@inproceedings{li-etal-2025-commit,
title = "{C}o{MMIT}: Coordinated Multimodal Instruction Tuning",
author = "Li, Xintong and
Wu, Junda and
Yu, Tong and
Wang, Rui and
Wang, Yu and
Chen, Xiang and
Gu, Jiuxiang and
Yao, Lina and
McAuley, Julian and
Shang, Jingbo",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.582/",
pages = "11533--11547",
ISBN = "979-8-89176-332-6",
abstract = "Instruction tuning in multimodal large language models (MLLMs) generally involves cooperative learning between a backbone LLM and a feature encoder of non-text input modalities. The major challenge is how to efficiently find the synergy between the two modules so that LLMs can adapt their reasoning abilities to downstream tasks while feature encoders can adjust to provide more task-specific information about its modality. In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives, where we find the unbalanced learning between the feature encoder and the LLM can cause problems of oscillation and biased learning that lead to sub-optimal convergence. Inspired by our findings, we propose a Multimodal Balance Coefficient that enables quantitative measurement of the balance of learning. Based on this, we further design a dynamic learning scheduler that better coordinates the learning between the LLM and feature encoder, alleviating the problems of oscillation and biased learning. In addition, we introduce an auxiliary regularization on the gradient to promote updating with larger step sizes, which potentially allows for a more accurate estimation of the proposed MultiModal Balance Coefficient and further improves the training sufficiency. Our proposed approach is agnostic to the architecture of LLM and feature encoder, so it can be generically integrated with various MLLMs. We conduct experiments on multiple downstream tasks with various MLLMs, demonstrating that the proposed method is more effective than the baselines in MLLM instruction tuning."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2025-commit">
<titleInfo>
<title>CoMMIT: Coordinated Multimodal Instruction Tuning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xintong</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junda</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tong</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rui</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiang</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiuxiang</namePart>
<namePart type="family">Gu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lina</namePart>
<namePart type="family">Yao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julian</namePart>
<namePart type="family">McAuley</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jingbo</namePart>
<namePart type="family">Shang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Instruction tuning in multimodal large language models (MLLMs) generally involves cooperative learning between a backbone LLM and a feature encoder of non-text input modalities. The major challenge is how to efficiently find the synergy between the two modules so that LLMs can adapt their reasoning abilities to downstream tasks while feature encoders can adjust to provide more task-specific information about its modality. In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives, where we find the unbalanced learning between the feature encoder and the LLM can cause problems of oscillation and biased learning that lead to sub-optimal convergence. Inspired by our findings, we propose a Multimodal Balance Coefficient that enables quantitative measurement of the balance of learning. Based on this, we further design a dynamic learning scheduler that better coordinates the learning between the LLM and feature encoder, alleviating the problems of oscillation and biased learning. In addition, we introduce an auxiliary regularization on the gradient to promote updating with larger step sizes, which potentially allows for a more accurate estimation of the proposed MultiModal Balance Coefficient and further improves the training sufficiency. Our proposed approach is agnostic to the architecture of LLM and feature encoder, so it can be generically integrated with various MLLMs. We conduct experiments on multiple downstream tasks with various MLLMs, demonstrating that the proposed method is more effective than the baselines in MLLM instruction tuning.</abstract>
<identifier type="citekey">li-etal-2025-commit</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.582/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>11533</start>
<end>11547</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CoMMIT: Coordinated Multimodal Instruction Tuning
%A Li, Xintong
%A Wu, Junda
%A Yu, Tong
%A Wang, Rui
%A Wang, Yu
%A Chen, Xiang
%A Gu, Jiuxiang
%A Yao, Lina
%A McAuley, Julian
%A Shang, Jingbo
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F li-etal-2025-commit
%X Instruction tuning in multimodal large language models (MLLMs) generally involves cooperative learning between a backbone LLM and a feature encoder of non-text input modalities. The major challenge is how to efficiently find the synergy between the two modules so that LLMs can adapt their reasoning abilities to downstream tasks while feature encoders can adjust to provide more task-specific information about its modality. In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives, where we find the unbalanced learning between the feature encoder and the LLM can cause problems of oscillation and biased learning that lead to sub-optimal convergence. Inspired by our findings, we propose a Multimodal Balance Coefficient that enables quantitative measurement of the balance of learning. Based on this, we further design a dynamic learning scheduler that better coordinates the learning between the LLM and feature encoder, alleviating the problems of oscillation and biased learning. In addition, we introduce an auxiliary regularization on the gradient to promote updating with larger step sizes, which potentially allows for a more accurate estimation of the proposed MultiModal Balance Coefficient and further improves the training sufficiency. Our proposed approach is agnostic to the architecture of LLM and feature encoder, so it can be generically integrated with various MLLMs. We conduct experiments on multiple downstream tasks with various MLLMs, demonstrating that the proposed method is more effective than the baselines in MLLM instruction tuning.
%U https://aclanthology.org/2025.emnlp-main.582/
%P 11533-11547
Markdown (Informal)
[CoMMIT: Coordinated Multimodal Instruction Tuning](https://aclanthology.org/2025.emnlp-main.582/) (Li et al., EMNLP 2025)
ACL
- Xintong Li, Junda Wu, Tong Yu, Rui Wang, Yu Wang, Xiang Chen, Jiuxiang Gu, Lina Yao, Julian McAuley, and Jingbo Shang. 2025. CoMMIT: Coordinated Multimodal Instruction Tuning. In Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 11533–11547, Suzhou, China. Association for Computational Linguistics.