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Abstract

Theory-of-Mind (ToM) tasks pose a unique
challenge for large language models (LLMs),
which often lack the capability for dynamic
logical reasoning. In this work, we propose
DEL-ToM, a framework that improves veri-
fiable ToM reasoning through inference-time
scaling rather than architectural changes. Our
approach decomposes ToM tasks into a se-
quence of belief updates grounded in Dynamic
Epistemic Logic (DEL), enabling structured
and verifiable dynamic logical reasoning. We
use data generated automatically via a DEL
simulator to train a verifier, which we call the
Process Belief Model (PBM), to score each be-
lief update step. During inference, the PBM
evaluates candidate belief traces from the LLM
and selects the highest-scoring one. This allows
LLMs to allocate extra inference-time compute
to yield more transparent reasoning. Exper-
iments across model scales and benchmarks
show that DEL-ToM consistently improves per-
formance, demonstrating that verifiable belief
supervision significantly enhances LLMs’ ToM
capabilities without retraining. Code is avail-
able at https://github.com/joel-wu/DEL-ToM.

1 Introduction

“To know what John knows is to know
the worlds that are compatible with his
belief, and to know which ones are
not.” — Jaakko Hintikka (Hintikka and
B. P. Hintikka, 1989)

The ability to attribute beliefs, desires, and in-
tentions to others, known as Theory-of-Mind
(ToM) (Premack and Woodruff, 1978; C. Dennett,
1978; Apperly and Butterfill, 2009), is a fundamen-
tal component of social intelligence (Baron-Cohen,
1991). ToM enables agents to reason about what
others think, want, or know, and to anticipate their
subsequent behavior (Rabinowitz et al., 2018).
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Recent studies suggest that large language mod-
els (LLMs) (Brown et al., 2020) exhibit ToM abili-
ties (Strachan et al., 2024; Lin et al., 2024; Street
et al., 2024; Amirizaniani et al., 2024; Sclar et al.,
2025; Wu et al., 2025). However, ToM perfor-
mance follows a scaling law (Kosinski, 2024), with
smaller models showing limited ability on ToM
tasks. This limitation poses a challenge for low-
resource deployments, where edge agents are ex-
pected to robustly infer users’ intentions and act
in alignment with human expectations. At the
same time, current evaluations compare only the
final output to the ground-truth label (Chen et al.,
2024), leaving it unclear whether correct answers
result from genuine reasoning or from lucky guess-
ing (Ullman, 2023). Consequently, existing ToM
reasoning remains unverifiable and not applicable
in practice. This paper addresses the question: How
can we enable LLMs to perform verifiable ToM rea-
soning, especially in low-resource settings?

Following process reliabilism (Goldman, 1979),
verifiable ToM reasoning requires a sequence of
intermediate belief states that reliably support the
final conclusion. We formalize this reasoning pro-
cess using Dynamic Epistemic Logic (DEL) (Bal-
tag et al., 1998; Van Benthem, 2001; Plaza, 2007;
Van Ditmarsch et al., 2007; Aucher and Schwarzen-
truber, 2013), a logic system grounded in the tradi-
tions of formal logic and semantics (Frege, 1879;
Russell and Whitehead, 1910; Wittgenstein, 1922;
Tarski, 1956; Hintikka, 1962; Kripke, 1963). DEL
models agents’ beliefs with epistemic models, ac-
tions with event models, and belief change via prod-
uct updates, allowing us to view ToM reasoning as
dynamic logical reasoning.

Within this framework, transparent belief traces
are generated and evaluated by a Process Belief
Model (PBM). By scoring multiple candidates, the
PBM enables us to select the most reliable trace.
This constitutes inference-time scaling: spending
more computation during inference to obtain more
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ToM Actions

1 John, Mary and Alice entered the kitchen.

2 John put the chocolate in the drawer.

3 John exited the kitchen.

4 Mary moved the chocolate to the table.
Question: Where does Mary think John thinks the
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Figure 1: Overview of the DEL-ToM framework. Each belief state is inferred from the previous state and the current
action. The LLM generates multiple candidate belief traces in parallel, and the PBM assigns reward scores to filter a
top-scoring subset, which is then used to continue reasoning toward the next belief state.

reliable reasoning traces, which in turn allows

smaller models to achieve stronger ToM perfor-

mance while remaining efficient for deployment.

We experiment with different trace selection and

search strategies for ToM reasoning.

To train the PBM, we first generate ToM-related
questions and use DEL to produce belief process la-
bels. We then use GPT-40-mini (Hurst et al., 2024)
to answer these questions. Finally, DEL-generated
gold labels are used to automatically score GPT-
generated traces, producing positive and negative
examples for PBM training. Unlike other process-
level reward modeling datasets, which rely on hu-
man annotation or LLM assistance (Wang et al.,
2024), our labels are derived from a formal DEL
system, which guarantees correctness.

In conclusion, we approach ToM reasoning
through the lens of formal logic. Using a PBM
trained via DEL, we make each intermediate be-
lief update explicit and employ search-based meth-
ods to select the most reliable trace. This enables
inference-time scaling and yields dynamic logical
reasoning grounded not only in model outputs, but
in verifiable, structured belief updates. Our contri-
butions are threefold:

* We propose a new perspective on ToM reasoning
by framing it as a problem of process reliability.
By modeling reasoning as a multi-step dynamic
belief-update process, we can apply inference-
time scaling to select more reliable belief traces.

¢ We formalize ToM reasoning in the framework
of DEL and construct a PBM dataset with noise-
free supervision derived from DEL. This enables
training PBMs for stepwise reasoning evaluation.

* We evaluate our approach across different model
scales and search strategies. Our method consis-
tently improves LLM performance on standard
ToM benchmarks.

2 Background and Motivation

ToM in LLMs. Researchers have designed various

tasks to evaluate the ToM capabilities of LLMs.

Among these, false belief tasks are the most widely

used, typically in two forms:

* Unexpected Contents: A protagonist is shown
an object with misleading external cues (e.g., an
opaque crayon box that actually contains can-
dles). The LLM under evaluation must identify
that the actual content is candles while recogniz-
ing that the protagonist holds the mistaken belief
that the box contains crayons.

* Unexpected Transfer: An object is moved with-
out the protagonist’s knowledge, and the LLM
must predict where the protagonist will search
for it — based on the protagonist’s outdated belief.
Among the two, the unexpected transfer task is

more commonly used. Figure 1 illustrates a typical

instance of this task setup.

Illustrative Example. As shown in Figure 1, the

story consists of four sentences, each describing an

action that updates the characters’ belief state. The

goal of ToM reasoning is to infer the sequence of

belief states, culminating in the final belief state.
In this example, after Action 1, John, Mary, and

Alice are all present in the kitchen, but the choco-

late has not been introduced, so no beliefs are yet

established. After Action 2, John places the choco-
late in the drawer, and everyone present observes
this action. Hence, Mary believes that John be-
lieves the chocolate is in the drawer. Following

Action 3, John exits the kitchen. Then, in Action

4, Mary moves the chocolate to the table, an action

that John is unaware of. As a result, Mary thinks

John still believes the chocolate is in the drawer.
From this example, we see that ToM reasoning

can be understood as an action applied to a prior
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belief state, causing characters to gain or lose in-
formation and thereby forming a new state. This
process naturally aligns with DEL, which repre-
sents each belief state with an epistemic model,
each action with an event model, and updates be-
liefs via the product update by combining the state
with an action. Together, these elements yield a
formal dynamic-logic system that derives the full
belief-state trace over time.

Our Objective: Inference-Time Scaling for Ver-
ifiable ToM in LLMs. Our goal is to enable
LLMs to perform ToM reasoning in an efficient
and verifiable manner. To this end, we adopt an
inference-time scaling strategy that allocates ex-
tra compute during inference to improve the reli-
ability of reasoning. This approach not only en-
hances the reasoning capability of large models but
also allows smaller models to remain deployment-
efficient while achieving performance competitive
with closed-source LLMs.

3 Inference-Time Scaling for ToM

In this section, we first formulate ToM reasoning
as a DEL process. We then describe how the PBM
is constructed and trained to evaluate belief traces,
and present inference-time scaling pipelines that
use the PBM to guide ranking and selection of
reasoning traces.

3.1 Formulating ToM Reasoning within DEL

We formulate ToM reasoning within the framework
of DEL, which is based on Kripke’s possible-world
semantics (Kripke, 1963). Let P be a countable
set of atomic propositions, representing basic facts
about the world, and let A be a finite, non-empty
set of agents. The epistemic language L(P, A) is
defined by the Backus-Naur form (Knuth, 1964):

pu=p|p|pAe| Bip,

where p € P, i € A, and ¢ ranges over well-
formed formulas. The formula B;p is read as
“agent ¢ believes ¢.” For example, “John believes
the chocolate is in the drawer” can be written as
Byonn(chocolate_in_drawer). Based on this lan-
guage, we define epistemic models, event models,
and the product update.

Definition 1 (Epistemic Model). An epistemic

model over agent set .4 and proposition set P is a

triple M = (W, R, V'), where:

» W is a set of possible worlds, where each world
is a complete valuation of P;

* R: A — 2W>W agsigns each agent a € A an
accessibility relation R,;

*V : P — 2% maps each atomic proposition
p € P to the set of worlds where p is true.

A state is a pointed epistemic model (M, w)
where w € W is the designated actual world.

We write wR,v to denote that world v is acces-
sible from world w according to agent a: in world
w, agent a considers v possible.

On the basis of an epistemic model M =
(W, R, V) and a designated world w € W, the
satisfaction relation |= for L(P, A) is defined as
follows:

s M,wEpiffw e V(p);
* M,w |= By iff for all v € W such that wR,v,

we have M, v = .

Definition 2 (Event Model). An event model is a

tuple € = (E, Q, pre, post), where:

» F is a finite, non-empty set of events;

s Q: A— 2E%F assigns to each agent a € A an
indistinguishability relation (), over events;

e pre: E — L(P,A) assigns to eache € E a
precondition specifying when e is executable;

e post : E — L(P,.A) assigns to eache € F a
postcondition describing how the world changes.

We refer to a pointed event model (g, ¢) as an
action, where e € F is the actual event that occurs.

Definition 3 (Product Update). Let (M, w) be a
state with M = (W, R, V), and let (¢, e) be an
action with ¢ = (E, @, pre, post). Suppose that
the precondition is satisfied, i.e., M, w = pre(e).
Then the product update results in a new state
(M, (w, e)), where the updated epistemic model
M = (W' R, V') is defined as follows:
e W ={(w',e)eW x E| M,w = pre(¢)};
e Foreacha € A, R, = {((w',€), (v, f)) €
W' x W' | w'Rv' N e'Qaf'}s
o (w',e') € V/(p) iff post(e') E por (M,w' E
p A post(e’) = —p), for each p € P.

Applying DEL to ToM Reasoning. We illus-
trate States 4-6 in Figure 2. In State 4, both
Mary and Alice are present and observe that the
chocolate is on the table, so M, wy = table and
Ry = Ra = {(ws,ws)}. After Action 5, Mary
exits the kitchen, pre(es) = T, post(es) = table,
so facts remain unchanged but Mary will not ob-
serve subsequent actions. In Action 6, Alice moves
the chocolate to the cupboard with pre(eg) = T
and post(eg) = cupboard N —table. After the
product updates, the actual state (M, wg) satisfies
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ToM Actions

1John (J), Mary (M) and Alice (A) entered the kitchen.

2 John put the chocolate in the drawer.
3 John exited the kitchen.
4 Mary moved the chocolate to the table.

5 Mary exited the kitchen. Drawer Table Drawer
6 Alice moved the chocolate to the cupboard.
Question: Where does Mary think Alice thinks the chocolate is? A M,A A J,MA
M 8 J
Process Label Generation —>
Cupboard Table Drawer

Null Drawer Drawer Table Table

~—DEL Belief States ——

J,M, A

5 &

J,M,A

Table Current world

Past world
J

Figure 2: Training data synthesis for PBM. The right part illustrates the accessibility relations generated by the DEL

simulator.

M, wg |= cupboard; Alice’s accessibility relation
', points to cupboard-worlds, while Mary’s rela-
tion R/, still reaches the table-world. Hence

M, we = BMary Batice ¢
> Vv (wsRyv = M,v | Bap)
< M, w4 |= Balice ¢
= Yu (wiRyu = M,u = p)
= M, w4 = o,

where ¢ denotes “the chocolate is on the table.”
Thus, Mary believes that Alice believes it is on
the table. This illustrates that the core of DEL
reasoning lies in constructing the accessibility re-
lations R at each state, finding the worlds that are
compatible with an agent’s belief (Hintikka and
B. P. Hintikka, 1989).

3.2 Building the PBM with DEL

Generating Process-Level Labels via DEL. We
integrate a DEL simulator into the Hi-ToM gen-
erators' (Wu et al., 2023) and synthesize 20,000
ToM stories with process labels. For each story, we
build process-level traces across different orders of
belief: at each action, we update the accessibility
relations R based on the action’s semantics and
whether the observation is public or private, then
update R accordingly and record the belief state
in the trace set. All process-level label generation
code is integrated into the Hi-ToM generators and
included in our released codebase.

Dataset Assembly. For each synthesized story, we
prompt GPT-40-mini (Hurst et al., 2024) to pro-
duce step-by-step belief updates in a DEL format

1https://github.com/ying—hui—he/Hi—ToM_
dataset

(the prompt is provided in Appendix A). We pair
each LLM trace with the DEL per-step labels to
form training instances, yielding both positive and
negative supervision for process-level reward mod-
eling.

Training the PBM. PBM is a scoring function
f: 9 x 8 — RT that assigns a score to each step
s; in a GPT-40-mini-generated belief trace s, given
a ToM problem q. We treat this as a binary classi-
fication task: each step is labeled as either correct
or incorrect according to the DEL-generated belief
trace. The model is trained using the following
binary cross-entropy loss:

K
Lesm = — Y ys; log f(s:)
i=1

K
— 31—y log(L — f(s0)),
=1

where K is the number of steps, v, is the binary
label, and f(s;) is the predicted score. The training
code is adopted from the RLHF-Reward-Modeling
codebase?.

3.3 Inference-Time Scaling Pipeline

Beam Search. Beam search is a decoding method
that maintains multiple partial belief traces during
generation (Figure 1): at each action, the LLM ob-
serves the trace so far and proposes multiple candi-
date belief updates for the current state. The PBM
scores these candidates, and a high-scoring subset
is selected to continue reasoning. This process re-
peats until all actions are processed. Formally, the
procedure is as follows:

Zhttps://github.com/RLHFlow/
RLHF-Reward-Modeling

11398


https://github.com/ying-hui-he/Hi-ToM_dataset
https://github.com/ying-hui-he/Hi-ToM_dataset
https://github.com/RLHFlow/RLHF-Reward-Modeling
https://github.com/RLHFlow/RLHF-Reward-Modeling

* Initialize k£ beams with candidate first-step up-
dates sampled from the model.

* Expand each beam with b next-step candidates,
yielding k x b partial paths.

* Score each path with the PBM, ranking by the
score of the most recent step.

* Retain the top k paths and iterate until reaching
an end-of-sequence or the maximum depth.

Best-of-N (BoN). Alternatively, instead of updat-
ing step by step, the LLM may generate N com-
plete belief traces after reading the entire story. The
PBM scores each step in these traces, aggregates
the step-wise scores into a process-level reward,
and reranks the candidates to identify the most reli-
able trace as the final output. We experiment with
different aggregation rules for computing the trace-
level score:

* Last: Use the PBM score of the final step.

* Min: Use the lowest score across all steps.

» Avg: Use the average score across the trace.

* Prod: Multiply the scores of all steps.

* Majority: Select the final answer by simple ma-
jority voting across traces, without using PBM.
Based on the aggregated scores, we consider two

ranking strategies:

* Vanilla BoN: Select the single trace with the high-
est PBM score.

* Weighted BoN: Group traces by their final an-
swers, yielding a candidate set ) = {y1, 42, ... }.
We then sum PBM scores within each group and
select the answer ¢ with the highest total:

N
g=argmax ) 1(y; =y) PBM(p,t;),
i=1

where t; is the ¢-th trace, y; denotes the trace’s
final answer, and PBM(p, t;) is its score.

4 Experiments

4.1 Experimental Setup

Platform. All experiments are conducted on a
single NVIDIA GH200 GPU node. We use the
vLLM (Kwon et al., 2023) framework for efficient
batched inference and large-scale decoding.

PBM Training. We fine-tune a PBM model based
on Llama3.1-8B-Instruct (Grattafiori et al., 2024).
The model is trained for 1 epoch using our synthe-
sized dataset.

Test Models. We evaluate our methods on both
the Qwen3 series (0.6B, 1.7B, 4B, 8B) (Yang et al.,
2025) and the Llama3.2 series (1B, 3B) (Grattafiori

et al., 2024), as well as closed-source models in-
cluding gpt-4.1, gpt-4o, gpt-4.1-mini, and gpt-4o-
mini. For comparison, we also report results from
baselines such as o4-mini, gpt-4.1-nano, Qwen3-
235B-A22B (Yang et al., 2025), DeepSeek-V3 (Liu
et al., 2024), and OLMo-2-0325-32B (Walsh et al.,
2025). All models are evaluated under their default
generation settings.

Datasets. We conduct evaluations on two datasets:
Hi-ToM (Wu et al., 2023) and the ToM tasks in-
troduced by Kosinski (Kosinski, 2024). For Hi-
ToM, we only evaluate one-chapter stories, and
for Kosinski’s dataset we restrict evaluation to the
unexpected transfer task.

Metrics and Prompt Format. We report final
answer accuracy as the main evaluation metric. All
models are evaluated using a consistent prompting
format, as detailed in Appendix A.

4.2 Results on Hi-ToM Dataset

For BoN, we scale N up to 1024 and apply the
weighted strategy, selecting the best aggregation
rule for each instance. For beam search, we eval-
uate Qwen3-4B and Qwen3-8B with beam sizes
from 4 to 256, excluding smaller models since they
cannot generate valid intermediate reasoning steps.
Main Results. As shown in Table 1, incorporat-
ing PBM consistently improves ToM reasoning
across both BoN and beam search. For exam-
ple, Llama3.2-3B gains 33.6 points in average ac-
curacy, while Qwen3-4B improves by 9.4 points
in the BoN setting. Similarly, with beam search,
Qwen3-8B, whose baseline underperforms Qwen3-
4B, achieves the highest accuracy of 87.0 once
guided by PBM. Moreover, our method generalizes
to both open- and closed-source models, as the gpt
series also shows clear gains with PBM.
Comparison with SOTA LLMs. As shown in Ta-
ble 2, smaller open-source models can match or
surpass much larger LLMs. For example, Qwen3-
4B+PBM achieves higher average accuracy than
gpt-4.1, DeepSeek-V3, and OLMo-32B, while
Llama3.2-3B+PBM performs on par with gpt-4.1-
mini. These findings highlight the effectiveness of
PBM in scaling ToM reasoning.

Scaling Test-Time Compute for ToM Reason-
ing. As shown in Figure 3, increasing the number
of sampled belief traces N improves ToM perfor-
mance only when guided by PBM. Among aggrega-
tion strategies, min and prod are the most reliable,
while avg and last often degrade under weighted
aggregation. In contrast, majority voting fails to
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Table 1: Inference-time scaling across belief orders in the Hi-ToM dataset using BoN and Beam Search. “Ori”
denotes baseline accuracy, and “+PBM” denotes accuracy with inference-time scaling.

Model 0-th Order 1-th Order 2-th Order 3-th Order 4-th Order Average
Ori +PBM Ori +PBM Ori +PBM Ori +PBM Ori +PBM Ori +PBM
BoN (N = 1024)
Qwen3-4B 100.0 100.0 79.8 85.0 79.3 90.0 70.2 82.5 46.0 65.0 75.1 84.5
Qwen3-1.7B 78.0 82.5 59.7 65.0 452 55.0 47.0 62.5 47.8 57.5 55.5 64.5
Qwen3-0.6B 69.2 80.0 52.0 72.5 35.0 47.5 31.5 52.5 34.0 47.5 443 60.0
Llama3.2-3B  68.2 85.0 52.0 80.0 432 82.5 37.0 82.5 36.8 75.0 474 81.0
Llama3.2-1B  41.5 46.2 40.0 53.8 28.5 61.5 41.5 84.6 29.2 58.3 36.1 60.9
BoN (N = 4)
gpt-4.1 95.0 97.5 85.0 87.5 85.0 92.5 82.5 95.0 70.0 71.5 83.5 90.0
gpt-4.1-mini 717.5 70.0 90.0 85.0 70.0 75.0 75.0 92.5 71.5 92.5 78.0 83.0
gpt-40 100.0 100.0 85.0 90.0 82.5 92.5 90.0 97.5 71.5 85.0 87.0 93.0
gpt-4o-mini 90.0 100.0 750 87.5 71.5 95.0 71.5 100.0 55.0 85.0 75.0 93.5
Beam Search (N = 256)

Qwen3-8B 96.5 80.0 53.3 80.0 38.8 85.0 55.8 95.0 57.8 95.0 60.4 87.0
Qwen3-4B 100.0 100.0 79.8 85.0 79.3 97.5 70.2 82.5 46.0 60.0 75.1 85.0

Table 2: Comparison with SOTA LLMs on Hi-ToM
(BoN, N = 1024). “+PBM” denotes accuracy with
inference-time scaling.

Model 0-th  1-th 2-th 3-th 4-th Avg
04-mini 97.5 950 775 875 850 885
gpt-40 100.0 850 825 90.0 775 870
Qwen3-4B+PBM 100.0 850 900 825 650 845
Qwen3-235B-A22B  100.0 75.0 85.0 850 750 84.0
gpt-4.1 95.0 850 850 825 70.0 835
DeepSeek-V3 100.0 80.0 90.0 70.0 725 825
Llama3.2-3B+PBM 850 80.0 825 825 75.0 81.0
gpt-4.1-mini 775 90.0 70.0 750 775 78.0
gpt-4o-mini 90.0 750 775 775 550 750
Qwen3-1.7B+PBM 825 65.0 550 625 575 645
OLMo-32B 775 60.0 60.0 650 525 63.0
Llama3.2-1B+PBM 462 53.8 61.5 84.6 583 60.9
Qwen3-0.6B+PBM  80.0 72.5 47.5 525 475 60.0
gpt-4.1-nano 225 325 425 275 300 310

improve accuracy, since ToM requires evaluating
intermediate belief states rather than aggregating
final answers. A theoretical analysis of this limita-
tion is provided in Appendix B.

BoN vs. Beam Search. Our experiments show
that these two inference-time strategies achieve
comparable accuracy. However, beam search roll-
outs often fail on smaller or weaker models that
cannot reliably produce valid intermediate states,
making PBM evaluation infeasible. In contrast,
BoN generates full belief traces in one shot, where
PBM remains effective even when some steps are
noisy, and large candidate sets can be produced
efficiently using high-throughput backends such
as VLLM. We therefore recommend BoN as the
preferred inference-time scaling method for ToM
reasoning.

4.3 Results on Out-of-Distribution ToM Data

Our PBM is trained on Hi-ToM-style synthetic data,
but we ask: Can it generalize to ToM tasks from
a different distribution? To test this, we evaluate
it on the dataset from Kosinski (Kosinski, 2024),
which contains hand-written scenarios with false-
belief and true-belief controls. We experiment with
the Qwen3 series, following the same inference-
time scaling and PBM-based selection procedure
as before.

Main Results. As shown in Table 3, PBM im-
proves accuracy across all models, confirming its
ability to generalize beyond synthetic Hi-ToM sce-
narios. This shows that PBM functions as a gen-
uine verifier of whether a ToM reasoning process
is justified, rather than overfitting to the training
distribution, and highlights its robustness on out-
of-domain ToM tasks.

4.4 Benchmarking the PBM

To assess the PBM’s standalone reliability, we con-
struct a held-out test set of 2,000 multi-step reason-
ing examples generated by gpt-40-mini and span-
ning all belief orders. Each step is labeled by the
DEL simulator as either correct or incorrect, and
the PBM is evaluated by its step-level classification
accuracy. We benchmark two PBMs trained on
different base models: Llama3.1-8B-Instruct and
Llama3.2-3B-Instruct.

Evaluating PBM. As shown in Table 4, the larger
PBM achieves consistently higher accuracy, and
performance decreases as the belief order increases.
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(a) Vanilla BoN decoding on Qwen3-4B.
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(b) Weighted BoN decoding on Qwen3-4B.

Figure 3: Accuracy of BoN decoding on Qwen3-4B across different budgets IV in the Hi-ToM dataset. Results are
shown for (a) Vanilla and (b) Weighted aggregation strategies.

Table 3: BoN (N = 1024) inference-time scaling on the dataset from Kosinski (Kosinski, 2024), evaluated across
different belief types. “Ori” denotes baseline accuracy; “+PBM” denotes accuracy with inference-time scaling.

Model False Belief Informed Protagonist No Transfer Present Protagonist Average
Ori  +PBM  Ori +PBM Ori  +PBM  Ori +PBM Ori  +PBM
Qwen3-8B 83.3 87.5 83.8 85.0 92.8 97.5 79.5 85.0 84.8 88.8
Qwen3-4B 70.2 80.0 86.2 90.0 93.2 95.0 88.0 92.5 84.4 89.4
Qwen3-1.7B  18.2 35.0 15.5 37.5 24.8 60.0 13.8 30.0 18.1 40.6
Qwen3-0.6B  14.5 12.5 23.5 30.0 25.0 350 210 325 21.0 275

Table 4: PBM classification accuracy (%) across belief
orders on the test set.

PBM 0-th 1-th 2-th 3-th 4-th Avg.
Llama3.1-8B 992 946 89.0 87.0 799 90.0
Llama3.2-3B 99.1 919 849 838 73.8 86.7

Table 5: BoN inference-time scaling accuracy (%) on
Hi-ToM using different PBMs.

Model+PBM 0-th 1-th  2-th 3-th 4-th Avg.
Qwen3-4B + 8B 100.0 85.0 90.0 825 650 845
Qwen3-4B + 3B 100.0 775 715 725 475 750
Qwen3-1.7B+8B 825 65.0 550 625 575 645
Qwen3-1.7B+3B 825 60.0 450 475 500 570
Qwen3-0.6B+8B  80.0 725 475 525 475 600
Qwen3-0.6B+3B 775 55.0 275 350 325 455

This suggests that stronger models can better verify
reasoning steps, while evaluating deeper recursive
beliefs is inherently more challenging.

Impact of PBM Quality on Task Accuracy. We
further test how the quality of the PBM affects
end-task performance. Specifically, we run BoN
inference-time scaling on the Hi-ToM dataset us-
ing different base models, guided either by a
strong PBM (Llama3.1-8B-Instruct) or a weaker
one (Llama3.2-3B-Instruct). As shown in Table 5,
replacing the strong PBM with a weaker one con-
sistently reduces accuracy across all base models
and belief orders. This establishes a clear link be-

tween verifier quality and final task performance: a
stronger PBM leads to better inference-time scaling
outcomes.

Qualitative Analysis of PBM Behavior. To better

understand when PBM succeeds or fails, we exam-

ine its behavior on reasoning traces. Below are two
steps predicted by the Llama3.2-3B-Instruct PBM.

Scenario: Initially, everyone knows that the as-
paragus is in the blue_cupboard. At the current
moment, Charlotte and Elizabeth are present in
the room, while Alexander has just left. Charlotte
holds a second-order belief about Alexander’s be-
lief regarding Elizabeth.

Step n:

* Action: Elizabeth likes the red_box.

o State: Irrelevant. Charlotte thinks Alexan-
der thinks Elizabeth thinks the asparagus is in
blue_cupboard.

* Prediction: + Ground Truth: +

* Annotation: This step is correct. The statement
is unrelated to the asparagus; no beliefs update.
PBM correctly captures this invariance.

Step n+1:

e Action: Elizabeth moved the asparagus to
the green_bucket.

* State: Only Elizabeth and Charlotte are present
when this happens. Charlotte sees this move.
Charlotte thinks Alexander thinks Elizabeth
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Table 6: API price per 1M tokens.

Model Input Cached Input Output  Total
opt-4.1 $2.00 $0.50 $8.00  $10.50
gpt-4.1-mini ~ $0.40 $0.10 $1.60  $2.10
gpt-4o $2.50 $1.25 $10.00  $13.75
gpt-do-mini  $0.15 $0.075 $0.60  $0.825
thinks the asparagus is in green_bucket.

* Prediction: + Ground Truth: —

* Annotation: This step is incorrect. Since

Alexander is not present, he cannot observe Eliza-

beth’s action. Therefore, his beliefs (as perceived

by Charlotte) should not change. PBM overgen-

eralizes belief update based on partial presence.

This example shows that while PBM handles
simple irrelevant statements, it can fail on nested,
perspective-sensitive updates, revealing a key chal-
lenge in verifying multi-agent reasoning.

4.5 Discussion

Cost Efficiency for API-based Usage. As shown
in Table 1, applying PBM narrows the gap between
small and large models: gpt-4.1-mini approaches
gpt-4.1, while gpt-4o-mini gains +18.5 points, sur-
passing gpt-4o0. Despite sampling N=4 outputs,
mini models remain more cost-efficient, with per-
million-token costs of only 2.10 and 0.825 com-
pared to 10.50 and 13.75 for the larger models
(Table 6). Furthermore, because all N samples
share the same input prompt, the input cost is paid
only once, and only the output tokens scale with
N. This makes PBM-guided small-batch inference-
time scaling a cheaper alternative to using larger
models.

Scaling with Model Size. Figure 4 shows how
ToM accuracy changes with model size. PBM con-
sistently improves performance and strengthens the
scaling trend. For Llama 3.2, the accuracy curve
becomes steeper when equipped with PBM, sug-
gesting that larger models benefit more and gen-
eralize better under our inference-time interven-
tion. Interestingly, Qwen3-8B performs worse than
Qwen3-4B under the vanilla setting, but becomes
the best-performing variant once PBM is applied.
This indicates that PBM not only boosts accuracy
but can also unlock higher-order reasoning abilities
that remain latent in the base model.

Comparison with RL-based Methods. Recent
work (Lu et al., 2025) has explored fine-tuning
LLMs with ToM supervision using GRPO (Shao
et al., 2024) to enhance their ToM abilities. How-

Scaling Trend

I
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>80 e
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570
(S}
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S P
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z -e- Qwen3 (+PBM)
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Figure 4: Scaling trend of average accuracy before and
after applying PBM across different LLMs on Hi-ToM.
“Ori” denotes baseline accuracy; “+PBM” denotes accu-
racy with inference-time scaling.

ever, GRPO requires substantial compute and is
notoriously difficult to optimize. In contrast, our
PBM is lightweight and efficient: it trains in un-
der three hours on a single GH200 GPU and can
be applied to any target model without retraining.
GRPO must be re-trained for each model and may
even degrade performance on unrelated tasks such
as GSMS8K (Lu et al., 2025). Our method avoids
this issue entirely by leaving model parameters
unchanged. PBM thus offers a practical, general-
izable, and non-invasive alternative for improving
ToM reasoning.

5 Related Work

DEL and Its Connections to ToM. DEL builds
on a line of work in epistemic logic, tracing back
to Hintikka’s possible-world model of knowledge
and belief (Hintikka, 1962) and Kripke’s formal se-
mantics (Kripke, 1963), and later evolving through
studies on information change (Baltag et al., 1998).
It was later formalized as a unified framework
of epistemic and event models with product up-
dates (Van Ditmarsch et al., 2007) for representing
and updating agents’ beliefs. This aligns naturally
with the core of ToM, which concerns reasoning
about others’ beliefs. Early cognitive models used
DEL to simulate belief change in multi-agent set-
tings (Bolander and Andersen, 2011), showing its
suitability for structured belief reasoning. More
recent work uses logic-based simulators to supply
symbolic supervision for belief updates (Bolander,
2014; Hansen and Bolander, 2020). Building on
this line, we use DEL not only as a formalism for
modeling beliefs but also as a scaffold for inference-
time scaling, enabling compositional and verifiable
reasoning in ToM tasks.
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Inference-Time Scaling of LL.Ms. Recent work
investigates inference-time scaling as an alternative
to increasing model size for improving reasoning
capabilities (Beeching et al., 2024; Muennighoff
et al., 2025). Two main paradigms have been stud-
ied. One is single-trace scaling, which encourages
deeper reasoning within a single inference path,
often via reinforcement learning (Guo et al., 2025a;
Cheng et al., 2025) or distillation from a stronger
teacher (Li et al., 2025). The other is multi-trace
scaling (Brown et al., 2024; Snell et al., 2025; Scha-
effer et al., 2025), which generates multiple reason-
ing traces in parallel and selects the best outcome
using voting (Wang et al., 2023, 2025) or external
verifiers (Wang et al., 2024; Sun et al., 2024; Guo
et al., 2025b; Saad-Falcon et al., 2025). Recent
work further combines multi-trace generation with
search algorithms such as tree search and beam
search to refine reasoning step by step (Zhang et al.,
2024; Lin et al., 2025). Our approach follows the
multi-trace paradigm and introduces PBM-guided
selection, extending inference-time scaling to ToM
tasks.

6 Conclusion

This work introduces DEL-ToM, a framework
that enhances Theory-of-Mind (ToM) reasoning
in LLMs through inference-time scaling. By
modeling belief updates with Dynamic Epistemic
Logic (DEL) and training a verifier using DEL-
generated labels, our approach enables structured
and verifiable dynamic logical reasoning. DEL-
ToM improves ToM performance across models
and datasets, demonstrating that logical reason-
ing can be strengthened through formal logic
and inference-time supervision. This opens new
avenues for deploying ToM-capable LLMs in
resource-constrained settings without retraining.

Limitation

Our approach depends on accurate belief supervi-
sion from a formal-logic-based simulator. Such
supervision may not generalize to all types of rea-
soning or real-world language use. Additionally,
beam search is less effective for models with weak
instruction-following capabilities, limiting their
practical deployment. Future work could explore
more efficient trace selection methods and extend
our approach to broader domains beyond ToM.
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Appendix
A Prompt Templates

The full prompt templates are shown in Figures 5,
6, and 7.

B What Makes PBM Different from
Majority Voting?

Here, we provide a analysis to compare PBM with
majority voting.

Problem Setup and Notation. Given an input z,
the language model 7y must perform K sequential
belief-updating steps, generating a trajectory

zi ~mp(- | x, 2<).

('Zlysz"‘?zK)v

After the trajectory is complete, it outputs a final an-

swer ¥, chosen from a set of L candidates (typically

L =~ 5—6 in HiToM). We assume:

* Each step is independently correct with probabil-
ity q.

* A trajectory is Good if all K steps are correct:
Pr[Good] = ¢¥.

» Otherwise, it is Bad: Pr[Bad] = 1 — ¢*.

Majority Voting. We sample NV i.i.d. trajectories

and return the most frequent final answer. Let:

» G ~ Binomial(N, ¢®): number of Good trajec-
tories.

* R = N — (G: number of Bad trajectories.

Under the uniform scattering assumption, Bad

votes are evenly spread over L — 1 wrong answers:

| : : 1 1 q

B, | R ~ Binomial [ R, ———

J ’ 1.‘/ - 1 ’
j= 1,...,L—1.

Majority Voting succeeds iff

Emaj = {G >1land G > maXB]}
J

PBM Reranking. We sample N trajectories and
assign each a stepwise score:

K

s(z) = e Z 1{z, correct}.

k=1

Good trajectories receive score 1, and Bad trajecto-
ries score at most 1 — % We select the trajectory
with the highest score. PBM thus succeeds iff

Epom = {G > 1}

PBM Success Rate. By independence:
Appm = Pr(Eppm) =1 — (1 — N,
Majority Voting Success Rate. We have
Amaj = Pr(Emyj) < Pr(G > 1)
=1-(1-¢")" = Appm.

Hence, PBM always outperforms majority voting.
Remarks. For majority voting, divide both sides of
G > max; B; by N and take the limit as N — oo.
By the law of large numbers:

1—qK
L-1"

G K man Bj
- =
N 9 N

A necessary condition for success is therefore:

1—g¥k 1

K K

> =4 > —.
L—-1 ¢ L

If ¢ < % (typical for small models or hard ToM
question), then

lim Apg = 0.
N—oco
In conclusion, majority voting is vulnerable to vote
dilution: if ¢% < % Bad trajectories cluster on
wrong answers and can dominate.
This analysis explains why PBM offers more
reliable inference than majority voting, especially

in complex ToM settings.
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Here is a story that unfolds in chronological order.

You will be asked a question about the story, which may involve either:
(1) Locating an object, or
(2) Inferring an agent's mental state (e.g., what A thinks B thinks C thinks).

To solve it, think step-by-step. At each step, repeat the current line from
the story, then explain its effect on beliefs. Use [Null] if someone does
not yet have knowledge. If a belief chain cannot be formed (e.g., some
agent exited too early), freeze belief at the last available step.

<Note>
{note}

In public or private communication:
- The speaker believes the listener will believe the claim.
- If the listener exited the room earlier than the speaker, they will believe

it.
If the question is zero-order (e.g., "Where is X really?"), then in each step,
only track the actual location of the object (e.g., "X is in [Y]"). You do

not need to track nested beliefs.

Here is an example:

<Story>

1 Amelia, Chloe, Liam, Owen and Benjamin entered the TV_room.

2 The celery is in the red_envelope.

3 Amelia made no movements and stayed in the TV_room for 1 minute.

4 Chloe lost his watch.

5 Amelia exited the TV_room.

6 Chloe moved the celery to the green_bucket.

7 Chloe exited the TV_room.

8 Liam moved the celery to the red_bathtub.

9 Liam exited the TV_room.

10 Owen made no movements and stayed in the TV_room for 1 minute.

11 Owen exited the TV_room.

12 Benjamin made no movements and stayed in the TV_room for 1 minute.
13 Benjamin exited the TV_room.

14 Amelia, Chloe, Liam, Owen and Benjamin entered the waiting_room.
15 Liam publicly claimed that celery is in the white_bathtub now.

16 Benjamin privately told Liam that the celery is in the blue_drawer now.

<Question>
Where does Owen think Liam thinks Chloe thinks the celery is?

<Trace>

## Step 1 ##

Amelia, Chloe, Liam, Owen and Benjamin entered the TV_room.
Everyone is present, but the celery's location is still unknown.
Owen thinks Liam thinks Chloe thinks the celery is in [Null]

## Step 2 ##

The celery is in the red_envelope.

Everyone observes this.

Owen thinks Liam thinks Chloe thinks the celery is in [red_envelopel

## Step 3 ##
Amelia made no movements and stayed in the TV_room for 1 minute.

No effect.
Owen thinks Liam thinks Chloe thinks the celery is in [red_envelope]

Figure 5: One-Shot Prompt - Part 1.
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## Step 4 ##

Chloe lost his watch.

Irrelevant.

Owen thinks Liam thinks Chloe thinks the celery is

## Step 5 ##

Amelia exited the TV_room.

Irrelevant.

Owen thinks Liam thinks Chloe thinks the celery is

## Step 6 ##

Chloe moved the celery to the green_bucket.

Only Chloe, Liam, Owen, Benjamin are present. They
Owen thinks Liam thinks Chloe thinks the celery is

## Step 7 ##

Chloe exited the TV_room.

Chloe's belief frozen; still [green_bucket]

Owen thinks Liam thinks Chloe thinks the celery is

## Step 8 ##
Liam moved the celery to the red_bathtub.

Only Liam, Owen, Benjamin present. They observe the move.

so her belief unchanged.
Owen thinks Liam thinks Chloe thinks the celery is

## Step 9 ##

Liam exited the TV_room.

No change.

Owen thinks Liam thinks Chloe thinks the celery is

## Step 10 ##

in [red_envelope]

in [red_envelope]

all see this move.

in [green_bucket]

in [green_bucket]

in [green_bucket]

in [green_bucket]

Owen made no movements and stayed in the TV_room for 1 minute.

Irrelevant.
Owen thinks Liam thinks Chloe thinks the celery is

## Step 11 ##

Owen exited the TV_room.

Owen's belief frozen.

Owen thinks Liam thinks Chloe thinks the celery is

## Step 12 ##

in [green_bucket]

in [green_bucket]

Benjamin made no movements and stayed in the TV_room for 1 minute.

Irrelevant.
Owen thinks Liam thinks Chloe thinks the celery is

## Step 13 ##

Benjamin exited the TV_room.

No change.

Owen thinks Liam thinks Chloe thinks the celery is

## Step 14 ##

Everyone entered the waiting_room.

No effect on beliefs.

Owen thinks Liam thinks Chloe thinks the celery is

in [green_bucket]

in [green_bucket]

in [green_bucket]

Figure 6: One-Shot Prompt - Part 2.
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Chloe not present,



## Step 15 ##

Liam publicly claimed that celery is in the white_bathtub now.

Owen hears this statement. However, public speech only affects first- and
second-order beliefs (e.g., what Liam believes, what Owen thinks Liam
believes, and what Liam thinks Owen believes). It does not change Owen's
belief about what Liam thinks Chloe thinks.

Owen thinks Liam thinks Chloe thinks the celery is in [green_bucket]

## Step 16 ##

Benjamin privately told Liam that the celery is in the blue_drawer now.

Owen does not hear this, but more importantly, private communication only
affects beliefs between the speaker and the listener. It can change what
Liam believes (based on exit order), or what Liam thinks Benjamin believes
(based on exit order), or what Benjamin thinks Liam believes (always change
) - but it cannot affect higher-order beliefs. So this does not change Owen
's belief about what Liam thinks Chloe thinks.

Owen thinks Liam thinks Chloe thinks the celery is in [green_bucket]
Final Answer: [green_bucket]
Now it's your turn.

<Story>
{story}

<Question>
{question}

Give a step-by-step trace as in the example. Then, give the final answer in
one line like:
Final Answer: [your choice]

<trace>

Figure 7: One-Shot Prompt - Part 3.
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