@inproceedings{li-etal-2025-towards-statistical,
title = "Towards Statistical Factuality Guarantee for Large Vision-Language Models",
author = "Li, Zhuohang and
Yan, Chao and
Jackson, Nicholas J and
Cui, Wendi and
Li, Bo and
Zhang, Jiaxin and
Malin, Bradley A.",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.576/",
pages = "11446--11467",
ISBN = "979-8-89176-332-6",
abstract = "Advancements in Large Vision-Language Models (LVLMs) have demonstrated impressive performance in image-conditioned text generation; however, hallucinated outputs{--}text that misaligns with the visual input{--}pose a major barrier to their use in safety-critical applications. We introduce ConfLVLM, a conformal-prediction-based framework that achieves finite-sample distribution-free statistical guarantees to the factuality of LVLM output. Taking each generated detail as a hypothesis, ConfLVLM statistically tests factuality via efficient heuristic uncertainty measures to filter out unreliable claims. We conduct extensive experiments covering three representative application domains: general scene understanding, medical radiology report generation, and document understanding. Remarkably, ConfLVLM reduces the error rate of claims generated by LLaVa-1.5 for scene descriptions from 87.8{\%} to 10.0{\%} by filtering out erroneous claims with a 95.3{\%} true positive rate. Our results further show that ConfLVLM is highly flexible, and can be applied to any black-box LVLMs paired with any uncertainty measure for any image-conditioned free-form text generation task while providing a rigorous guarantee on controlling hallucination risk."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2025-towards-statistical">
<titleInfo>
<title>Towards Statistical Factuality Guarantee for Large Vision-Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhuohang</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chao</namePart>
<namePart type="family">Yan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nicholas</namePart>
<namePart type="given">J</namePart>
<namePart type="family">Jackson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wendi</namePart>
<namePart type="family">Cui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bo</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiaxin</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bradley</namePart>
<namePart type="given">A</namePart>
<namePart type="family">Malin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Advancements in Large Vision-Language Models (LVLMs) have demonstrated impressive performance in image-conditioned text generation; however, hallucinated outputs–text that misaligns with the visual input–pose a major barrier to their use in safety-critical applications. We introduce ConfLVLM, a conformal-prediction-based framework that achieves finite-sample distribution-free statistical guarantees to the factuality of LVLM output. Taking each generated detail as a hypothesis, ConfLVLM statistically tests factuality via efficient heuristic uncertainty measures to filter out unreliable claims. We conduct extensive experiments covering three representative application domains: general scene understanding, medical radiology report generation, and document understanding. Remarkably, ConfLVLM reduces the error rate of claims generated by LLaVa-1.5 for scene descriptions from 87.8% to 10.0% by filtering out erroneous claims with a 95.3% true positive rate. Our results further show that ConfLVLM is highly flexible, and can be applied to any black-box LVLMs paired with any uncertainty measure for any image-conditioned free-form text generation task while providing a rigorous guarantee on controlling hallucination risk.</abstract>
<identifier type="citekey">li-etal-2025-towards-statistical</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.576/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>11446</start>
<end>11467</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards Statistical Factuality Guarantee for Large Vision-Language Models
%A Li, Zhuohang
%A Yan, Chao
%A Jackson, Nicholas J.
%A Cui, Wendi
%A Li, Bo
%A Zhang, Jiaxin
%A Malin, Bradley A.
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F li-etal-2025-towards-statistical
%X Advancements in Large Vision-Language Models (LVLMs) have demonstrated impressive performance in image-conditioned text generation; however, hallucinated outputs–text that misaligns with the visual input–pose a major barrier to their use in safety-critical applications. We introduce ConfLVLM, a conformal-prediction-based framework that achieves finite-sample distribution-free statistical guarantees to the factuality of LVLM output. Taking each generated detail as a hypothesis, ConfLVLM statistically tests factuality via efficient heuristic uncertainty measures to filter out unreliable claims. We conduct extensive experiments covering three representative application domains: general scene understanding, medical radiology report generation, and document understanding. Remarkably, ConfLVLM reduces the error rate of claims generated by LLaVa-1.5 for scene descriptions from 87.8% to 10.0% by filtering out erroneous claims with a 95.3% true positive rate. Our results further show that ConfLVLM is highly flexible, and can be applied to any black-box LVLMs paired with any uncertainty measure for any image-conditioned free-form text generation task while providing a rigorous guarantee on controlling hallucination risk.
%U https://aclanthology.org/2025.emnlp-main.576/
%P 11446-11467
Markdown (Informal)
[Towards Statistical Factuality Guarantee for Large Vision-Language Models](https://aclanthology.org/2025.emnlp-main.576/) (Li et al., EMNLP 2025)
ACL