Act as the following person: {persona_description} Act like you are {person_Name}
and write a {text_genre} in Egyptian dialect, using colloquial Arabic script as
spoken in Egypt and not Modern Standard Arabic (MSA). Use this context and use
the information provided in it while writing the {text_genre}:

{context}

Make sure to follow these conditions:

1. Rely on the provided context when writing the {text_genre}.

2. Ensure that the written {text_genre} reflects the cultural background, values,
and worldview of {person_Name}.

3. Don't write the persona's description. I want you to focus only on the provided
context when writing while reflecting the perosna's background.

Note: Ensure that all words are in Egyptian Arabic, and do not use any Modern
Standard Arabic (MSA). Keep the translation casual, conversational, and
reflective of how Egyptians would naturally speak in everyday situations.

Figure 8: Prompt for generating culturally and values-aware text genres in low-resource languages, given a local
persona description and a local cultural concept. The placeholders {persona_description}, {text_genre}, and
{context} represent the persona description, the intended text genre to generate, and the cultural concept text,
respectively.

I have the following persona description, I want you to write it in a concise manner
keeping all the information, the output should be plain text, make sure to
include all values, morals, and culture of the persona:

{PERSONA_DESCRIPTION?Y

Figure 9: Prompt for generating concise persona descriptions with a LLM utilizing a comprehensive description of
a specific persona extracted from the WVS. The placeholder *{ PERSONA_DESCRIPTION}’ represents the input
persona description.
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Figure 10: Prompt for generating synthetic cultural dialectal question-answer pairs using a teacher model given
raw text describing a local cultural heritage concept. The placeholder {Text} represents the raw text that is used to
generate question-answer pairs from it.

F Samples of texts generated from NileChat




(based on context)

Text genre Conversation

Jilali, a 40-year-old Moroccan male, lives in Karia Ba Mohamed, Fes-Meknes region, in an urban area. He is married with 3 children and lives in a household of 7, including his parents and in-laws.
Persona Jilali has post y non-tertiary and works full-time as a skilled worker in a government or public institution. He is in the third income decile, considers himself upper middle class, and
manages to save money. Jilali values family, friends, leisure, politics, work, and religion highly. He is Muslim, attends religious services weekly, and prays several times a day. He believes most
people can be trusted and is quite happy, rating his life satisfaction as 6 out of 10 and his financial satisfaction as 8 out of 10....
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Include these Moroccan dialect words in your generated text: "»=" (meaning "sustain"), " =" (meaning "preparation"), "< 4" (meaning "march"),
).

<" (meaning "nutrition”), and "—" (meaning
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Egyptian Blog Post (based on Wikipedia conloxl)

Generated text

sy, »mx&s s uuu.,ﬂs‘-\la,:ﬂ

Text genre Blog Post

Hatem, a 29-year-old Egyptian male, lives in a rural area of Markaz Al Delengat, Behaira region. He is single, has no children, and lives with his parents in a household of three. Hatem has no formal

education and works part-time as an unskilled laborer in private business or industry. He is in the third income decile and considers himself lower class. He has spent savings and borrowed money,

Persona and rates his financial satisfaction as 2 out of 10 and his overall life satisfaction as 3 out of 10. Despite this, he reports good health and rates his control over life as 5 out of 10. Hatem is a devout

Muslim who attends religious services more than once a week and prays several times a day. He values family and friends highly but does not prioritize leisure or politics. Work and religion are very
important to him. He is cautious with people and not very happy..
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Moroccan conversation (based on local news context)

Text genre Conversation

Zohra, a 49-year-old Moroccan woman, lives in a rural area of Tigrigra within the Fes-Meknes region. She is married with two children and lives in a household of five people, not including her
parents. Zohra has no formal education and works as a housewife and farm laborer in private business or industry. She is in the sixth income decile and considers herself lower middle class, just
Persona getting by financially. Family is very important to Zohra, while friends are rather important. She does not prioritize leisure, politics, or work, and considers religion very important. She is a practicing
Muslim, attending religious services once a week and praying several times a day. She believes most people can be trusted and rates her life satisfaction as 6 out of 10 and her financial satisfaction
as 7 out of 10. She reports fair health and feels complete control over her life.....
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Linguistic cues 3. Include these Moroccan dialect words in your generated text: "J.2" (meaning "doubt"), ":<" (meaning "hidden"), "z" (meaning "windy"), "Js_" (meaning "fee(“) and “Jx'u" (meaning "stingy")
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Generated text

Table A.3: Examples of culturally aware and dialectally diverse texts from various genres, generated by our teacher
model. The model was provided with input representing a specific persona, local context, and a local linguistic cue
following the methodology described in Section 3.1.

Belebele Flores In-house
MOR EGY ENG—EGY ENG—MOR ENG—MOR ENG—EGY

NileChat-EGY 64.44 70.89 43.85 23.10 11.93 36.93
NileChat-MOR 70.67 72.56 39.94 37.45 30.82 29.98
NileChat 70.33  72.67 44.37 33.89 28.67 37.52

Table B.1: Comparison of the performance of the Egyptian SFT model (NileChat-EGY), the Moroccan SFT model
(NileChat-MOR), and their merged version, NileChat, on Belebele (accuracy), Flores (ChrF++), and In-house
parallel data (ChrF++).

10999



Dataset Evaluator Sample Size Correctness Score Dialectness Score

Human 100 3.78 3.92
EgyMMLU LLM 100 3.90 4.22
LLM 400 4.28 4.22
Human 100 3.90 4.08
EgyHellaSwag LLM 100 4.22 4.96
LLM 400 4.11 4.64

Table C.1: Translation quality scores (out of 5) for EgyMMLU and EgyHellaSwag along two dimensions: correctness
and dialectness. Human raters and an LLM judge rated the same 100 items; the LLM judge additionally rated 300
more items (400 total) to yield more reliable estimates.

Model Name Size Release Date
Less than 7B
Qwen3-1.7B 1.7  Apr. 2025
ar-stablelm-2-chat 1.6 Jul. 2024
Atlas-Chat-2B 2.6 Sep. 2024
Llama-3.2-3B-Instruct 3.2  Sep. 2024
gemma-3-4b-it 43  Mar. 2025
Qwen3-4B 4 Apr. 2025
NLLB-200-3.3B 3.3  Jul. 2022

Qwen2.5-3B-Instruct 3.1  Sep. 2024

More than 7B
AceGPT-7B-chat 7 Dec. 2023
ALLaM-7B-Instruct 7 Feb. 2025
Qwen2.5-7B-Instruct 7.6  Apr. 2025

Qwen3-8B 8.2  Apr. 2025
Atlas-Chat-9B 9.2 Sep. 2024
gemma-3-12b-it 12.2  Mar. 2025
AceGPT-13B-chat 13 Dec. 2023
jais-13b-chat 13 Aug. 2023

Table C.2: The LLMs used for comparison against NileChat in this evaluation were selected from a list of Arabic-
aware models. Each LLM is listed with its corresponding size (in billion parameters) and release date. We utilized
the instruct version for all LLMs except for NLLB, which is a machine translation-specific model.
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MMLU ‘ HellaSwag ‘ Belebele

Model

EGY MOR | EGY MOR | EGY MOR

Qwen3-1.7B 28.53 2853 | 28.07 2733 | 22.89 22.89

o ar-stablelm-2-chat 39.54 3832 | 3433 3340 | 2422 2278
E  Atlas-Chat-2B 42,65 45.06 | 29.62 3478 | 54.67 59.00
S Llama-3.2-3B-Instruct | 31.10 30.92 | 28.86 28.39 | 49.67 40.89
> gemma-3-4b-it 46.32  46.60 | 3426 3253 | 61.44 5211
S Qwen3-4B 28.59 2852 | 30.21 29.53 | 22.89 22.89
Qwen2.5-3B-Instruct | 3571 37.67 | 31.17 29.62 | 61.11 44.89
NileChat (3B) 58.20 58.62 | 38.29 4035 | 78.11 73.78
AceGPT-7B-chat 40.76  37.98 | 33.04 31.04 | 38.00 33.00
g ALLaM-7B-Instruct 60.18 59.61 | 40.20 38.14 | 76.11 66.00
= Qwen2.5-7B-Instruct | 57.70 53.51 | 3379 3228 | 76.67 59.44
Z  Qwen3-8B 28.53 2853 | 31.72 3095 | 22.89 22.89
o Atlas-Chat-9B 57.17 6027 | 34.75 4447 | 7844 7933
S gemma-3-12b-it 59.29 56.16 | 40.16 37.60 | 80.78 73.11
AceGPT-13B-chat 46.48 43.65 | 35.15 3321 | 4633 41.11
jais-13b-chat 49.33 4828 | 38.99 3745 | 59.89 53.78

Table D.1: 3-shot performance (accuracy) of models on understanding (MMLU, HellaSwag, and Belebele). Bold
values indicate the highest score among models comparable in size to ours (<7B parameters). Underlined values
represent the highest score in the entire column, including larger models. Results for zero-shot are presented in
Table 1, Section 4.2.
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Table F.1: Sample responses from NileChat to prompts in Egyptian and Moroccan dialects, covering general and
local cultural knowledge. Samples with green background color represent samples with correct responses, samples
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with red background color represent samples with not accurate answers.
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