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Abstract

Large language models (LLMs) have shown
promise in automating travel planning, yet
they often fall short in addressing nuanced spa-
tiotemporal rationality. While existing bench-
marks focus on basic plan validity, they neglect
critical aspects such as route efficiency, POI ap-
peal, and real-time adaptability. This paper in-
troduces TP-RAG1, the first benchmark tailored
for retrieval-augmented, spatiotemporal-aware
travel planning. Our dataset includes 2,348 real-
world travel queries, 85,575 fine-grained anno-
tated POIs, and 18,784 high-quality travel tra-
jectory references sourced from online tourist
documents, enabling dynamic and context-
aware planning. Through extensive experi-
ments, we reveal that integrating reference
trajectories significantly improves spatial ef-
ficiency and POI rationality of the travel plan,
while challenges persist in universality and
robustness due to conflicting references and
noisy data. To address these issues, we pro-
pose EvoRAG, an evolutionary framework that
potently synergizes diverse retrieved trajecto-
ries with LLMs’ intrinsic reasoning. EvoRAG
achieves state-of-the-art performance, improv-
ing spatiotemporal compliance and reducing
commonsense violation compared to ground-
up and retrieval-augmented baselines. Our
work underscores the potential of hybridizing
Web knowledge with LLM-driven optimization,
paving the way for more reliable and adaptive
travel planning agents.

1 Introduction

Emerging studies have explored the potential of
LLMs to serve as travel agents capable of interpret-
ing natural language inquiries, and autonomously
generating travel plans that comprise daily tourist
activities detailed with various Points of Interest
(POIs) (Wong et al., 2023). Despite their promise,
existing works (Xie et al., 2024; Singh et al., 2024;

1Our dataset and code are available at https://github.
com/usail-hkust/TP-RAG.

Figure 1: TP-RAG distinguishes itself from existing
works by: (1) query-specific spatiotemporal contextual-
ization and (2) trajectory-level knowledge utilization.

Hao et al., 2024) focus primarily on whether the
plans meet basic commonsense requirements (e.g.,
complete information, actual POIs), while over-
looking the nuanced spatiotemporal rationality that
is critical for practicality, such as spatiotempo-
ral coherence (e.g., transit efficiency and sched-
ule comfort), POI attractiveness (i.e., scenic spots
with local cultural characteristics and high popu-
larity), and temporal adaptability (i.e., capturing
time-evolving POI information, such as seasonal
closures and altered opening hours). These over-
sights may result in flawed plans with inefficient
routes, exhausting journeys, unappealing POIs, or
limited flexibility. Therefore, this study investi-
gates the capabilities of LLM agents in travel plan-
ning while emphasizing spatiotemporal awareness.

Contemporary research primarily focuses on
benchmarking the abilities of LLM agents in travel
planning (Xie et al., 2024; Singh et al., 2024) or ex-
ploring sophisticated strategies to enhance planning
effectiveness (Tang et al., 2024; Xie and Zou, 2024).
However, these studies rely exclusively on the POI-
level knowledge, i.e., the metadata of the candidate
POIs, and agents’ internal reasoning capabilities to
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construct travel plans from scratch. This ground-up
approach faces inherent limitations stemming from
insufficient spatiotemporal reasoning (Manvi et al.,
2024; Li et al., 2024; Chu et al., 2024) and the gen-
eration of hallucinated or outdated content (Huang
et al., 2025; Gao et al., 2023), which restrict the
spatiotemporal coherence of the produced travel
plans. Notably, beyond POI-level knowledge, the
Web offers a wealth of up-to-date travel documents
that encapsulate real-life experience and collective
wisdom into practical tourist trajectories, i.e., the
sequences of POIs interconnected by spatiotempo-
ral logic, which are neglected by current studies. To
address this gap, advances in Retrieval-augmented
Generation (RAG) approaches (Fan et al., 2024)
can enable LLM agents to integrate such trajectory-
level knowledge represented in Web documents,
which provide substantial spatiotemporal-aware in-
sights for travel planning.

In this paper, we introduce a new travel plan-
ning benchmark, TP-RAG, to investigate whether
retrieval-augmented LLM agents can effectively
leverage trajectory-level knowledge to produce spa-
tiotemporally coherent travel plans. Our bench-
mark comprises a dataset grounded in the real-
world search engine, featuring high-quality data
sources. It is designed to develop and evaluate
LLM agents in generating spatiotemporal coherent
travel plans, adhering to user queries and utiliz-
ing relevant POI and trajectory information. Since
privacy concerns, in our dataset, we enclose the ver-
balized trajectories extracted from the newest Web
documents instead of using full document content.
Totally, our dataset includes 2,348 travel queries,
85,575 geotagged POIs and 18,784 tourist trajec-
tory references. Unlike prior datasets, our dataset
incorporates query-customized latest spatiotempo-
ral attributes into POI information, enabling time-
adaptive and spatiotemporal-aware planning. In
addition, the inclusion of tourist trajectories encour-
ages retrieval-augmented LLM agents to employ
the vast repository of Web knowledge for plan en-
hancements. The comparison between TP-RAG
and existing benchmarks is illustrated in Figure 1.

Based on our benchmark, we evaluate various
LLM-based travel planning methods. The results
reveal notable limitations of advanced LLM agents
which are constrained by internal knowledge, while
highlighting promising prospects for the utiliza-
tion of Web-based tourist trajectories in spatiotem-
poral travel planning. Our in-depth analysis fur-
ther uncovers concerns regarding the universality

and robustness of retrieval-augmented travel plan-
ning approaches. To address these issues, we pro-
pose EvoRAG, a LLM-based evolutionary frame-
work that iteratively optimizes travel plans through
population-based selection, crossover and muta-
tion of varied trajectory knowledge. It effectively
blends the merits of divergent retrieved knowledge
and agents’ intrinsic planning capacity, while alle-
viating the impact of noisy information, the superi-
ority of which is demonstrated by our experiments.

Our main contributions are three-fold: (1)
TP-RAG, the first travel planning benchmark
for trajectory-level retrieval-augmented and
spatiotemporal-aware travel planning, using
around 1 billion GPT-4o tokens for dataset
construction. (2) Extensive experiments (i.e.,
over 5,000 A800 GPU hours) with various
travel planning methods in different evaluation
dimensions, showcasing both the opportunities
and challenges of incorporating trajectory-level
knowledge. (3) A simple yet effective method,
EvoRAG, that further counters the limitations of
retrieval-augmented travel planning.

2 Related Work

2.1 Benchmarks of LLM-based Travel
Planning

To assess the capabilities of LLM agents in com-
plex and realistic planning tasks, recent bench-
marks have proliferated in travel planning, which
stands out as a significant domain. One line of
research, into which our study falls, delves into
the LLM-centric travel planning (Xie et al., 2024;
Singh et al., 2024; Zhang et al., 2024; Chaudhuri
et al., 2025). For example, TravelPlanner (Xie et al.,
2024) investigates long-horizon travel planning in
multi-constraint scenarios. Beyond relying solely
on LLMs, another line of benchmarks examine hy-
brid approaches that leverage LLMs for natural lan-
guage interpretation paired with symbolic solvers
to ensure solution validity through formal verifica-
tion (Hao et al., 2024; de la Rosa et al., 2024; Shao
et al., 2024). Despite progress, these benchmarks
fail to incorporate sufficient fine-grained spatiotem-
poral contexts into planning, and are confined to
agents’ internal reasoning processes, which hinder
the real-world deployment.

2.2 LLM Agent for Travel Planning

Large Language Model (LLM) agents have demon-
strated remarkable effectiveness across a wide
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range of applications (Liu et al., 2025a,b). Among
these, travel planning remains an intricate prob-
lem involving intent comprehension, information
seeking, and long-horizon planning. To automate
this task, current research on LLM travel agents
bifurcates into two paradigms: LLM-driven and
hybrid. LLM-driven approaches seek to enhance
LLM agents’ intrinsic planning capacities via ad-
vanced techniques, such as multi-agent collabo-
ration which achieves coordination among LLM
specialists (Xie and Zou, 2024; Zhang et al., 2025)
and LLM-based optimization that iteratively refines
the quality of travel schedules (Yuan et al., 2024;
Lee et al., 2025). In contrast, hybrid approaches
tackle LLM agents’ limitations through the inte-
gration of computational planning modules, such
as route optimizers (Tang et al., 2024), heuristic
POI selection algorithms (Chen et al., 2024a), and
symbolic solvers (Ju et al., 2024).

2.3 Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) systems
have emerged as pivotal solutions for enhancing
LLMs with external knowledge (Fan et al., 2024;
Li et al., 2025). Recent research efforts have
been devoted to building reliable benchmarks to
evaluate RAG performance, emphasizing two as-
sessment aspects: retrieval efficacy (e.g., rele-
vance, utility) (Lyu et al., 2025; Saad-Falcon et al.,
2024) and generation quality (e.g., accuracy, coher-
ence) (Chen et al., 2024b; Qi et al., 2024b), with
our study concentrating on the latter. Beyond open-
domain scenarios, while some studies have demon-
strated success in specific domains such as medical,
legal and financial fields (Xiong et al., 2024; Pipi-
tone and Alami, 2024; Wang et al., 2024), travel
applications remain nascent, restricted in POI-level
tasks such as question-answering (QA) (Song et al.,
2024; Yu et al., 2025) and city or POI recommenda-
tion (Banerjee et al., 2024; Qi et al., 2024a). And
there is a lack of benchmarks for travel planning
tasks that require real-time knowledge integration
and multi-objective resolution.

3 TP-RAG

3.1 Background

We focus on generating single-city, multi-day travel
plan consisting of attraction POIs, with some criti-
cal definitions delineated below:
Query. A travel query q is articulated by the user
in natural language, and comprises significant ele-

ments such as the city name, travel duration, and
personalized travel constraints.
Point of Interest (POI). A Point of Interest (POI)
p = (pn, ps, pt, pd) refers to a specific location that
holds significance or interest for travelers. Its at-
tributes include the POI name pn, spatial details
ps (e.g., address, geocoordinates), temporal refer-
ences pt (e.g., opening hours, recommended visit
time, expected visit duration), and POI’s semantic
description pd. The candidate POIs dependent on
the query q are defined as P q = {pqi }

|P q |
i=1 .

Trajectory. A tourist trajectory is extracted from
the retrieved travel-related Web document, and
is denoted as t = (pn,1, pn,2, ..., pn,|t|) consisting
only POI names. The trajectories relevant to the
query q are defined as T q = {tqi }

|T q |
i=1 .

Problem 1. Travel Planning. Given a
user query q, query-dependent POI candidates
P q = {pqi }

|P q |
i=1 , and query-relevant trajecto-

ries T q = {tqi }
|T q |
i=1 , the travel plan I =

[(pqn,1, ts,1, te,1), ..., (p
q
n,|I|, ts,|I|, te,|I|)] is derived

by LLM agents via I = A(q, P q, T q), where ts and
te denote the scheduled start and end times of the
POI visit, respectively.

3.2 Dataset Construction

As illustrated in Figure 2, the construction pipeline
of our dataset comprises the following steps: (1)
query generation; (2) POI collection; (3) trajec-
tory collection; culminating in a (4) quality control
procedure, which are detailed below.
Query Generation. Unlike previous works that
rely on simulated queries, we sample the latest re-
alistic queries from the data sessions in the Baidu
search engine2, one of China’s largest search en-
gines. These queries are characterized by their
conciseness, effectively expressing users’ tourist
needs through brief statements, such as ’plan a
3-day trip to Beijing’.

Based on the collected seed queries, we curate
the LLM to establish a standard for query formu-
lation, which is identified by several fundamental
elements: (1) city name, (2) travel duration, and (3)
personal constraints that reflect user preferences.
For the destination city, we select the most pop-
ular cities in China, given their wealth of tourist
resources and public travel narratives. Regarding
travel duration, we divide our queries into short-,
medium- and long-term categories based on the

2https://www.baidu.com
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Figure 2: Dataset construction pipeline.

number of travel days. Depending on the presence
of personalized constraints, our queries can also
be categorized into generic and personal types. To
ensure the diversity of personal queries, we fur-
ther classify them by constraint types, encompass-
ing seasonal preferences, holiday-specific require-
ments, POI category restrictions, traveler demo-
graphics, and trip compactness parameters. Refer
to Appendix A.1 for more details of the query data.
This formulation systematically tests LLM agent’s
capabilities in handling different user focuses and
planning horizons. In accordance with the stan-
dard, we engage the LLM to generate a practical
and extensive query dataset.
POI Collection. To gather candidate attraction
POIs and their associated spatiotemporal attributes
for each query, we resort to LLMs augmented by
search engines. Initially, we exploit a query rewrit-
ing strategy (Ma et al., 2023), whereby the LLM
reformulates the original queries into POI-level sub-
queries tailored for attraction recommendations.
The Baidu search engine is then utilized to retrieve
pertinent documents for each sub-query. Given
that the documents generally contain a lot of irrel-
evant snippets, we apply the LLM to extract POI
information exactly from each document.

Furthermore, to annotate fine-grained spatiotem-
poral information and contextual semantics for the
extracted POIs, we combine two processes: (1)
Spatial Tagging: We leverage the Baidu Map plat-
form3 to enrich POIs with comprehensive spatial in-
formation including addresses and geocoordinates
(i.e., latitude and longitude). This process also fa-

3https://lbsyun.baidu.com/

cilitates the standardization of POIs into unified
names, thereby preventing noisy and hallucinated
POIs. (2) Temporal and Semantic Tagging: For
each query-POI pair (e.g., Plan a spring trip in Bei-
jing - the Great Wall), we create query-tailored POI
inquiries (e.g., What’s the recommended travel time
period of the Great Wall in spring?) to search for
related documents about this POI, representing the
real-time needs (e.g., Spring trip). Subsequently,
the retrieval-augmented LLM is employed to sum-
marize nuanced temporal and semantic insights,
entailing opening hours, recommended visit times,
expected visit durations, and semantic POI descrip-
tions of the POIs, which foster agents’ awareness of
spatiotemporal coherence and POI distinctiveness
in travel planning.

Trajectory Collection. To collect the trajectory-
level knowledge, we first retrieve up-to-date doc-
uments that pertain to real-life travel experiences
relevant to the given query. In order to address user
privacy concerns, full documents are not disclosed
in our dataset. Instead, we implement a LLM-
based desensitization process that distills tourist
trajectories from the original lengthy documents.
Specifically, we prompt LLMs to directly extract
the sequence of POIs from the document and filter
private and irrelevant information, which avoids
altering the original trajectory. To maintain the
integrity of the data, we also instruct the LLM to
refrain from answering if the document lacks plau-
sible trajectory-level information. Additionally, to
emulate the retrieval noise commonly encountered
in real-world scenarios, we retain the disturbances
present within these trajectories. As outlined in
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the quality control stage below, we also prepare
a denoised version of trajectory data for further
in-depth analysis in Section 4.3.
Quality Control. To ensure the quality of the
generated dataset, we employ a dual-evaluation
approach involving both LLMs and human eval-
uators to systematically review and refine all
query–POI–trajectory data instances. The process
begins with LLM-based verification, where mod-
els are prompted to identify and correct factual
inaccuracies and noisy information according to
predefined criteria, such as (1) whether the POIs
and trajectories align with the query; (2) whether
POI information is correct and non-repetitive;(3)
whether the trajectory is logically complete and
free of redundant POIs. Subsequently, crowd-
sourced annotators perform additional validation
by cross-checking both the original instances and
the LLM-refined records. This human evaluation is
supplemented with edge-case analysis and iterative
discussions between the authors and annotators to
resolve ambiguities and ensure consistency. Fur-
thermore, data instances lacking sufficient trajec-
tory references are automatically filtered out. This
comprehensive validation protocol ensures the re-
liability and feasibility of our retrieval-augmented
spatiotemporal travel planning framework.

In conclusion, our dataset consists of 2,348 travel
queries, including 115 generic queries and 2,233
personal queries. This dataset is associated with
85,575 attraction POIs (averaging 36.45 POIs per
request) derived from 5,018 unique attractions, and
18,784 retrieved trajectories (averaging 8 trajecto-
ries per request). Throughout the data construction
process, we utilize GPT-4o (OpenAI, 2024), and
the prompts are presented in Appendix E.1.

3.3 Evaluation
Beyond commonsense constraints, our evaluation
system illuminates the nuanced aspects concerning
spatiotemporal rationality and the semantic promi-
nence of POIs. Unlike TripCraft (Chaudhuri et al.,
2025), we conceptualize spatiotemporal travel plan-
ning as a complex problem without unique optimal
solutions, challenging the reliability of annotating
ideal plans. Following existing works (Tang et al.,
2024), our evaluation system integrates rule-based
metrics alongside LLM-as-a-Judge techniques, em-
phasizing five critical evaluation dimensions: com-
monsense, spatial, temporal, POI semantic and
query relevance. This approach effectively circum-
vents costly annotations and mitigates evaluation

biases, with metric descriptions provided below.
Commonsense. Commonsense metrics measure
whether the generated plan adheres to basic valid-
ity standards, including: (1) Failure Rate (FR): the
percentage of legitimate POIs without hallucina-
tion; (2)Repetition Rate (RR): the frequency of POI
repetition within the plan.
Spatial. The spatial metric evaluates the route
efficiency of the plan. Specifically, we use Distance
Margin Ratio (DMR) to quantify the distance gap
from the theoretically optimal route.
Temporal. Temporal metrics assess the rationality
of the scheduled visit periods of POIs, which em-
brace (1) Start Time Rationality (STR): whether the
arranged arrival time for POI visit is appropriate;
(2) Duration Underflow Ratio (DUR): the extent
to which the planned visit duration meets expecta-
tions; (3) Time Buffer Ratio (TBR): the proportion
of buffer time available throughout the plan, indi-
cating the degree of tourist comfort.
POI Semantic. The semantic metric examines pop-
ularity and distinctiveness of the selected POIs. In
particular, we design a POI Popularity (PP) met-
ric to measure the recall rate within the retrieved
attraction leaderboard.
Query Relevance. The relevance metrics focus on
whether the user demands specified in the queries
(e.g., time-sensitive desires) are fulfilled, concern-
ing two aspects: (1) POI Relevance (PR): the align-
ment between planned POIs and the user query; (2)
Time Schedule Relevance (TSR): the pertinence of
the arranged POI visit period and personal needs.

We apply LLM-as-a-Judge for STR, PR and
TSR, while the others are automatic metrics. In
Appendix B, we further elaborate details about the
metrics, and validate that LLM evaluators aligns
with humans well. To provide a more transpar-
ent depiction of the overall effectiveness, we sup-
plement five rank-based metrics: RS , RT , RP ,
RR and RC , which respectively denote the per-
formance rank of methods from spatial, temporal,
POI semantic and query relevance dimensions, and
a comprehensive view averaging all aspects.

4 Experiment

4.1 Baselines

Travel Planning Methods. We evaluate two cat-
egories of travel agents: (1) Ground-up Travel
Agents which include Direct, Chain of Thought
(CoT) (Wei et al., 2022), Reflexion (Shinn et al.,
2023) and two multi-agent frameworks: Multi-
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Table 1: Main results (%) of different methods on our dataset. The best strategies are marked in bold, while the
second-best ones are underlined.

Method FR↓ RR↓ DMR↓ DUR↓ TBR↑ STR↑ PP↑ PR↑ TSR↑ RS ↓ RT ↓ RP ↓ RR ↓ RC ↓
GPT-4o

Direct 0.32 0.00 67.92 3.03 22.01 77.22 50.82 80.51 92.52 6.00 7.67 7.00 3.00 5.92
CoT 0.39 0.01 69.4 2.78 22.13 76.96 50.09 79.92 91.99 8.00 8.00 10.00 6.50 8.12
Reflextion 0.67 0.34 73.35 3.84 21.46 77.3 50.52 80.34 92.71 10.00 8.67 8.00 3.50 7.54
MAC 1.40 0.72 66.11 3.67 24.07 75.41 46.38 81.76 89.04 3.00 7.00 11.00 6.00 6.75
MAD 0.68 0.07 74.95 3.68 20.67 77.14 50.52 79.53 92.4 11.00 9.67 8.00 6.50 8.79
RAG(M=8) 2.05 0.01 68.37 2.57 23.82 77.19 58.00 80.55 91.58 7.00 4.67 2.00 5.00 4.67
RAG(M=4) 2.08 0.02 67.75 2.55 23.71 77.35 56.11 80.53 91.67 5.00 3.67 4.00 4.50 4.29
RAG(M=1) 2.43 0.04 66.05 2.47 22.59 77.44 53.38 80.1 91.5 2.00 4.00 6.00 8.50 5.12
RAG+Extr.(M=4) 1.91 0.02 66.99 2.41 23.5 77.87 56.82 80.31 91.69 4.00 2.00 3.00 6.00 3.75
RAG+Extr.(M=1) 2.72 0.06 65.76 2.42 22.95 77.79 53.85 80.39 91.64 1.00 3.00 5.00 6.00 3.75
RAG+Abst. 3.20 0.02 69.49 2.64 22.23 76.66 59.15 79.36 90.67 9.00 7.67 1.00 10.50 7.04

Qwen2.5-72B-Instruct
Direct 0.38 0.03 71.67 6.49 24.82 78.33 48.53 79.68 92.86 8.00 5.00 8.00 9.00 7.50
CoT 0.42 0.04 70.51 6.64 24.66 78.77 47.09 80.12 93.16 7.00 5.33 10.00 8.00 7.58
Reflextion 2.39 1.62 85.38 8.08 25.37 77.54 49.15 79.65 92.14 10.00 7.67 7.00 10.00 8.67
MAC 1.10 2.21 70.08 5.74 23.65 76.48 43.3 81.28 90.00 6.00 7.33 11.00 6.50 7.71
MAD 3.30 1.49 87.47 9.46 26.53 77.75 47.49 80.23 91.21 11.00 7.00 9.00 9.00 9.00
RAG(M=8) 3.41 0.11 69.39 6.35 23.48 78.4 55.15 81.67 93.29 5.00 6.00 2.00 3.00 4.00
RAG(M=4) 3.15 0.11 68.77 6.54 24.06 79.08 53.62 81.26 93.86 3.00 5.00 4.00 2.00 3.50
RAG(M=1) 2.58 0.09 68.07 6.89 25.27 78.48 51.62 81.07 93.4 1.00 5.33 6.00 4.50 4.21
RAG+Extr.(M=4) 3.46 0.16 69.03 6.49 24.33 79.03 54.79 81.21 93.81 4.00 4.33 3.00 3.00 3.58
RAG+Extr.(M=1) 3.16 0.20 68.29 6.73 25.59 78.33 52.36 80.92 93.42 2.00 5.00 5.00 4.50 4.12
RAG+Abst. 3.78 0.17 72.4 7.32 25.11 78.04 56.14 80.5 93.29 9.00 7.33 1.00 6.00 5.83

DeepSeek-R1
Direct 0.55 0.01 68.78 3.07 22.94 76.68 50.27 80.68 91.7 7.00 4.67 7.00 6.50 6.29
RAG(M=8) 2.31 0.03 65.31 3.94 23.30 77.21 53.87 82.47 92.66 1.00 3.00 2.00 2.00 2.00
RAG(M=4) 1.62 0.03 66.76 3.78 23.37 76.95 53.02 82.00 92.45 5.00 2.67 4.00 4.00 3.92
RAG(M=1) 1.23 0.04 66.42 3.73 22.97 77.37 51.82 81.54 92.89 3.00 3.00 6.00 3.50 3.88
RAG+Extr.(M=4) 2.00 0.03 66.45 4.04 23.28 76.94 53.69 82.00 92.66 4.00 4.33 3.00 2.50 3.46
RAG+Extr.(M=1) 1.25 0.03 66.19 3.76 23.23 76.94 51.95 81.66 93.02 2.00 3.67 5.00 2.50 3.29
RAG+Abst. 2.04 0.02 67.57 4.96 23.16 76.63 54.28 80.5 92.6 6.00 6.33 1.00 6.00 4.83

Agent Collaboration (MAC) which applies a
divide-and-conquer solution (Zhang et al., 2025),
and Multi-Agent Debate (MAD) that facilitates
a discussion session for plan refinement (Ni
et al., 2024); (2) Retrieval-augmented Travel
Agents implemented by the RAG strategy utilizing
trajectory-level knowledge. RAG(M=m) denotes
the retrieval-augmented method using m trajecto-
ries. To test agents’ capabilities for explicit context
utilization, we consider two simple post-retrieval
techniques (Xu et al., 2024): extractive compres-
sion method RAG+Extr.(M=m) and abstractive
compression method RAG+Abst., which intention-
ally purify the retrieved content for enhancements.

Base Models. The core of agent-based planning
methods lies in the LLM. Therefore, we evaluate
various advanced LLMs including GPT-4o (Ope-
nAI, 2024), Qwen2.5-72B-Instruct (Yang et al.,
2024), LLaMA3.3-70B-Instruct (AI, 2024), as well
as DeepSeek-R1 (Guo et al., 2025). More details
of the baselines and evaluation setups are provided
in Appendix C.1.

4.2 Main Results

In this section, we discuss the performances of
various methods and models on our benchmark as
presented in Table 1. Due to the space limit, we
leave the results on LLaMA3.3 in Appendix C.2.
Our critical observations summarized below:
Advanced LLM agents struggle with spatiotem-
poral travel planning. Cutting-edge strategies
(i.e., CoT, Reflexion and multi-agent techniques)
underperform direct prompting in holistic ranking
RC , revealing complex task decomposition or an-
swer reflection can lead to error accumulation and
degeneration of spatiotemporal reasoning.
Trajectory knowledge holds potential for en-
hanced travel planning. According to RC ,
retrieval-augmented planning methods generally
outperform ground-up ones, highlighting the value
of trajectory knowledge. The performance gain pri-
marily stems from spatial and POI semantic dimen-
sions, while some models (e.g., GPT-4o) exhibit
slight declines in temporal and relevance aspects,
which can be attributed to agents’ limited capacity

12409



to resolve confusing and verbose contexts.
Sophisticated methods compromise agents’ com-
mmonsense awareness. A notable increase
of inaccessible or repetitive POIs is observed
within both advanced LLM agents and retrieval-
augmented ones, suggesting that overly complex
methods tend to perplex LLM agents since long-
context and complicated inputs.
Reasoning-optimized LLMs are not as desired
in travel planning. Despite architectural advances,
specialized reasoning models like Deepseek-R1 fail
to show a remarkable advantage over other foun-
dational models in spatiotemporal travel planning,
even lagging in the temporal dimension.
Retrieval-augmented planning methods lack sta-
bility. Knowledge richness and post-processing
techniques show inconsistent benefits across differ-
ent base models, indicating context sensitivity. We
leave the in-depth analysis in Section 4.3.
Performances in distinct metrics are inconsis-
tent. No single solution dominates all evaluation
dimensions. Trade-offs between different metrics
are commonly observed in most cases, illustrating
the complexity of our multi-objective spatiotempo-
ral travel planning task.

Refer to Appendix C.3 for results on sub-datasets
across various query categories, which generally
align with our full-scale experiments in Table 1.

4.3 In-depth Analysis
In this section, we conduct a thorough exami-
nation of retrieval-augmented methods in terms
of universality, planning mechanisms and robust-
ness. We implement our analysis experiments us-
ing Qwen2.5-72B-Instruct as an example.

(a) Similarity by trajectory
position.

(b) Similarity by trajectory sim-
ilarity rank.

Figure 3: Similarities between plans and trajectories.

Universality Analysis. To explore whether the
retrieved knowledge is always necessary, we calcu-
late the win rates of retrieval-augmented methods
compared to the Direct baseline, achieving an aver-
age of 87.41% across seven spatiotemporal metrics.
This demonstrates that trajectory references are not
universally efficacious, as evidenced by a 12.59%

failure gap. Refer to Appendix C.4 for the detailed
statistics of win rates.
Utilization Analysis. To delve into how LLM
agents utilize trajectory knowledge, we employ the
similarity σ(I, t) between the plan I generated by
RAG(M=8) and each associated trajectory t, as a
proxy indicating the extent of LLMs’ utilization
of the trajectory. Specifically, the similarity func-
tion σ(I, t) = β · σPOI(I, t) + (1− β) · σorder(I, t)
implies the extent of utilization for each trajectory.
σPOI denotes the Jaccard similarity of the POIs con-
tained in the plan and trajectory, while σorder is the
Kendall Tau coefficient between the ranks of com-
mon POIs in the plan and trajectory. β controls
the balance between similarities of POI sets and
POI order. Figure 3a unravels the similarities be-
tween the plan and trajectories at different positions
within the prompt context, indicating a preference
for information at the beginning, which is more
relevant to the travel query. When we reorder the
distribution by descending reference similarity, the
results in Figure 3b elucidate that LLM agents tend
to selectively use several references rather than as-
similate all trajectories.

(a) Kendall Tau coefficients. (b) Jaccard coefficients.

Figure 4: Correlation analysis.

Furthermore, to probe why retrieval-augmented
methods have positive effects, we analyze the ordi-
nal correlations among three variables: (1) extent of
utilization for the trajectory (i.e., similarity σ), (2)
quality of the trajectory, (3) query relevance of the
trajectory. To represent the "quality" variable of the
methods, we use POI semantic metric as a proxy
since it shows the greatest improvements accord-
ing to Table 1, which facilitates exploration into
the mechanisms behind the superiority of retrieval-
augmented methods. Figure 4a reveals a signifi-
cant consistency between similarities and quality,
demonstrating LLM agents’ abilities to identify
high-quality knowledge for travel planning beyond
query relevance.

Besides, we contrast implicit and explicit ex-
tractive utilization methods (i.e., RAG(M=8) and
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Figure 5: The sensitivity analysis of retrieval-augmented
methods with different retrieval quantity, based on noisy
and clean trajectory knowledge.

RAG+Extr.(M=4)) in Figure 4b. Since the explicit
extractive method RAG + Extr. (M=4)) directly de-
termines the selected trajectory references, where
the utilization indicator like similarity is inacces-
sible. Thus we select the top-4 trajectory set ac-
cording to the ranks of three variables: similarity
(i.e., the extent of trajectory utilization for the im-
plicit method RAG(M=8)), trajectory quality, and
trajectory relevance, so as to contrast them with the
set extracted by RAG + Extr. (M=4)). We discern
that these two extractive ways are distinct in refer-
ence utilization with only 0.51 Jaccard consistency,
while the implicit method gains a slight edge in
quality alignment (i.e., 0.54 versus 0.47).

Figure 6: The workflow of EvoRAG.

Sensitivity Analysis. To investigate the sensitivity
of retrieval-augmented planning methods with re-
spect to the quantity and quality of retrieval data,
we test retrieval-augmented strategies with varying
number of trajectory references, and compare the
results of using noisy and denoised trajectories (as
mentioned in Section 3.2). The analysis results in
Figure 5 depict that the RC performance reaches
its peak by integrating 6 or 7 trajectories. Reduc-
ing the volume of knowledge (i.e., M < 6) leads
to a significant decline in efficacy, uncovering the
necessity of diverse reference knowledge, and con-
firming the non-uniqueness of the travel planning
problem. Conversely, excessive knowledge (i.e.,

M = 8) also undermines the effectiveness, result-
ing in difficulties assimilating diverging references
and filtering out low-quality insights, despite their
relevance to user queries. Moreover, the perfor-
mance comparison between noisy and clean (i.e.,
denoised) trajectories highlights the negative im-
pact of the POI noise on the spatiotemporal validity,
particularly for post-processing methods.

Takeaways. (1) LLM agents effectively enhance the
spatiotemporal rationality of travel planning aided by
retrieved trajectories. (2) LLM agents utilize trajec-
tories extractively, in a manner that aligns with refer-
ence quality. (3) Retrieval-augmented agents face chal-
lenges in uniformly promoting spatiotemporal travel
planning across all queries and evaluation metrics, and
robustly integrating conflicting and noisy references.

5 EvoRAG

Method. To address the aforementioned issues,
we propose EvoRAG, a knowledge-evolution opti-
mization framework, as illustrated in Figure 6. It
includes three procedures: (1) knowledge-driven
initialization; (2) reflective evaluation; and (3) syn-
ergistic evolution. Based on initialization, the plans
are iteratively optimized by alternating cycles of
evaluation and evolution. We elaborate the algo-
rithmic workflow EvoRAG in Algorithm 1.
(1) Knowledge-Driven Initialization. To incorpo-
rate divergent retrievable knowledge, we curate
LLM agents to generate initial plans, individually
based on |T | tourist trajectories. These plans are
independent and poised for evolutionary optimiza-
tion, bypassing the deficiencies of LLM agents in
assimilating discordant references. Additionally,
we include an initial plan derived solely from LLM
agents’ intrinsic knowledge (implemented by the
Direct baseline) to counter the limited universality
of retrieval-augmented methods.
(2) Reflective Evaluation. In each iteration, to en-
sure that LLM agents can comprehend the optimiza-
tion objectives, we evaluate the quality of plans
across various metrics (detailed in Section 3.3). To
further facilitate LLM agents in discerning how
to improve solutions, we encourage them to delib-
erately analyze the evaluation results of different
plans and reflect on their strengths and weaknesses.
This self-aware reflection process is managed by
a memory module, which is iteratively updated to
maintain the expertise of LLM agents learned from
optimization and evaluation experiences.
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Algorithm 1: The workflow of EvoRAG.
Input: query q, POI candidates P q , trajectories T q; LLM agents Ap, Ar, A

mo
u , Acm

u respectively for plan initialization,
evaluation reflection, mutation-only plan updating and crossover-mutation plan updating, evaluation function E ;
maximum number of optimization iterations G, mutation-only ratio α;

Output: The optimal plan I∗.
Initialize population I0 = {I(0,i)}|T

q|
i=0 via I(0,0) = Ap(q, P

q), I(0,i) = {Ap(q, P
q, tqi )}, i = 1, 2, ..., |T q|;

Initialize planning reflection memory R0;
Initialize g ← 0;
while g < G do

1. Evaluate and rank the plans Eg = [(Io(g,i), e(g,i))]
|Tq|
i=0 = E({I(g,i)}|T

q|
i=0 ) in the descending order of efficacy,

where e denotes the evaluation details;
2. Reflect about the evaluation results and update the memory Rg+1 = Ar(Rg, Eg);
3. Perform mutation for the top α proportion of population and generate
Ig+1,a = {I(g+1,i))}α·|Tq|

i=0 = Amo
u (q, P q, Rg+1, [(I

o
(g,i), e(g,i))]

α·|Tq|
i=0 );

4. Perform crossover and mutation for population and generate
Ig+1,b = {I(g+1,i))}(1−α)·|Tq|

i=0 = Acm
u (q, P q, Rg+1, Eg);

5. Ig+1 = Union(Ig+1,a, Ig+1,b);
6. g = g + 1;

end
Evaluate and rank the plans EG = [(Io(G,i), e(G,i))]

|Tq|
i=0 = E({I(G,i)}|T

q|
i=0 ) in the descending order of efficacy;

Evaluate and rank the best plans from all the iterations E∗ = [(s∗i , e
∗
i )]

G
i=0 = E({Io(i,0)}Gi=0);

return I∗ = I∗0 .

(3) Synergistic Evolution. Based on evaluation
feedback and reflective memory, the best α pro-
portion of plans are retained for optimization by
LLM agents, termed elite mutation. Furthermore,
to unify the advantages of trajectory knowledge
from distinct perspectives, we selectively synthe-
size the plans (i.e., crossover), avoiding knowledge
isolation stemming from the separate initialization.
Specifically, we repeatedly select dissimilar plans
to perform crossover and mutation to ensure diver-
sity, until we obtain (|T |+ 1) solutions.

The framework enables the LLM agent to focus
on plan optimization utilizing multifarious exter-
nal and internal knowledge, while becoming more
robust to noisy and nonsensical information. The
prompts used are shown in Appendix E.4.

Figure 7: Comparison of EvoRAG and baselines.

Comparison Results. Based on Qwen2.5-72B-
Instruct model, EvoRAG generally surpasses both

ground-up and retrieval-augmented planning meth-
ods across almost all dimensions (except for query
relevance RR), as illustrated in Figure 7. EvoRAG
also achieves notable reductions in commonsense
failures with a 0.4% POI failure rate (FR) and a
0.06% POI repetition rate (RR), which are compa-
rable to the Direct baseline. The detailed setups
and complete experimental results are provided in
Appendix D. This further underscores the profi-
ciency of integrating trajectory-level knowledge
with LLM-based optimization, paving the way for
future advancements in LLM-driven travel agents.

6 Conclusion

This work investigates the role of online knowledge
in improving LLM agents for spatiotemporal travel
planning. We introduce TP-RAG, a benchmark
that integrates spatiotemporal POI characteristics
and trajectory-level Web knowledge. Experiments
across advanced LLMs demonstrate that retrieval-
augmented methods generally improve the fine-
grained quality of plans, but they are not univer-
sally effective or robust. Our proposed EvoRAG
framework counters these issues through evolution-
ary optimization, achieving state-of-the-art results
by balancing divergent knowledge. This sets the
stage for developing more powerful travel agents
with exceptional spatiotemporal awareness.
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Limitations

Planning Setup. The proposed TP-RAG aims to ex-
amine the capabilities of LLM agents in spatiotem-
poral travel planning by utilizing online knowledge.
Therefore, we specifically focus on attraction plan-
ning without the use of tools for agents. We believe
that our benchmark can be expanded to include
realistic planning scenarios encompassing meals,
accommodations, and transportation, and enabling
adaptive, tool-based information retrieval.
Query Scenario. Our dataset is limited to search
scenarios which feature concise user queries. To
address more complex queries, a viable approach
involves decomposing the query and sourcing rel-
evant online information for each segment, which
we plan to explore in future work.
Data Source. Our dataset is built using the Baidu
search engine, with a focus on sourcing documents
in Chinese. Though there may be some regional
biases due to limitations in Chinese cities, our con-
struction pipeline, backed by advanced search en-
gines, can be adapted for other regions globally.
This adaptability contributes to opportunities of
creating a more comprehensive dataset.
Evaluation. In our paper, we conceptualize spa-
tiotemporal travel planning as a multi-objective op-
timization problem. However, the intricate nature
of these objectives complicates the calculation of
Pareto fronts, which serve as the golden reference
plan for our task. Furthermore, the lack of reliable
ground truths precludes the consideration of fine-
tuning strategies related to RAG or post-retrieval
compression. Future research may focus on de-
veloping methods to annotate trustworthy ground
truths for this task, ensuring that evaluations are
free from multifaceted biases.
Baseline. Due to the challenges in collecting
ground-truth information, we have opted not to
consider training-based baseline methods in our
current work. Although exploring the potential of
training a travel agent is indeed valuable, devel-
oping a reliable specialist model for the complex
spatiotemporal travel planning methods is some-
thing we leave for future research.

Ethical Statement

Artifacts Licensing and Compliance.
(1) Used Artifacts. Our dataset is constructed
from publicly available content obtained via Baidu
Search and Baidu Map under their data usage poli-
cies. For proprietary data such as queries and web

documents, we have ensured compliance through
academic use authorization. Base LLM models
were accessed via HuggingFace under their respec-
tive licenses; GPT-4o was used under OpenAI’s
terms. Code resources such as the TSP solver are
used in accordance with their original licenses. All
artifacts are used strictly for research within per-
mitted scopes.
(2) Released Artifacts. Our data, aggregated from
Baidu and anonymized to prevent re-identification,
is released for non-commercial research under CC
BY-NC-SA 4.0. Any use beyond academic re-
search is prohibited.
Anonymization and Privacy Protection. Trajec-
tories and POI information are automatically ex-
tracted using LLMs to remove personal identifiers
and sensitive content. We further conduct man-
ual verification to ensure complete anonymization
and eliminate any offensive material. All released
data are securely processed and stripped of iden-
tifiable metadata, preventing any possibility of re-
identification.
Biases and Ethical Considerations. Despite these
efforts, we acknowledge that data collection and
processing methods may introduce biases, particu-
larly concerning the representativeness of marginal-
ized or vulnerable populations. Users are cautioned
that the dataset should only be used in research and
experimental settings, with careful consideration
of these limitations and potential ethical risks.
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A Dataset Details

In this section, we present further details of our
dataset. It is noteworthy that our original dataset
was developed in Chinese based on the Baidu
search engine, and we will also provide an English
version of all queries, POI data, and trajectories to
facilitate global research.

Query Category Constraint Category #Query
Generic - 115

Personal

Season 425
Holiday 608
POI Category 634
Traveler Category 451
Trip Compactness 115
Total 2233

Total - 2348

Table 2: Query distribution according to constraints.

A.1 Query Data

We select the most popular Chinese travel cities
to construct our query dataset. In specific, we re-
fer to Sohu Travel 2022’s rankings, and select the
top 30 cities in mainland China. Below is the city
list: Chongqing, Wuhan, Sanya, Luoyang, Bei-
jing, Nanjing, Shanghai, Xi’an, Qingdao, Guiyang,
Fuzhou, Xiamen, Hangzhou, Shaoxing, Guilin,
Jinan, Zhaoqing, Foshan, Chengdu, Changchun,
Suzhou, Rizhao, Yantai, Huangshan, Yangzhou,
Zhangjiajie, Guangzhou, Nanning, Jilin, Binzhou.

In Table 3, we detail the personalized constraints
according to their categories. And we report the
query data distribution in terms of the constraint
type In Table 2. To diversify the travel duration, we
generate queries specified with 3, 4, and 5 days.

A.2 POI and Trajectory Data

For each query, we retrieve 10, 5, 20 documents
for POI collection, real-time POI refinement, and
trajectory collection, respectively. We associate 8
valid trajectories for each query and abandon in-
stances that are insufficient in number. To emulate
the retrieval-augmented planning scenario for each
query independently, it is essential that the POIs
featured in the retrieved trajectory should be in-
cluded in the candidate set. Thus, we locate the
POIs that are newly present in the trajectories and
add them to the candidate POI set.

The construction of the overall dataset costs
around 1 billion GPT-4o tokens.

B Metric Details

In this section, we detail each evaluation metric as
follows:
• Failure Rate (FR): This metric quantifies the

number of attractions absent from the candidate
set, which may indicate hallucinations by the
LLM agents.

• Repetition Rate (RR): We measure the fre-
quency of POI repetition in plans to assess basic
commonsense awareness of the agents.

• Distance Margin Ratio (DMR): This metric
evaluates the margin ratio between the total dis-
tance required to transfer between attractions in
the generated plan and the optimal distance deter-
mined by the Traveling Salesman Problem (TSP)
solver4.

• Start Time Rationality (STR): It is essential to
determine whether the scheduled times for visit-
ing attractions are appropriate. Due to the lack
of uniform standard, we prompt LLMs to consult
POI-level temporal information and verify the
plausibility of scheduled arrival times by binary
judgment (i.e., yes or no), then calculating the
total acceptable rate.

• Duration Underflow Ratio (DUR): This met-
ric assesses how well the planned visit durations
align with the expected time spans for each at-
traction. We directly used the visiting duration
tags of POIs in our dataset, and then compute the
average duration underflow ratio.

• Time Buffer Ratio (TBR): Given that overly
tight schedules are generally inadvisable, this
metric evaluates the flexibility of plans by esti-
mating the proportion of buffer time available
between attractions throughout the plan.

• POI Popularity (PP): Popular attractions are
typically favored, thus, we curate LLMs to offer a
golden popularity ranking based on the retrieved
attraction leaderboard data. We then calculate the
top M recall, where M represents the number of
selected POIs in the plan.

• POI Relevance (PR): To check the alignment of
the delivered plans with the soft constraints in
personal queries, we nudge LLMs to judge the
matchness of each POI in a binary manner.

• Time Schedule Relevance (TSR): Similarly,
LLMs are elicited to gauge whether the time inter-
vals arranged for attractions are consistent with
the personalized requirements.

4https://github.com/fillipe-gsm/python-tsp
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Constraint Category Constraints
Season Spring, Summer, Autumn, Winter

Holiday
Spring Festival, Qingming Festival, Labor Day,
Gragon Boat Festival, Mid-Autumn Festival, National Day

POI Categoty
Natural Landscapes, Historical & Cultural Heritage, Leisure & Recreation Areas,
Art & Technology Hubs, City Sightseeing, Religious & Spiritual Sites

Traveler Category Senior, Single, Couple, Parent-child
Trip Compactness Special Forces-style

Table 3: Constraint taxonomy.

Dimension Metric Description

Commonsense
FR Legitimacy of POIs
RR Non-redundancy of POIs.

Spatial DMR Route efficiency.

Temporal
STR Rationality of arrival time.
DUR Rationality of visit duration.
TBR Comfort level of schedule.

POI Semantic PP POI popularity.

Query Relevance
PR POI relevance.
TSR Time schedule relevance.

Table 4: Metric taxonomy.

A summary of the proposed evaluation metrics is
presented in Table 4. The prompts for LLM-based
evaluation are showed in Appendix E.2. Moreover,
we conduct human evaluation to validate the profi-
ciency of LLM-based evaluation, provided with the
same instructions as those for LLMs. We randomly
sample 100 plans generated by GPT-4o, and test
the performance of Qwen2.5-72B-Instruct in evalu-
ating results across three LLM-based metrics: STR,
PR, and TSR. For each metric, we report three mea-
surements: (1) agreement rate between the judg-
ments of LLMs and humans; (2) Kendall Tau and
(3) Spearman coefficient of the method rankings
across all sampled queries. Table 5 demonstrates
the alignment between LLM and human evaluators
on our metrics.

Metric Agree. Rate Kendall Tau Spearman Coeff.
STR 93.70 60.24 66.61
PR 95.54 68.07 71.72

TSR 97.55 74.34 77.66

Table 5: The alignment performance between LLM and
human evalutors across three metrics (%).

C Experiments

C.1 Experimental Setup
In this section, we provide some details of our ex-
periments. For stability, we set the temperature as
0 for all base models. For the cases that agents

fail to generate a grammatically correct answer,
we retry several times until a success, because the
delivery failure is not considered in our evalua-
tion system. Since the strong reasoning ability of
DeepSeek-R1, we omit the implementation of com-
plex ground-up planning strategies (i.e., CoT, Re-
flextion, MAC, MAD) on the model. The prompts
designed for these baseline methods are presented
in Appendix E.3. To assess our baselines, we adopt
Qwen2.5-72B-Instruct as the LLM evaluator. Our
experiments are conducted on A800-80G GPUs,
totaling over 5,000 GPU hours (except for the GPT-
4o experiments, which were performed using Ope-
nAI’s APIs). Due to the high computational cost
and large number of experiments, we only con-
ducted a single run.

C.2 Results on LLaMA3.3-70B-Instruct

We present the experimental results implemented
by LLaMA3.3-70B-Instruct in Table 6, which are
generally consistent with the outcomes in Table 1.

C.3 Results on Different Query Categories

We report our benchmark results on separate query
data via radar charts, as illustrated in Figure 8,
Figure 9, Figure 10 and Figure 11. The analysis
reveals that retrieval-augmented strategies signif-
icantly outperform ground-up methods, such as
direct prompting, in most evaluation metrics. This
observation aligns with the findings of our full-
scale experiments detailed in Section 4.2.

C.4 Universality Analysis

We detail the statistics of win rates of retrieved-
augmented planning methods over the Direct
baseline in Table 8, which is implemented with
Qwen2.5-72B-Instruct model.

D Methodology

In this section, we elaborate the experimental de-
tails. For efficiency, we set G as 1. The evaluate
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Method FR↓ RR↓ DMR↓ DUR↓ TBR↑ STR↑ PP↑ PR↑ TSR↑ RS ↓ RT ↓ RP ↓ RR ↓ RC ↓
LLaMA3.3-70B-Instruct

Direct 0.67 0.01 90.55 7.41 24.14 77.07 46.27 79.75 89.32 8.00 4.67 7.00 7.50 6.79
CoT 0.97 0.01 86.45 7.77 24.76 78.10 45.52 80.31 87.97 7.00 4.33 10.00 6.00 6.83
Reflextion 1.37 0.22 94.71 8.19 26.40 76.73 45.73 80.28 89.96 10.00 7.00 9.00 2.00 7.00
MAC 3.55 3.73 97.68 9.61 31.46 75.47 42.11 79.98 88.38 11.00 7.67 11.00 7.00 9.17
MAD 1.37 0.16 91.77 7.81 26.42 76.26 46.27 79.05 90.14 9.00 7.00 7.00 6.00 7.25
RAG(M=8) 3.95 0.08 84.92 5.99 20.80 76.94 56.00 79.91 89.09 5.00 5.33 1.00 7.00 4.58
RAG(M=4) 2.81 0.07 83.67 6.10 21.02 76.77 53.60 79.99 89.68 4.00 6.33 4.00 3.00 4.33
RAG(M=1) 2.53 0.06 85.36 6.56 22.68 77.00 50.43 79.79 89.55 6.00 4.67 6.00 5.50 5.54
RAG+Extr.(M=4) 3.33 0.09 83.60 6.05 21.06 76.70 54.66 79.73 89.30 3.00 6.67 2.00 8.50 5.04
RAG+Extr.(M=1) 3.18 0.09 82.42 6.62 22.57 76.77 52.23 79.83 89.38 2.00 6.67 5.00 6.00 4.92
RAG+Abst. 3.97 0.22 81.96 6.60 22.91 76.86 54.44 79.36 89.42 1.00 5.33 3.00 7.50 4.21

Table 6: Main results (%) of LLaMA3.3-70B-Instruct on our dataset.

Method FR↓ RR↓ DMR↓ DUR↓ TBR↑ STR↑ PP↑ PR↑ TSR↑ RS ↓ RT ↓ RP ↓ RR ↓ RC ↓
Direct 0.38 0.03 71.67 6.49 24.82 78.33 48.53 79.68 92.86 9.00 5.67 9.00 9.50 8.29
CoT 0.42 0.04 70.51 6.64 24.66 78.77 47.09 80.12 93.16 8.00 6.33 11.00 8.50 8.46
Reflextion 2.39 1.62 85.38 8.08 25.37 77.54 49.15 79.65 92.14 11.00 8.67 8.00 11.00 9.67
MAC 1.10 2.21 70.08 5.74 23.65 76.48 43.3 81.28 90.00 7.00 8.00 12.00 7.50 8.62
MAD 3.30 1.49 87.47 9.46 26.53 77.75 47.49 80.23 91.21 12.00 8.00 10.00 10.00 10.00
RAG(M=8) 3.41 0.11 69.39 6.35 23.48 78.40 55.15 81.67 93.29 6.00 6.67 3.00 3.50 4.79
RAG(M=4) 3.15 0.11 68.77 6.54 24.06 79.08 53.62 81.26 93.86 4.00 5.67 5.00 2.50 4.29
RAG(M=1) 2.58 0.09 68.07 6.89 25.27 78.48 51.62 81.07 93.40 2.00 6.33 7.00 5.00 5.08
RAG+Extr.(M=4) 3.46 0.16 69.03 6.49 24.33 79.03 54.79 81.21 93.81 5.00 5.00 4.00 3.50 4.38
RAG+Extr.(M=1) 3.16 0.20 68.29 6.73 25.59 78.33 52.36 80.92 93.42 3.00 6.00 6.00 5.00 5.00
RAG+Abst. 3.78 0.17 72.40 7.32 25.11 78.04 56.14 80.50 93.29 10.00 8.33 2.00 6.50 6.71
EvoRAG 0.40 0.06 44.45 6.54 28.22 81.63 58.05 85.82 92.19 1.00 2.33 1.00 5.00 2.33

Table 7: Comparison between EvoRAG and baseline methods on our dataset implemented by Qwen2.5-72B-Instruct.

function E is implemented by our evaluation sys-
tem introduced in Section 3.3. And the complete
experiment results are exhibited in Table 7. Due to
the high computational cost and large number of
experiments, we only conducted a single run.

12418



Metric DMR DUR TBR STR PP PR TSR
Win Rate 80.96 83.30 81.37 87.69 91.35 89.57 97.67

Table 8: Win rate statistics of retrieval-augmented agents exceeding the Direct one, across various metrics.

(a) Generic. (b) Season. (c) Holiday.

(d) POI Category. (e) Traveler Category. (f) Trip Compactness.

Figure 8: Comparison between Direct and RAG strategies on query data with various categories, implemented by
GPT-4o.

(a) Generic. (b) Season. (c) Holiday.

(d) POI Category. (e) Traveler Category. (f) Trip Compactness.

Figure 9: Comparison between Direct and RAG strategies on query data with various categories, implemented by
Qwen2.5-72B-Instruct.

12419



(a) Generic. (b) Season. (c) Holiday.

(d) POI Category. (e) Traveler Category. (f) Trip Compactness.

Figure 10: Comparison between Direct and RAG strategies on query data with various categories, implemented by
LLaMA3.3-70B-Instruct.

(a) Generic. (b) Season. (c) Holiday.

(d) POI Category. (e) Traveler Category. (f) Trip Compactness.

Figure 11: Comparison between Direct and RAG strategies on query data with various categories, implemented by
DeepSeek-R1-671B.
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E Prompt Templates

E.1 Data Generation

Query Formulation

Based on the seed query examples, please create
a standard for query formulation, i.e., which
fundamental elements the query may include, as
well as which potential words can represent
these elements.

<SEED QUERIES>

Answer Format in JSON:
{"Element 1": ["Potential Word 1", "Potential
Word 2", . . . ], "Element 2": ["Potential Word
1", "Potential Word 2", . . . ], . . . }

Query Generation

Based on the selected popular cities, please
generate <NUMBER OF QUERIES> new natural
language queries, that adhere to the standard
of query formulation.

<POPULAR CITIES>

<QUERY FORMULATION>

Answer Format in JSON:
["Query 1", "Query 2", . . . ]

POI-level Query Rewriting

Based on the user query <QUERY>, please
generate <NUMBER OF SUB-QUERIES> sub-queries
that retain the meaning of the original query
while facilitate retrieving Web documents about
POI recommendations via the search engine. In
addition, the generated sub-queries must be
diverse.

Answer Format in JSON:
["Sub-query 1", "Sub-query 2", . . . ]

POI Extraction

Based on the following <NUMBER OF DOCUMENTS>
retrieved documents, please identify and
extract all related tourist attraction Points
of Interest (POIs).

Tourist Attraction POI Definition:
Tourist attraction POIs include natural scenic
areas, historical sites, cultural landmarks,
parks, museums, commercial streets, resorts,
theme parks, amusement parks, zoos and
botanical gardens, specialty malls, cinemas,
temples, palaces, etc..

POI Extraction Requirements:
1. Extraction: Use your knowledge and reasoning

abilities to identify and extract all tourist
attraction-related POIs from the documents.
2. Explanation: For each extracted POI, provide
a brief explanation of why it is considered a
tourist attraction POI.

Special Notes:
1. Ensure the extraction is thorough, and
avoid missing any potential POIs. Include
every tourist attraction POI mentioned in the
documents. Extract at least 10 and up to 30
POIs.
2. All POIs must come from the documents. Do
not fabricate any POIs. Specify the exact
source by referencing the relevant document
ID.
3. Do not extract streets, roads, public
facilities, broad geographic regions or city
names.
4. Each POI name should represent a single
tourist attraction. Avoid connecting multiple
POIs with a hyphen ("-") or extracting
duplicates or overlapping POIs.

<DOCUMENTS>

Answer Format in JSON:
[{"Extraction reason": "xxx", "Source":
["Document ID", . . . ], "POI name": "xxx"},
. . . ]

POI Inquiry Construction

Based on the user query <QUERY>, please
generate <NUMBER OF QUERIES> queries for
a specific attraction POI <POI>, that are
relevant to the original query while facilitate
retrieving real-time Web documents related to
this POI via the search engine. In addition,
the generated sub-queries must be diverse.

Answer Format in JSON:
["Query 1", "Query 2", . . . ]

Temporal and Semantic Tagging

Based on the retrieved documents, please
analyze several things for the POI <POI>: (1)
Opening Hours; (2) Recommended Visit Time; (3)
Expected Visit Duration; (4) POI Description
with Special Notes.

Requirements: 1. Provide intermediate analysis
and reasoning steps.
2. Opening hours should specify the specific
opening hours of the attraction in 24-hour
format, such as "9:00-14:00" or "0:00-24:00"
for all-day opening. Recommended visit time
should offer specific recommended arrival
times, also in 24-hour format. If there are
no time restrictions, indicate "Open All Day."
Expected visit duration should be in hours,
such as "3" and "4.5". Description must be
brief, not exceeding 50 words.
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<DOCUMENTS>

Answer Format in JSON:
{"Reasoning steps": "xxx", "Opening hours":
"xxx", "Recommended visit time": "xxx",
"Expected visit duration": "xxx", "POI
description": "xxx"}

Trajectory-level Query Rewriting

Based on the user query <QUERY>, please
generate <NUMBER OF SUB-QUERIES> sub-queries
that retain the meaning of the original query
while facilitate retrieving Web documents
about travel guides via the search engine. In
addition, the generated sub-queries must be
diverse.

Answer Format in JSON:
["Sub-query 1", "Sub-query 2", . . . ]

Trajectory Extraction

Based on the given document below, please
identify and extract the exact tourist
trajectory, which consists of attraction POIs
and is relevant to the user query <QUERY>.

Requirements:
1. Determine whether the given document
contains a clear travel route. If not, respond
with "None".
2. Organize the trajectory according to the
number of travel days, with subtitles like
"Day 1", "Day 2", and "Day 3". For each day,
the itinerary should not be empty, especially
the first and last day. If there are multiple
trajectories in the given plan, choose one
to extract and do not mix multiple solutions
together.
3. In each extracted trajectory, the tourist
attraction POIs and the order of visit
must strictly follow the document. Do not
hallucinate!
4. The attractions in the trajectory should be
answered using the standardized POI names from
the given POI reference list. If a POI is not
listed in the reference list, it should still
be included but with an special note.
5. Verify newly added attractions to ensure they
are genuine tourist attractions, excluding
non-POI items such as "return journey",
"flag-raising ceremony", "free time", etc..
6. Summarize additional information about the
attraction mentioned in the trajectory in a
remark section. If there is no additional
information, leave it blank. Do not extract
information from the POI reference list for
the remarks; it must be from the document.

<DOCUMENT>

<POI REFERENCE LIST>

Answer Format in JSON:
{"Day 1": [{"POI name": "xxx", "Whether in
the reference list": "xxx", "Remark": "xxx"},
. . . ], . . . } or {"None": "None}

POI Quality Control

Given the initial list of tourist attraction
POIs, please purify these POIs.

POI Purification Requirements:
1. Check whether the attraction POI is included
in the user-specified city <CITY>. If not,
please remove them.
2. Based on your understanding of these tourist
attraction POIs, recheck if they are all
indeed tourist attractions. If not, please
remove non-tourist attraction POIs such as
restaurants, hotels, specific leisure and
entertainment venues (arcades, spas, cinemas,
etc.).
3. Remove duplicate tourist attraction POIs,
keeping only one instance. For example,
if "Tiananmen" and "Tiananmen Square" both
appear, keep "Tiananmen". If "Wangfujing"
and "Wangfujing Street" both appear, keep
"Wangfujing". If "National Aquatics Center"
and "National Aquatics Center - North Entrance"
both appear, keep "National Aquatics Center".
4. Some POIs may have a hierarchical
relationship, such as "Summer Palace" and
"Kunming Lake". In such cases, only keep
"Summer Palace" and remove "Kunming Lake".
5. Filter the list from the initial tourist
attraction POI list, and refrain from
fabricating attractions.

<INITIAL POI LIST>

Please provide a textual explanation for the
discarded tourist attraction POIs and respond
in JSON format with the final processed list
of purified POIs.

Answer Format in JSON:
["POI name 1", "POI name 2", . . . ]

Trajectory Quality Control

There is a tourist trajectory with a lot
of noise (false scenic POIs, incomplete or
incorrect names of scenic POIs). Please denoise
the existing trajectory based on the standard
name list of POIs.

Requirements:
1. If the existing trajectory contains
non-attraction POIs that do not exist in
the standard name list, consider making
modifications or deletions:
(1) POI Modification: The names of POIs
in the existing planning may be incomplete,
non-standard, or inaccurate. Please find a
standard and accurate name from the standard
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name list as a replacement. For example, change
“Aosen Park” to “Olympic Forest Park”.
(2) POI Deletion: If there is no suitable
replacement in the standard name list, please
directly delete the POI from the current
trajectory.
2. Ensure that the names of POIs in the modified
trajectory are all in the standard name list.
Prohibit the addition of new unrelated scenic
POIs during the modification process.

<STANDARD POI INFORMATION>

<CURRENT TRAJECTORY>

Answer Format in JSON:
{"Day 1": [{"POI name": "xxx", "Remark": "xxx"},
. . . ], . . . }

E.2 Evaluation

Start Time Rationality (STR) Evaluation

Given the user query <QUERY>, associated
reference information, and the planned start
visit times for attraction POIs, evaluate
whether the arrival time is reasonable.
Requirements: 1. Judge whether the start visit
time falls into the opening hours.
2. Judge whether the start visit time conforms
to the recommended arrival time.
3. Answer "Appropriate" or "Inappropriate" for
each POI.
4. Do not omit any POI.

<REFERENCE TEMPORAL INFORMATION OF POIS>

<PLANNED START VISIT TIMES OF POIS>

Please give brief textual explanations of why
the time slots for the attractions that are
deemed inappropriate are not suitable, and
provide the final evaluated results.

Answer Format in JSON:
{"POI name 1": "xxx", "POI name 2": "xxx", . . . }

POI Relevance (PR) Evaluation

Given the user query <QUERY> and the planned
attraction POIs, evaluate whether the POI
satisfies the personalized demands in the
query. Answer "Satisfied" or "Unsatisfied" for
each POI. Do not omit any POI.

<PLANNED POIS>

Please give brief textual explanations for
POIs that are deemed unsatisfied, and provide
the final evaluated results.

Answer Format in JSON:
{"POI name 1": "xxx", "POI name 2": "xxx", . . . }

Time Scheduling (TSR) Evaluation

Given the user query <QUERY> and the planned
time slots of attraction POIs, evaluate
whether the scheduled time slot satisfies the
personalized demands in the query. Answer
"Satisfied" or "Unsatisfied" for each POI. Do
not omit any POI.

<PLANNED TIME SLOTS of POIS>

Please give brief textual explanations for
POIs’ time slots that are deemed unsatisfied,
and provide the final evaluated results.

Answer Format in JSON:
{"POI name 1": "xxx", "POI name 2": "xxx", . . . }

E.3 Baseline

Direct

Our task is to generate a travel plan based on
the query <QUERY> and associated POI references.

Basic Requirements:
1. Structure the article according to the
number of days, such as "Day 1", "Day 2", and
"Day 3". If the query does not specify the
number of days, use your knowledge and the
attractions list to deduce the duration of the
travel plan.
2. Plan the visit to attractions POI in
the order of scheduled visit times. Select
attractions only from the provided reference
list, and do not include attractions outside
the list.
3. Plan specific start and end times of visit
in 24-hour format for each POI. Ensure no
overlap in visit times for different POIs,
leave gaps between activities.

More Planning Requirements:
a. General Requirements:
1. Spatial: Consider the clustering of
attraction POIs based on their geographical
locations. Assign attraction POIs with close
geographical locations to the same day and
those with distant locations to different days.
Ensure attractions on the same day are not too
far apart.
2. Time:
(1) Each POI must be visited during its opening
hours. Prioritize the recommended start times
for attractions and ensure sufficient time for
each visit (based on the expected duration of
the attraction).
(2) In general, the total travel schedule for
each day should not be too tight, ensuring
the overall travel time is not too long, the
number of attractions visited is not too
large, and there is enough free time for meals,
accommodation, and transportation.
3. Attractions Semantics: In general,
prioritize popular and unique attractions that
reflect the city’s characteristics.
b. Personalized Requirements:
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1. If there are additional personalized
constraints in the query, understand and
summarize these requirements. When selecting
attractions and planning the plan, consider
these personalized constraints.
2. Some personalized requirements may conflict
with general requirements. In such cases,
prioritize the personalized requirements. For
example, if the query is "Special Forces-style
Tourist", the overall itinerary time, number
of attractions visited per day, free time,
duration of attraction visits, and start times
of visits may not have specific constraints,
allowing for a more compact itinerary. If
the query is related to specific demands
(e.g., "Natural Landscape Tourism", "Family
Travel", "Autumn Travel", "Chinese New Year
Travel", etc..), just choose the most popular
attractions that meet the query constraints.

<POI REFERENCE LIST>

Answer Format in JSON:
{"Day 1": [{"POI name": "xxx", "Start visit
time": "xxx", "End visit time": "xxx"}, . . . ],
. . . }, . . .

Chain of Thought (CoT)

Our task is to generate a travel plan based on
the query <QUERY> and associated POI references.

Basic Requirements:
1. Structure the article according to the
number of days, such as "Day 1", "Day 2", and
"Day 3". If the query does not specify the
number of days, use your knowledge and the
attractions list to deduce the duration of the
travel plan.
2. Plan the visit to attractions POI in
the order of scheduled visit times. Select
attractions only from the provided reference
list, and do not include attractions outside
the list.
3. Plan specific start and end times of visit
in 24-hour format for each POI. Ensure no
overlap in visit times for different POIs,
leave gaps between activities.

More Planning Requirements:
a. General Requirements:
1. Spatial: Consider the clustering of
attraction POIs based on their geographical
locations. Assign attraction POIs with close
geographical locations to the same day and
those with distant locations to different days.
Ensure attractions on the same day are not too
far apart.
2. Time:
(1) Each POI must be visited during its opening
hours. Prioritize the recommended start times
for attractions and ensure sufficient time for
each visit (based on the expected duration of
the attraction).
(2) In general, the total travel schedule for
each day should not be too tight, ensuring

the overall travel time is not too long, the
number of attractions visited is not too
large, and there is enough free time for meals,
accommodation, and transportation.
3. Attractions Semantics: In general,
prioritize popular and unique attractions that
reflect the city’s characteristics.
b. Personalized Requirements:
1. If there are additional personalized
constraints in the query, understand and
summarize these requirements. When selecting
attractions and planning the plan, consider
these personalized constraints.
2. Some personalized requirements may conflict
with general requirements. In such cases,
prioritize the personalized requirements. For
example, if the query is "Special Forces-style
Tourist", the overall itinerary time, number
of attractions visited per day, free time,
duration of attraction visits, and start times
of visits may not have specific constraints,
allowing for a more compact itinerary. If
the query is related to specific demands
(e.g., "Natural Landscape Tourism", "Family
Travel", "Autumn Travel", "Chinese New Year
Travel", etc..), just choose the most popular
attractions that meet the query constraints.

<POI REFERENCE LIST>

Please provide a step-by-step plan to solve
the problem, and then present the final plan.

Answer Format in JSON:
{"Day 1": [{"POI name": "xxx", "Start visit
time": "xxx", "End visit time": "xxx"}, . . . ],
. . . }, . . .

For plan initialization of Reflextion method, we
directly utilize the template of Direct.

Reflextion (Feedback)

Our task is to generate a travel plan based on
the query <QUERY> and associated POI references.

Planning Requirements:
a. General Requirements:
1. Spatial: Consider the clustering of
attraction POIs based on their geographical
locations. Assign attraction POIs with close
geographical locations to the same day and
those with distant locations to different days.
Ensure attractions on the same day are not too
far apart.
2. Time:
(1) Each POI must be visited during its opening
hours. Prioritize the recommended start times
for attractions and ensure sufficient time for
each visit (based on the expected duration of
the attraction).
(2) In general, the total travel schedule for
each day should not be too tight, ensuring
the overall travel time is not too long, the
number of attractions visited is not too
large, and there is enough free time for meals,
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accommodation, and transportation.
3. Attractions Semantics: In general,
prioritize popular and unique attractions that
reflect the city’s characteristics.
b. Personalized Requirements:
1. If there are additional personalized
constraints in the query, understand and
summarize these requirements. When selecting
attractions and planning the plan, consider
these personalized constraints.
2. Some personalized requirements may conflict
with general requirements. In such cases,
prioritize the personalized requirements. For
example, if the query is "Special Forces-style
Tourist", the overall itinerary time, number
of attractions visited per day, free time,
duration of attraction visits, and start times
of visits may not have specific constraints,
allowing for a more compact itinerary. If
the query is related to specific demands
(e.g., "Natural Landscape Tourism", "Family
Travel", "Autumn Travel", "Chinese New Year
Travel", etc..), just choose the most popular
attractions that meet the query constraints.

There is an initial plan in place, please
review whether this plan meets the requirements
for attraction planning and provide specific
feedback for modifications.

<POI REFERENCE LIST>

<INITIAL PLAN>

Reflextion (Refinement)

Our task is to generate a travel plan based on
the query <QUERY> and associated POI references.

Basic Requirements:
1. Structure the article according to the
number of days, such as "Day 1", "Day 2", and
"Day 3". If the query does not specify the
number of days, use your knowledge and the
attractions list to deduce the duration of the
travel plan.
2. Plan the visit to attractions POI in
the order of scheduled visit times. Select
attractions only from the provided reference
list, and do not include attractions outside
the list.
3. Plan specific start and end times of visit
in 24-hour format for each POI. Ensure no
overlap in visit times for different POIs,
leave gaps between activities.

More Planning Requirements:
a. General Requirements:
1. Spatial: Consider the clustering of
attraction POIs based on their geographical
locations. Assign attraction POIs with close
geographical locations to the same day and
those with distant locations to different days.
Ensure attractions on the same day are not too
far apart.
2. Time:

(1) Each POI must be visited during its opening
hours. Prioritize the recommended start times
for attractions and ensure sufficient time for
each visit (based on the expected duration of
the attraction).
(2) In general, the total travel schedule for
each day should not be too tight, ensuring
the overall travel time is not too long, the
number of attractions visited is not too
large, and there is enough free time for meals,
accommodation, and transportation.
3. Attractions Semantics: In general,
prioritize popular and unique attractions that
reflect the city’s characteristics.
b. Personalized Requirements:
1. If there are additional personalized
constraints in the query, understand and
summarize these requirements. When selecting
attractions and planning the plan, consider
these personalized constraints.
2. Some personalized requirements may conflict
with general requirements. In such cases,
prioritize the personalized requirements. For
example, if the query is "Special Forces-style
Tourist", the overall itinerary time, number
of attractions visited per day, free time,
duration of attraction visits, and start times
of visits may not have specific constraints,
allowing for a more compact itinerary. If
the query is related to specific demands
(e.g., "Natural Landscape Tourism", "Family
Travel", "Autumn Travel", "Chinese New Year
Travel", etc..), just choose the most popular
attractions that meet the query constraints.

There is an initial travel plan in place, as
well as feedback for modifications to the plan.
Please generate a revised plan in the same
format as the original plan.

<POI REFERENCE LIST>

<INITIAL PLAN>

<FEEDBACK>

Answer Format in JSON:
{"Day 1": [{"POI name": "xxx", "Start visit
time": "xxx", "End visit time": "xxx"}, . . . ],
. . . }

Multi-Agent Collaboration (MAC) applies a
divide-and-conquer paradigm. First, a manager
agent decomposes the planning problem into sev-
eral sub-problems. The executor agents strive to
address these sub-problems independently and the
sub-solutions are finally summarized by the man-
ager to directly answer the original question.
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Multi-Agent Collaboration (MAC) - Manager
Agent (Decomposition)

Our task is to generate a travel plan based on
the query <QUERY> and associated POI references.

Basic Requirements:
1. Structure the article according to the
number of days, such as "Day 1", "Day 2", and
"Day 3". If the query does not specify the
number of days, use your knowledge and the
attractions list to deduce the duration of the
travel plan.
2. Plan the visit to attractions POI in
the order of scheduled visit times. Select
attractions only from the provided reference
list, and do not include attractions outside
the list.
3. Plan specific start and end times of visit
in 24-hour format for each POI. Ensure no
overlap in visit times for different POIs,
leave gaps between activities.

More Planning Requirements:
a. General Requirements:
1. Spatial: Consider the clustering of
attraction POIs based on their geographical
locations. Assign attraction POIs with close
geographical locations to the same day and
those with distant locations to different days.
Ensure attractions on the same day are not too
far apart.
2. Time:
(1) Each POI must be visited during its opening
hours. Prioritize the recommended start times
for attractions and ensure sufficient time for
each visit (based on the expected duration of
the attraction).
(2) In general, the total travel schedule for
each day should not be too tight, ensuring
the overall travel time is not too long, the
number of attractions visited is not too
large, and there is enough free time for meals,
accommodation, and transportation.
3. Attractions Semantics: In general,
prioritize popular and unique attractions that
reflect the city’s characteristics.
b. Personalized Requirements:
1. If there are additional personalized
constraints in the query, understand and
summarize these requirements. When selecting
attractions and planning the plan, consider
these personalized constraints.
2. Some personalized requirements may conflict
with general requirements. In such cases,
prioritize the personalized requirements. For
example, if the query is "Special Forces-style
Tourist", the overall itinerary time, number
of attractions visited per day, free time,
duration of attraction visits, and start times
of visits may not have specific constraints,
allowing for a more compact itinerary. If
the query is related to specific demands
(e.g., "Natural Landscape Tourism", "Family
Travel", "Autumn Travel", "Chinese New Year
Travel", etc..), just choose the most popular
attractions that meet the query constraints.

Please do not directly answer this question,
but carefully consider how to break down the
problem and plan the execution sequence.
1. Break down the original planning problem
into several subproblems (up to four), and
detail the planning requirements for each
subproblem.
2. The names of the subproblems correspond to
the order of execution, with later subproblems
taking the outputs of the previous subproblems
as inputs.

Answer Format in JSON:
{"Sub-problem 1": {"Sub-problem description":
"xxx", "Planning requirements": ["xxx", "xxx",
. . . ]}, . . . }

Multi-Agent Collaboration (MAC) - Executor
Agent

Our task is to generate a travel plan based on
the query <QUERY> and associated POI references.

<POI REFERENCE LIST>

Please do not directly answer this question,
but carefully solve one sub-problem about it
as follows:
<SUB-PROBLEM INFORMATION>

The outputs of previous subproblem:
<PREVIOUS OUTPUTS>

Please answer according to the requirements of
the subproblem (answer in JSON format, keep it
brief, not exceeding 500 characters).

Multi-Agent Collaboration (MAC) - Manager
Agent (Summarization)

Our task is to generate a travel plan based on
the query <QUERY> and associated POI references.

Basic Requirements:
1. Structure the article according to the
number of days, such as "Day 1", "Day 2", and
"Day 3". If the query does not specify the
number of days, use your knowledge and the
attractions list to deduce the duration of the
travel plan.
2. Plan the visit to attractions POI in
the order of scheduled visit times. Select
attractions only from the provided reference
list, and do not include attractions outside
the list.
3. Plan specific start and end times of visit
in 24-hour format for each POI. Ensure no
overlap in visit times for different POIs,
leave gaps between activities.

More Planning Requirements:
a. General Requirements:
1. Spatial: Consider the clustering of
attraction POIs based on their geographical
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locations. Assign attraction POIs with close
geographical locations to the same day and
those with distant locations to different days.
Ensure attractions on the same day are not too
far apart.
2. Time:
(1) Each POI must be visited during its opening
hours. Prioritize the recommended start times
for attractions and ensure sufficient time for
each visit (based on the expected duration of
the attraction).
(2) In general, the total travel schedule for
each day should not be too tight, ensuring
the overall travel time is not too long, the
number of attractions visited is not too
large, and there is enough free time for meals,
accommodation, and transportation.
3. Attractions Semantics: In general,
prioritize popular and unique attractions that
reflect the city’s characteristics.
b. Personalized Requirements:
1. If there are additional personalized
constraints in the query, understand and
summarize these requirements. When selecting
attractions and planning the plan, consider
these personalized constraints.
2. Some personalized requirements may conflict
with general requirements. In such cases,
prioritize the personalized requirements. For
example, if the query is "Special Forces-style
Tourist", the overall itinerary time, number
of attractions visited per day, free time,
duration of attraction visits, and start times
of visits may not have specific constraints,
allowing for a more compact itinerary. If
the query is related to specific demands
(e.g., "Natural Landscape Tourism", "Family
Travel", "Autumn Travel", "Chinese New Year
Travel", etc..), just choose the most popular
attractions that meet the query constraints.

<POI REFERENCE LIST>

You have already thought about how to break
down this problem and got answers to each
sub-problem as follows:
<SUB-PROBLEM OUTPUTS>

Now please solve the original planning problem.

Answer Format in JSON:
{"Day 1": [{"POI name": "xxx", "Start visit
time": "xxx", "End visit time": "xxx"}, . . . ],
. . . }

Multi-Agent Debate (MAD) launches a discus-
sion session allowing criticism agents with differ-
ent perspectives to give feedback for the initial plan
generated by a planner agent. The planner agent
collects the feedback and try to make an enhanced
travel plan. For the planner agent, we use the tem-
plates of Direct and Reflextion (Refinement) for
plan initialization and refinement respectively.

Multi-Agent Debate (MAD) - Spatial-
Perspective Criticism Agent

Our task is to generate a travel plan based on
the query <QUERY> and associated POI references.

Spatial Requirements: Consider the clustering
of attraction POIs based on their geographical
locations. Assign attraction POIs with close
geographical locations to the same day and
those with distant locations to different days.
Ensure attractions on the same day are not too
far apart.

There is an initial plan in place, please
review whether this plan meets the spatial
requirements for attraction planning and
provide specific feedback for modifications.

<POI REFERENCE LIST>

<INITIAL PLAN>

Multi-Agent Debate (MAD) - Temporal-
Perspective Criticism Agent

Our task is to generate a travel plan based on
the query <QUERY> and associated POI references.

Temporal Requirements:
1. Each POI must be visited during its opening
hours. Prioritize the recommended start times
for attractions and ensure sufficient time for
each visit (based on the expected duration of
the attraction).
2. In general, the total travel schedule for
each day should not be too tight, ensuring
the overall travel time is not too long, the
number of attractions visited is not too
large, and there is enough free time for meals,
accommodation, and transportation.

There is an initial plan in place, please
review whether this plan meets the temporal
requirements for attraction planning and
provide specific feedback for modifications.

<POI REFERENCE LIST>

<INITIAL PLAN>

Multi-Agent Debate (MAD) - Semantic-
Perspective Criticism Agent

Our task is to generate a travel plan based on
the query <QUERY> and associated POI references.

Semantic Requirements: In general, prioritize
popular and unique attractions that reflect
the city’s characteristics.

There is an initial plan in place, please
review whether this plan meets the semantic
requirements for attraction planning and
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provide specific feedback for modifications.

<POI REFERENCE LIST>

<INITIAL PLAN>

Multi-Agent Debate (MAD) - Relevance-
Perspective Criticism Agent

Our task is to generate a travel plan based on
the query <QUERY> and associated POI references.

Personalized Requirements:
1. If there are additional personalized
constraints in the query, understand and
summarize these requirements. When selecting
attractions and planning the plan, consider
these personalized constraints.
2. Some personalized requirements may conflict
with general requirements. In such cases,
prioritize the personalized requirements. For
example, if the query is "Special Forces-style
Tourist", the overall itinerary time, number
of attractions visited per day, free time,
duration of attraction visits, and start times
of visits may not have specific constraints,
allowing for a more compact itinerary. If
the query is related to specific demands
(e.g., "Natural Landscape Tourism", "Family
Travel", "Autumn Travel", "Chinese New Year
Travel", etc..), just choose the most popular
attractions that meet the query constraints.

There is an initial plan in place, please
review whether this plan meets the personal
requirements for attraction planning and
provide specific feedback for modifications.

<POI REFERENCE LIST>

<INITIAL PLAN>

Retrieval-Augmented Planning

Our task is to generate a travel plan based on
the query <QUERY> and associated POI references
and retrieved trajectories.

Basic Requirements:
1. Structure the article according to the
number of days, such as "Day 1", "Day 2", and
"Day 3". If the query does not specify the
number of days, use your knowledge and the
attractions list to deduce the duration of the
travel plan.
2. Plan the visit to attractions POI in
the order of scheduled visit times. Select
attractions only from the provided reference
list, and do not include attractions outside
the list.
3. Plan specific start and end times of visit
in 24-hour format for each POI. Ensure no
overlap in visit times for different POIs,
leave gaps between activities.

More Planning Requirements:
a. General Requirements:
1. Spatial: Consider the clustering of
attraction POIs based on their geographical
locations. Assign attraction POIs with close
geographical locations to the same day and
those with distant locations to different days.
Ensure attractions on the same day are not too
far apart.
2. Time:
(1) Each POI must be visited during its opening
hours. Prioritize the recommended start times
for attractions and ensure sufficient time for
each visit (based on the expected duration of
the attraction).
(2) In general, the total travel schedule for
each day should not be too tight, ensuring
the overall travel time is not too long, the
number of attractions visited is not too
large, and there is enough free time for meals,
accommodation, and transportation.
3. Attractions Semantics: In general,
prioritize popular and unique attractions that
reflect the city’s characteristics.
b. Personalized Requirements:
1. If there are additional personalized
constraints in the query, understand and
summarize these requirements. When selecting
attractions and planning the plan, consider
these personalized constraints.
2. Some personalized requirements may conflict
with general requirements. In such cases,
prioritize the personalized requirements. For
example, if the query is "Special Forces-style
Tourist", the overall itinerary time, number
of attractions visited per day, free time,
duration of attraction visits, and start times
of visits may not have specific constraints,
allowing for a more compact itinerary. If
the query is related to specific demands
(e.g., "Natural Landscape Tourism", "Family
Travel", "Autumn Travel", "Chinese New Year
Travel", etc..), just choose the most popular
attractions that meet the query constraints.

<POI REFERENCE LIST>

<TRAJECTORIES>

Answer Format in JSON:
{"Day 1": [{"POI name": "xxx", "Start visit
time": "xxx", "End visit time": "xxx"}, . . . ],
. . . }

For post-retrieval methods, we first apply com-
pression on the raw trajectories and then use the
Retrieval-Augmented Planning template for travel
planning.

Extractive Trajectories Compression

Given several reference tourist trajectories
about the query <QUERY>. Please select the
<EXTRACTIVE NUMBER> schemes that best meet
the requirements below, and answer with the
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trajectory ID with explanations.

Extractive Requirements:
a. General Requirements:
1. Spatial: Consider the clustering of
attraction POIs based on their geographical
locations. Assign attraction POIs with close
geographical locations to the same day and
those with distant locations to different days.
Ensure attractions on the same day are not too
far apart.
2. Time:
(1) Each POI must be visited during its opening
hours. Prioritize the recommended start times
for attractions and ensure sufficient time for
each visit (based on the expected duration of
the attraction).
(2) In general, the total travel schedule for
each day should not be too tight, ensuring
the overall travel time is not too long, the
number of attractions visited is not too
large, and there is enough free time for meals,
accommodation, and transportation.
3. Attractions Semantics: In general,
prioritize popular and unique attractions that
reflect the city’s characteristics.
b. Personalized Requirements:
1. If there are additional personalized
constraints in the query, understand and
summarize these requirements. When selecting
attractions and planning the plan, consider
these personalized constraints.
2. Some personalized requirements may conflict
with general requirements. In such cases,
prioritize the personalized requirements. For
example, if the query is "Special Forces-style
Tourist", the overall itinerary time, number
of attractions visited per day, free time,
duration of attraction visits, and start times
of visits may not have specific constraints,
allowing for a more compact itinerary. If
the query is related to specific demands
(e.g., "Natural Landscape Tourism", "Family
Travel", "Autumn Travel", "Chinese New Year
Travel", etc..), just choose the most popular
attractions that meet the query constraints.

<POI REFERENCE LIST>

<TRAJECTORIES>

Answer Format in JSON:
{"Explanation": "xxx", "Extractive IDs": ["x",
"x", . . . ]}

Abstractive Trajectories Compression

Given several reference tourist trajectories
about the query <QUERY>, please summarize,
generalize, merge, and compress these
information into a single trajectory according
to the given requirements, with specific
explanation and remarks.

Summarization Requirements:
a. General Requirements:

1. Spatial: Consider the clustering of
attraction POIs based on their geographical
locations. Assign attraction POIs with close
geographical locations to the same day and
those with distant locations to different days.
Ensure attractions on the same day are not too
far apart.
2. Time:
(1) Each POI must be visited during its opening
hours. Prioritize the recommended start times
for attractions and ensure sufficient time for
each visit (based on the expected duration of
the attraction).
(2) In general, the total travel schedule for
each day should not be too tight, ensuring
the overall travel time is not too long, the
number of attractions visited is not too
large, and there is enough free time for meals,
accommodation, and transportation.
3. Attractions Semantics: In general,
prioritize popular and unique attractions that
reflect the city’s characteristics.
b. Personalized Requirements:
1. If there are additional personalized
constraints in the query, understand and
summarize these requirements. When selecting
attractions and planning the plan, consider
these personalized constraints.
2. Some personalized requirements may conflict
with general requirements. In such cases,
prioritize the personalized requirements. For
example, if the query is "Special Forces-style
Tourist", the overall itinerary time, number
of attractions visited per day, free time,
duration of attraction visits, and start times
of visits may not have specific constraints,
allowing for a more compact itinerary. If
the query is related to specific demands
(e.g., "Natural Landscape Tourism", "Family
Travel", "Autumn Travel", "Chinese New Year
Travel", etc..), just choose the most popular
attractions that meet the query constraints.

<POI REFERENCE LIST>

<TRAJECTORIES>

Answer Format in JSON:
{"Explanation": "xxx", "Results": {"Day 1":
[{"POI name": "xxx", "Remark": "xxx"}, . . . ],
. . . }}

E.4 Methodology

For plan initialization, we adopt the prompt tem-
plates of Direct and Retrieval-Augmented Plan-
ning.

Evaluation Reflection

Our task is to generate a travel plan based on
the query <QUERY> and associated POI references.

<POI REFERENCE LIST>
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You have previously generated a batch of
planning results and evaluated them:

1. Planning results are as follows (sorted in
descending order of optimality):
<PREVIOUS PLANNING RESULTS>

2. Evaluation criteria (i.e., optimization
objectives) are as follows:
<CRITERIA & OBJECTIVES>

Please analyze the differences in these plans
based on the evaluation results. Considering
the optimization objectives, reflect on what
makes a good plan and how to achieve an even
better plan.

You have already considered the following:
<PREVIOUS REFLECTION>

Now, please refine your previous reflection,
providing a concise analysis for each
optimization objective. Just provide your final
reflection, no need to output the analysis
process.

Plan Updating - Mutation Only

Our task is to generate a travel plan based on
the query <QUERY> and associated POI references.

<POI REFERENCE LIST>

You have previously generated a batch of
planning results and evaluated them:

1. Planning results are as follows (sorted in
descending order of optimality):
<PREVIOUS PLANNING RESULTS>

2. Evaluation criteria (i.e., optimization
objectives) are as follows:
<CRITERIA & OBJECTIVES>

Based on the evaluation results, you have the
following considerations:
<REFLECTION>

Now, improve and optimize these plans. The
improved set of <NUMBER OF PLANS> new plans
should be distinct from each other and from
the previous plans, but they should be more
optimal than the previous results across all
evaluation criteria.

Answer Format in JSON:
[{"Day 1": [{"POI name": "xxx", "Start visit
time": "xxx", "End visit time": "xxx"}, . . . ],
. . . }, . . . ]

Plan Updating - Crossover & Mutation

Our task is to generate a travel plan based on
the query <QUERY> and associated POI references.

<POI REFERENCE LIST>

You have previously generated a batch of
planning results and evaluated them:

1. Planning results are as follows (sorted in
descending order of optimality):
<PREVIOUS PLANNING RESULTS>

2. Evaluation criteria (i.e., optimization
objectives) are as follows:
<CRITERIA & OBJECTIVES>

Based on the evaluation results, you have the
following considerations:
<REFLECTION>

Please follow the steps below to generate new
plans:
1. Selection: Choose two plans from the
previous results that are less similar.
2. Crossover: Merge and process these two
plans to create a new plan that combines the
strengths of the original two plans.
3. Mutation: Based on your thoughts, further
improve and optimize the new plan after the
crossover.
Iterate and repeat the above steps until you
generate <NUMBER OF PLANS> new plans. These
new plans should be distinct from each other
and from the previous plans, but they should be
more optimal than the previous results across
all evaluation criteria.

Answer Format in JSON:
[{"Day 1": [{"POI name": "xxx", "Start visit
time": "xxx", "End visit time": "xxx"}, . . . ],
. . . }, . . . ]

F Statement on the Use of AI Assistance

In the preparation of this manuscript, AI-based
tools (i.e., ChatGPT and DeepSeek) were employed
solely for the purpose of language polishing and
text refinement. All conceptualization, experimen-
tal design, scientific reasoning, and the drawing
of conclusions were conducted entirely by the au-
thors. The AI assistant did not contribute to the
generation of ideas, interpretation of results, or sub-
stantive content creation. Final responsibility for
the manuscript rests with the authors.
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