
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 1274–1289
November 4-9, 2025 ©2025 Association for Computational Linguistics

Think Wider, Detect Sharper: Reinforced Reference Coverage for
Document-Level Self-Contradiction Detection

Yuhao Chen, Yuanjie Lyu, Shuochen Liu, Chao Zhang, Junhui Lv, Tong Xu*

University of Science and Technology of China
isyuhaochen@mail.ustc.edu.cn

tongxu@ustc.edu.cn

Abstract

Detecting self-contradictions within documents
is a challenging task for ensuring textual co-
herence and reliability. While large language
models (LLMs) have advanced in many natural
language understanding tasks, document-level
self-contradiction detection (DSCD) remains
insufficiently studied. Recent approaches lever-
aging Chain-of-Thought (CoT) prompting aim
to enhance reasoning and interpretability; how-
ever, they only gain marginal improvement and
often introduce inconsistencies across repeated
responses. We observe that such inconsistency
arises from incomplete reasoning chains that
fail to include all relevant contradictory sen-
tences consistently. To address this, we propose
a two-stage method that combines supervised
fine-tuning (SFT) and reinforcement learning
(RL) to enhance DSCD performance. In the
SFT phase, a teacher model helps the model
learn reasoning patterns, while RL further re-
fines its reasoning ability. Our method incor-
porates a task-specific reward function to ex-
pand the model’s reasoning scope, boosting
both accuracy and consistency. On the Con-
traDoc benchmark, our approach significantly
boosts Llama 3.1-8B-Instruct’s accuracy from
38.5% to 51.1%, and consistency from 59.6%
to 76.2%. 1

1 Introduction

In the field of natural language understanding, con-
tradiction detection has long served as a funda-
mental benchmark for evaluating a model’s capac-
ity for deep semantic comprehension (Su et al.,
2024; Hsu et al., 2021; Li et al., 2024; Zheng
et al., 2022). Traditionally, research has focused on
identifying sentence-pair inconsistencies by natural
language inference(NLI) methods (Lendvai et al.,
2016; Badache et al., 2018). However, pairwise

*Corresponding author.
1Data and Code: https://github.com/isyuhaochen/RRC-

DSCD.

Figure 1: F1 Score and Consistency of LLaMA and
Qwen Models Using Zero-Shot and CoT prompting
strategy on ContraDoc. In DSCD tasks, reasoning im-
proves LLM performance but reduces answer consis-
tency, leading to greater variability in responses to the
same question and introducing potential unreliability.

approaches are limited in detecting document-level
self-contradictions, especially those spanning non-
adjacent or multiple sentences. With a computa-
tional complexity of n(n − 1)/2 conflict checks
for n sentences, these methods are expensive and
often fail to capture deeper semantic contradictions
involving more than two sentences.

To address these challenges, Document-level
Self-Contradiction Detection (DSCD) (Hsu et al.,
2021) has gained increasing attention. DSCD
takes a multi-sentence document as input and pre-
dicts a binary label indicating whether any self-
contradictions exist, going beyond pairwise con-
tradiction detection to assess document-level con-
sistency. ContraDoc (Li et al., 2024) extends this
concept by not only identifying the presence of
contradictions in a document but also localizing
the specific sentences in which they occur. Re-
cently, Chain-of-Thought (CoT) (Wei et al., 2022)
has been applied to the DSCD task. CoT enables
the model to perform step-by-step reasoning to
identify where the contradictions lie and why they
occur, potentially improving interpretability and

1274

https://github.com/isyuhaochen/RRC-DSCD
https://github.com/isyuhaochen/RRC-DSCD

accuracy. However, CoT yields only marginal per-
formance gains and introduces inconsistencies in
the model’s responses to the same input. As shown
in Figure 1, applying the CoT strategy significantly
reduces response consistency, thereby undermining
the reliability of the model’s predictions.

Why does the model produce different answers
to the same question when using CoT? Through in-
depth case analyses (e.g., Figure 13), we observe
that failure cases often stem from incomplete or
overly diffuse reasoning based on a limited subset
of relevant sentences. In one reasoning instance,
the model may focus on a subset of sentences while
overlooking others; in another, it shifts attention
to a different subset entirely. Consequently, shifts
in focus across different attempts can result in in-
consistent judgments. This observation raises an
important question: Can both accuracy and consis-
tency be improved simultaneously if the reasoning
chain takes a more comprehensive account of po-
tentially contradictory sentences?

In pursuit of this goal, we propose a method that
explicitly trains the model to incorporate all po-
tentially contradictory sentences into the reasoning
process. Our approach consists of two key training
processes: (1) supervised fine-tuning (SFT) using
CoT data distilled from a strong teacher model
to help the model learn basic reasoning patterns,
and (2) reinforcement learning (RL) for iterative
self-improvement, enhancing the model’s overall
reasoning ability in DSCD.

In the SFT stage, there is a lack of automatically
generated data for the DSCD task. To address data
scarcity and high annotation costs, we propose a
fully automated DSCD sample synthesis pipeline
based on the StorySumm (Subbiah et al., 2024)
and REPLIQA (Monteiro et al., 2024) datasets.
Then, we use Deepseek R1 to obtain distilled CoT
data by running the pipeline. In the RL phase, we
employ the GRPO algorithm (Shao et al., 2024),
which omits the value function and facilitates self-
iterative optimization via multi-output comparison.
Our reward function aims to address the challenges
in the reasoning process by optimizing multiple
dimensions of reasoning. To enhance accuracy, we
designed the Accuracy Reward, which focuses on
contradiction detection and localization. By en-
couraging the reasoning chain to cover potentially
contradictory sentences, the Reference Coverage
Reward promotes the comprehensiveness of the rea-
soning process. Meanwhile, the Format Reward en-
sures consistency in the reasoning format, thereby

guaranteeing the correctness of the reasoning struc-
ture. These designs synergistically guide the model
to generate more comprehensive reasoning paths.

Experimental results show our method achieves
around 10% improvements over the baseline across
tasks, demonstrating its effectiveness. Specifi-
cally, Llama-3.1-8b-Instruct improves accuracy by
10.6% on Binary Judgment, and by up to 16.6% in
consistency metrics. In summary, this work makes
the following three key contributions:
1) To the best of our knowledge, we are the first
to consider the problem of consistency in CoT rea-
soning for the DSCD task and mitigate it using
reference coverage-based reinforcement learning.
2) We propose a fully automated pipeline for gen-
erating DSC examples, which effectively addresses
the bottleneck of costly human annotations.
3) We demonstrate the effectiveness and robustness
of our method by training on our constructed out-of-
domain dataset and achieving strong performance
on the Contradoc benchmark.

2 Related Work

2.1 Contradiction Detection

Contradiction detection in text is a critical task
in NLU, aimed at identifying inconsistencies or
conflicting information within textual data. Most
existing research has centered on the NLI frame-
work, where contradictions are evaluated at the
sentence-pair level (Lendvai et al., 2016; Badache
et al., 2018). Recent efforts have extended contra-
diction detection to dialogue systems (Zheng et al.,
2022; Wen et al., 2024) and question-answering
tasks (Fortier-Dubois and Rosati, 2023).

However, identifying self-contradictions at the
document level remains a significant challenge
due to the increased contextual complexity and
long-range dependencies. Hsu et al. (2021) framed
DSCD as a binary classification problem. Li et al.
(2024) extends this concept and introduces Con-
traDoc, a manually annotated dataset. Despite this,
their work did not fully exploit the capabilities of
these models in this field. In this paper, we pro-
pose a fully automated pipeline for generating DSC
examples and significantly improving model relia-
bility on this task through the RL method.

2.2 RL for LLMs Reasoning

RL has demonstrated considerable potential in en-
hancing the reasoning capabilities of LLMs across
various domains, such as mathematics (Guo et al.,

1275

2025), code generation (OpenAI et al., 2025),
game (Chen et al., 2025), and RAG (Jin et al.,
2025). These tasks often require complex, multi-
step decision-making, which is challenging for tra-
ditional SFT methods.

Initial alignment of model outputs with human
preferences was achieved via RLHF (Ouyang et al.,
2022; Christiano et al., 2017). To address the com-
plexity of actor-critic methods like PPO (Schulman
et al., 2017), more efficient approaches emerged.
DPO (Rafailov et al., 2023) simplifies training
by removing the learned critic, though its off-
policy nature limits generalization (Pang et al.,
2024). More recently, GRPO (Shao et al., 2024)
enhances stability through improved advantage es-
timation. Despite these advancements, RL-based
approaches for document-level reasoning, partic-
ularly for DSCD, remain underexplored. In this
work, we extend the GRPO framework to fine-tune
LLMs for DSCD, addressing a crucial yet under-
investigated challenge in long-form reasoning.

3 Method

3.1 Preliminary

According to the definition in ContraDoc (Li et al.,
2024), the DSCD task is divided into two parts:
Binary Judgment and Judge then Find. The former
requires a binary decision on whether a document
d contains a contradiction. Judge then Find ad-
ditionally requires locating supporting evidence
sentences, enabling a more thorough evaluation of
the model’s reasoning.

As previously noted, CoT-based models often
exhibit inconsistency by producing different an-
swers to the same input. To quantitatively assess
this, we represent i-th inference pass as a binary
vector v(i) = [v

(i)
1 , . . . , v

(i)
N] ∈ {0, 1}N , where

i ∈ {1, . . . , T} and v
(i)
k = 1 if the model’s predic-

tion on the k-th sample is correct, and 0 otherwise.
Here, T denotes the total number of independent
inference passes performed on the model, and N
is the number of evaluation samples. Consistency
between two passes v(i) and v(j) is measured by:

Sim(v(i),v(j)) =
1

N

N∑

k=1

I
[
v
(i)
k = v

(j)
k

]
, (1)

where I[·] is the indicator function. This metric re-
flects the proportion of matching predictions across
two inference passes. The overall consistency of

a model on a given set of samples is then com-
puted as the average pairwise similarity across all
inference vectors:

Consistency =
2

T (T − 1)

∑

1≤i<j≤T

Sim(v(i),v(j)),

(2)
We evaluate performance under both Zero-Shot

and CoT prompting strategies. As illustrated in Fig-
ure 1, CoT prompting leads to improvements in
task performance. However, this enhancement is
accompanied by a reduction in response consis-
tency, indicating a trade-off between accuracy and
stability in reasoning patterns.

Why does the model give different answers to
the same question under CoT prompting? Case
analyses (see Section D) reveal that inconsisten-
cies often arise from incomplete or shifting rea-
soning chains that overlook relevant contradictory
sentences. This raises a key question: Can accu-
racy and consistency be improved by ensuring all
potentially contradictory sentences are included in
the reasoning process? To address this, we propose
a method that explicitly trains the model to incor-
porate such sentences. Our approach combines (1)
SFT using CoT data distilled from a strong teacher
model to teach core reasoning patterns, and (2) RL
for iterative self-improvement in DSCD.

3.2 Construction of the Training Data

Training models require substantial data, but exist-
ing approaches rely heavily on manual annotation
and lack large-scale, high-quality datasets. To sup-
port our two-stage training framework (SFT and
RL), we introduce an automated pipeline for gen-
erating DSCD training data at scale, addressing
the limitations of labor-intensive data construction
methods. We define contradiction types and gen-
eration methods, enabling LLMs to autonomously
select modification locations. This process also
provides a rationale for each contradiction and uses
LLMs for automatic verification.

We selected two datasets unlikely to be included
in LLM training data as the original document
sources: StorySumm (Subbiah et al., 2024), con-
sisting of 32 short stories, and REPLIQA (Mon-
teiro et al., 2024), which includes 17 thematic do-
mains. From REPLIQA, we chose two subsets,
repliqa_1 and repliqa_2, as the basis for our
dataset construction. To ensure factual consistency
and data diversity, we applied a preprocessing step
that separated positive and negative samples, ensur-

1276

Part1 Self-Contradiction Generation Part2 Self-Contradiction Verification

Raw

Data

Processed

Data

Fluency

Filtering
Old PPL

New PPL

Operation Types

Verification

via Powerful LLM

[1] Mary loved gardening. Mary absolutely despised gardening

[2] Mary didn’t care about her plants at all and rarely paid attention to them.

[2] She found peace in tending to her flowers every morning.

[3] Every day, she watered the plants and made sure they received enough sunlight.

[4] One day, she realized her plants were growing faster than expected.

[5] This made her proud, and she decided to buy more flowers to add to her garden.

[6] However, a week later, Mary noticed some of her plants were wilting.

[7] She immediately decided to cut back on watering them.

[8] Despite her best efforts, the wilting continued.

[9] She was unsure of what went wrong.

w/o Contradiction

w/ Contradiction

Replace

Insert

AB Delete

Swap

CoT Data Distillation

<Think>
Starting with the few sentences:
[1-3] discuss ….
[4-5] introduce…
[6-9] present…
…
[17-21] elaborate on…
Now, let’s look for contradictions.
[7] appears to say X, whereas [11]
suggests Y — a potential conflict.
Similarly, [6] and [19] also seem to
contradict each other.
</Think>
<Answer>
Judgment: Yes
Evidence: [7,11],[6,19]
</Answer>

<Think>
[7][11] might be conflicting—wait, let me
check... yes, they are.
</Think>
<Answer>
Judgment: Yes
Evidence: [7, 11]
</Answer>

Adapter-tuned LLM

Overall Reward :𝑅 = 𝑅format + 𝑅cover + 𝑅accuracy

RL LLM

𝑅 = 4

𝑅format = 1

𝑅cover =
Scover

Stotal
= 1

𝑅accuracy = 1 +
Ehit

Etotal
= 2

KL Divergency

Group Computation

Stage1 Training Data Construction Stage2 SFT with Distilled Data

Stage3 GRPO-based RL

Figure 2: Overview of our proposed framework. Stage 1: A self-contradictory document is generated by applying
one of the operations—insert, replace, delete, or swap—and then verified using LLMs. See Section B for details on
the rationale behind generating self-contradictions. Stage 2: A powerful model is used to distill CoT data, which is
then used to fine-tune Our model via SFT. Stage 3: A fine-grained reward function is constructed and combined
with a GRPO-based RL method to enhance the model’s reasoning coverage.

ing no pair originated from the same source docu-
ment. As shown in Figure 2, the pipeline consists
of two parts: contradiction generation and contra-
diction verification. The resulting dataset includes
2,754 positive and 4,276 negative samples.

3.2.1 Self-Contradiction Generation
To maximize coverage of self-contradiction, we
define six types following prior work (De Marn-
effe et al., 2008): Attitudinal, Definition, Logical,
Factual, Scope, and Temporal. We employ LLMs
to develop an automated strategy for generating
contradictions via four primary operations: Insert,
Delete, Replace, and Swap. By precisely control-
ling the model’s behavior through tailored prompt-
ing techniques, we guide it to generate specific
forms of self-contradictory statements. Examples
of each operation type are provided in Figure 2.

During implementation, we select a subset of
the dataset for contradiction generation. Using
DeepSeek-V3 (DeepSeek-AI, 2024), we generate
modified samples d̂i, along with a set of labeled
contradictory statements S = {s1, s2, . . .} and cor-
responding explanations r, based on carefully de-
signed prompts tailored to each operation type. De-
tailed prompt templates and the format of the model
are provided in the Section B.

3.2.2 Self-Contradiction Verification
Maintaining the quality and reliability of the gener-
ated self-contradiction data requires rigorous vali-
dation. We employ a two-stage verification frame-

work consisting of: (1) Fluency Filtering and (2)
Contradiction Verification, aimed at enhancing the
quality of the data.

Fluency Filtering. Ensuring comparable fluency
between the original and revised documents is es-
sential. Therefore, we adopt the approach proposed
in ContraDoc (Li et al., 2024) and refine it by in-
troducing a relative threshold instead of an abso-
lute one, mitigating the impact of document length
on perplexity. Specifically, To quantify fluency
shifts between the original document d and a candi-
date modification d̂i, we compare their perplexity
scores (Jelinek et al., 1977). This ensures that each
d̂i maintains fluency within a permissible range
relative to d. Formally, for each d̂i, we require:

ppl(d̂i)

ppl(d)
≤ θ, (3)

where ppl(·) denotes the perplexity of a given doc-
ument, which we compute using the Llama-3.1-
8B-Instruct model. In our experiments, we adopt
a conservative threshold of θ = 1.01 to ensure
that the modified text remains highly fluent and
semantically consistent with the original.

Contradiction Verification. While rule-based
filtering effectively removes the majority of non-
compliant data, a small portion remains. To
further refine the dataset, we apply a model-
based approach with customized judgment prompts
for more rigorous self-contradiction verification.

1277

Given a modified document d̂i, a set of model-
generated contradictory statements S, and a ratio-
nale r explaining the contradiction, the verifica-
tion process evaluates the validity of the contradic-
tion. Verification is conducted by querying an LLM
M, formalized as Verdict = M(d̂i,S, r), where
Verdict indicates whether a valid contradiction is
detected. This method differs from DSCD by veri-
fying only local conflicts using suffer reason r. We
manually sampled a small portion of the data to
validate the process. See Section B.2 for details.

3.3 Reinforcement Learning for Broader
Reasoning and Sharper Detection

To improve the comprehensiveness of the LLM’s
reasoning in the DSCD task, thereby enhancing
both accuracy and consistency, we propose a two-
stage training strategy. In the first stage, we fine-
tune the model by distilling high-quality reasoning
chains from DeepSeek-R1 (DeepSeek-AI, 2025),
enabling the model to preliminarily acquire effec-
tive reasoning capabilities and format. In the sec-
ond stage, we introduce some task-specific reward
functions and apply GRPO (Shao et al., 2024) al-
gorithm to enhance the model’s reasoning compre-
hensiveness through RL.

3.3.1 CoT Data Distillation for SFT
As shown in Figure 1, CoT reasoning improves
model performance in DSCD. However, the gener-
ated CoT responses often suffer from incomplete
logic and incorrect formatting, affecting reward sig-
nal sparsity during RL optimization. To overcome
these issues, we employ knowledge distillation,
utilizing high-quality reasoning chains from the
powerful model, DeepSeek-R1, to help the model
initially learn more reliable reasoning.

We use DeepSeek-R1’s outputs on the distil-
lation set as supervisory signals. To ensure dis-
tillation quality, we only retain responses where
the powerful model’s final prediction matches the
ground truth. Specifically, for an input sample x,
the teacher model’s answer yt, its final judgment at,
and the true label a∗, we select samples satisfying:

Dfiltered = {(x, yt) | at = a∗}. (4)

Finally, we fine-tune the model using high-quality
reasoning chain distillation signals.

3.3.2 Rule-based Reinforcement Learning and
Reward Design

SFT has preliminarily improved output format, but
it falls short of enhancing comprehensive reason-

ing. Specifically, it does not fully incorporate po-
tentially contradictory sentences into the reasoning
chain. As noted by Chu et al. (2025), SFT mainly
promotes memorization and lacks generalization
ability. Therefore, we adopt the GRPO algorithm,
which eliminates the need for a separate value es-
timator and reduces the amount of data required.
Since the training data does not include intermedi-
ate annotation information, the RL process mainly
relies on reward signals from the final result. We
designed three reward functions, namely Raccuracy,
Rcover, and Rformat, to guide the model’s learning.

Accuracy Reward (Raccuarcy). To directly re-
ward the accuracy of the model’s responses, we
define the Accuracy Reward. For positive sam-
ples, the reward reflects both the correctness of the
model’s judgment and its ability to identify con-
tradictory sentences. For negative samples, the re-
ward is based solely on the correctness of the judg-
ment. To simplify, we define indicator variables
j = I(judge = True) and e = I(evidence hit =
True). Thus, the reward is defined as:

Rpos. = j ·
(
−1 · (1− e) +

(
1 +

m

n

)
· e
)
, (5)

Rneg. = j, (6)

where m denotes the number of correctly matched
contradiction sentences, and n is the total number
of gold conflict sentences.

This formulation ensures that a correct judg-
ment, where the evidence is accurately identi-
fied, is highly rewarded. On the other hand, a
correct judgment without valid evidence incurs a
penalty, inspired by Evidence Hit Rate (EHR) met-
ric (see Section 4.2). Lastly, an incorrect judgment
does not receive any reward. The variable judge
is extracted using a regular expression from the
content between the <answer>...</answer> tags
to determine the model’s final decision. This re-
ward mechanism guides the model toward accuracy
while penalizing redundant or irrelevant informa-
tion, thereby enhancing answer accuracy.

Reference Coverage Reward (Rcover). We de-
fine the Reference Coverage Reward to quantify the
extent to which the model’s reasoning chain incor-
porates content from the input document, reflecting
the comprehensiveness of its reasoning process. It
is formally defined as:

Rcover =
|Scovered|
|Stotal|

, (7)

1278

Specifically, we assign numbered tags [i] to each
sentence in the input document to indicate posi-
tion. Let Stotal denote the full set of sentences,
and Scovered denote the subset of sentences explic-
itly referenced during the model’s reasoning chain.
This subset is derived from span expressions such
as ([i]), ([i-j]), or ([i]-[j]), where each expression
indicates a set of sentence indices—e.g., [1-3] de-
notes the set {1, 2, 3}. Using span expressions re-
duces the model’s focus on meaningless sentences,
improving reasoning efficiency. This recall-style
reward encourages the model to incorporate a wider
range of relevant content, thereby facilitating more
comprehensive and grounded reasoning, further
enhancing the model’s accuracy and consistency.

Format Reward (Rformat). To prevent forgetting
of the response format acquired during the SFT
stage throughout RL. We design Format Reward
Rformat to assess whether the model’s output ad-
heres to a predefined structural format. Specifically,
the reward is defined as a binary indicator function:

Rformat = I(Format is correct), (8)

An output is considered correctly formatted if
it satisfies all of the following conditions: (1)
the reasoning process is entirely enclosed within
<think>...</think> tags and the final answer is
fully encapsulated within <answer>...</answer>
tags and explicitly includes the phrases Judgment
and Evidence to denote the conclusion and its evi-
dence, respectively; (2) no content appears outside
these specified tags. Outputs violating any of these
requirements receive zero reward.

4 Experiments

4.1 Experimental configurations
Dataset. For evaluation, we selected the Con-
traDoc dataset, a key benchmark for DSCD. For
RL, we sampled 1,000 positive and 1,000 negative
examples from the constructed Training dataset.
Additionally, we applied DeepSeek-R1 distillation
to the remaining data to extract 1360 positive sam-
ples and 1568 negative instances, which were sub-
sequently used for SFT.

Baseline. Our experiment evaluates two popular
open-source instruction-tuned LLMs, Llama-3.1-
8B-Instruct (Llama-3.1) and Qwen-2.5-7B-Instruct
(Qwen-2.5). Given the lack of advanced existing
methods for the DSCD task, we adopt Zero-Shot
and CoT as baselines for comparative analysis.

Hyperparameters. All experiments were con-
ducted on 8 * NVIDIA L20 GPUs. The reported
results represent the average over five independent
runs to ensure the stability and reliability of the
outcomes. Detailed hyperparameter settings are
provided in the Section A.

4.2 Evaluation Metrics
We evaluate the model’s performance using stan-
dard metrics defined in prior work, including Preci-
sion, Recall, F1, and Accuracy. We define J(d) to
detect the presence of document self-contradiction
and V (E) to evaluate whether evidence is cor-
rectly identified. For the Judge then Find task,
when the model’s answer is yes, we apply the
BERTScore (Sun et al., 2022) metric to account
for minor linguistic variations. If any selected evi-
dence sentence has a BERTScore Precision or Re-
call greater than 0.98 compared to the reference, it
is considered semantically equivalent to the ground
truth and deemed correct. The model’s prediction
is deemed correct only when J(d)∧V (E) = True.
Additionally, we adopt the EHR metric, which rep-
resents the proportion of samples for which correct
evidence is successfully identified, given that the
model has predicted yes. To assess the model’s
stability across multiple responses, we utilize the
Consistency metric as defined in Equation (2). Fur-
thermore, we introduce a new metric, Reliability,
defined as the product of the model’s F1 and its
Consistency: R = F1 · C, which reflects the overall
trustworthiness of the model by jointly capturing
its accuracy and stability.

4.3 Main Results
RL yields substantial improvements over the
baseline in both ACC, F1, and EHR. Table 1
presents a performance comparison between our
method and the baseline across two tasks. In the
Binary Judgment task, the RL method yields F1
score improvements of 5.3% and 4.7% on Llama-
3.1 and Qwen-2.5, respectively, indicating a no-
table enhancement in judgment accuracy. Even
more remarkably, accuracy increases by 10.6% and
4.7% on the two models, respectively, underscor-
ing the efficacy of our method in improving overall
classification correctness.

The advantage of our method becomes even
more pronounced in the more challenging Judge
then Find task. This task places higher demands
on the model’s reasoning and information extrac-
tion capabilities. Under this setting, the RL strat-

1279

Model Method
Binary Judgment Judge then Find

Precision Recall F1 Score Acc. Precision Recall F1 Score Acc. EHR

Llama-3.1-8B-Instruct

Zero-Shot 0.585 0.183 0.279 0.523 0.435 0.100 0.162 0.481 0.544
CoT 0.518 0.701 0.596 0.521 0.399 0.432 0.415 0.385 0.616
SFT 0.575 0.699 0.631 0.588 0.450 0.423 0.436 0.449 0.605
Ours 0.618 0.683 0.649 0.627 0.517 0.452 0.482 0.511 0.661

Qwen-2.5-7B-Instruct

Zero-Shot 0.599 0.447 0.512 0.570 0.434 0.230 0.300 0.461 0.514
CoT 0.569 0.541 0.555 0.562 0.420 0.297 0.348 0.439 0.548
SFT 0.579 0.597 0.588 0.578 0.461 0.372 0.412 0.465 0.623
Ours 0.619 0.586 0.602 0.609 0.519 0.390 0.445 0.511 0.665

Table 1: Performance metrics related to the accuracy of Llama-3.1-8B-Instruct and Qwen-2.5-7B-Instruct on Binary
Judgment and Judge then Find Tasks in ContraDoc. The best results are highlighted in bold, and the second-best are
underlined. All results are averaged over five runs.

Model Method
Judge Judge then find

Cons. Rel. Cons. Rel.

Llama-3.1
8B-Instruct

CoT 0.585 0.349 0.596 0.247
SFT 0.696 0.439 0.734 0.320
Ours 0.723 0.469 0.762 0.367

Qwen2.5
7B-Instruct

CoT 0.624 0.346 0.694 0.241
SFT 0.670 0.394 0.729 0.300
Ours 0.684 0.412 0.745 0.331

Table 2: Consistency and Reliability Evaluation of two
LLMs on ContraDoc dataset.

egy leads to F1 improvements of 6.8% and 9.7%,
with accuracy gains of 12.6% and 7.2%, respec-
tively. Notably, the Llama-3.1 model shows a dra-
matic leap in accuracy after incorporating the RL
method, suggesting a significant boost in its reason-
ing ability enabled by our strategy. Furthermore,
in terms of EHR, our method achieves additional
gains of 4.5% and 11.7% on Llama-3.1 and Qwen-
2.5. These results indicate that reinforcement learn-
ing not only enhances the final decision-making ac-
curacy but also substantially improves the model’s
capability to locate critical supporting information.

RL significantly enhances the consistency and
reliability of reasoning chains compared to the
baseline. As shown in Table 2, RL significantly
improves response consistency compared to COT
method. Specifically, RL achieves gains of 16.6%
and 5.1% on the Binary Judgment task, and 27.9%
and 6.8% on the Judge then Find task, for Llama-
3.1 and Qwen-2.5, respectively. Furthermore, in
terms of stability metrics, RL outperforms both
CoT and SFT methods across models and tasks,
as illustrated in Table 2, with particularly notable
gains on the Judge then Find task.

Although the consistency scores remain lower

than those under the zero-shot setting, this does not
undermine the effectiveness of our method. The
discrepancy is mainly due to how we compute con-
sistency, based on whether the model’s answers
are correct. As shown in Table 1, zero-shot models
frequently yield incorrect answers across most eval-
uation instances. However, these responses often
exhibit internal logical coherence, resulting in de-
ceptively high consistency scores. In contrast, our
method enhances consistency within the context
of reasoning chain more substantively and reliably.
This improvement reflects a genuine alignment be-
tween correctness and internal coherence, rather
than superficial fluency.

4.4 Ablation study

Model Method F1 Acc. EHR Cons. Rel. Cov.

Llama-3.1
8B-Instruct

SFT 0.436 0.449 0.605 0.734 0.320 0.245
Rformat 0.440 0.459 0.596 0.729 0.334 0.259

Rformat&accuracy 0.450 0.496 0.625 0.757 0.341 0.249
Ours 0.482 0.511 0.661 0.762 0.367 0.849

Qwen2.5
7B-Instruct

SFT 0.412 0.465 0.623 0.729 0.300 0.267
Rformat 0.436 0.470 0.662 0.719 0.317 0.270

Rformat&accuracy 0.437 0.493 0.630 0.732 0.320 0.268
Ours 0.445 0.511 0.665 0.745 0.331 0.879

Table 3: Ablation study results on Judge then Find task.
Specifically, Rformat denotes the use of only Format Re-
ward, whereas Rformat&acc represents the use of both the
Format and Accuracy Reward. ‘Cons.’, ‘Rel.’, and ‘Cov.’
denote the metrics for consistency, reliability, and rea-
soning sentence coverage rate, respectively.

The ablation results shown in Table 3 demon-
strate the effectiveness of each reward in our
method. Utilizing only Format Reward improves
performance over the SFT, indicating that output
structure guidance is beneficial. Adding the Ac-
curacy Reward further enhances F1 and Accuracy,
suggesting that direct optimization towards task-
specific objectives is crucial. Our full method

1280

0 500 1000 1500 2000 2500
Number of Words Generated

10 10

10 8

10 6

10 4

10 2

Pr
ob

ab
ilit

y
De

ns
ity

Zero-Shot (mean=11.8)
CoT (mean=328.3)
SFT (mean=469.6)
RL w/o cover (mean=485.6)
Ours (mean=809.0)

Figure 3: Comparison of output lengths using different
methods on Llama-3.1. RL w/o cover refers to the
method that does not incorporate Rcover.

achieves the highest scores across all evaluation
metrics validating the advantage of thinking com-
prehensively.

4.5 Further analysis

A more comprehensive and concise chain of
thought is more effective. As shown in Table 3
and Figure 3, the integration of Rcover markedly
enhances the thought coverage rate, increasing it
from 24.5% to 84.9%, which corresponds to an
improvement by a factor of approximately 3.47. In-
evitably, this increase in coverage is accompanied
by a 1.72× growth in output length. Notably, this
increase is much smaller than the coverage gain,
indicating that Rcover improves information density.
We compared the output lengths across different
methods, and the results illustrate the highly un-
stable reasoning pattern of CoT (the pronounced
fluctuations in the probability density of output
lengths). The model fine-tuned with SFT data dis-
tilled from a stronger model produces a more rea-
sonable chain of thought while only slightly in-
creasing output length. RL without Rcover method
yields a more concise reasoning process. In con-
trast, our method, which reinforces reference cover-
age, achieves the best performance across all met-
rics, providing a chain of thought that is both com-
prehensive and concise.

Enhancing reasoning sentence coverage through
RL leads to a more effective use of training sam-
ples compared to standard SFT. To investigate
whether the inclusion of more data improves per-
formance, we employed the reasoning chain data
distillation approach mentioned earlier. Specifi-
cally, we distilled the two thousand samples used
in the RL process and incorporated them into the

Figure 4: Comparison of the performance on the Judge
then Find task among the baseline SFT, our method, and
SFT_Plus (SFT with additional training data) based on
the Llama-3.1-8B-Instruct model.

original SFT dataset for further fine-tuning. As
shown in Figure 4, the results indicate that, de-
spite the increased data number, the performance
of SFT_Plus did not significantly improve and even
declined. This suggests that the additional data
may have introduced more noise, undermining the
model’s effectiveness. In contrast, enhancing rea-
soning sentence coverage through RL substantially
improved model performance, suggesting that it
enables more efficient utilization of the available
data. This approach notably enhanced the model’s
ability to detect self-contradictions at the document
level, thereby increasing its reliability.

5 Conclusion

In this work, we address the challenge of
Document-level Self-Contradiction Detection
(DSCD), where Chain-of-Thought (CoT) prompt-
ing has shown significant response inconsistency
due to incomplete or variable focus during infer-
ence. To tackle this issue, we propose a two-stage
framework combining supervised fine-tuning with
reinforcement learning. Our approach explicitly
encourages the model to include all potentially
contradictory sentences in its reasoning chain,
guided by a novel reward design that balances
accuracy, reference coverage, and structural
consistency. To the best of our knowledge, we
are the first to incorporate reinforcement learning
into document-level self-contradiction detection.
Experimental results demonstrate substantial
improvements in LLMs’ accuracy and consistency,
highlighting their enhanced reliability in detecting
document-level self-contradictions.

1281

6 Limitations

Although our method effectively enhances the
performance of LLMs in detecting document-
level self-contradictions, several limitations re-
main. Achieving a balance between maintaining
a comprehensive reasoning chain and ensuring
its conciseness continues to be a significant chal-
lenge. Furthermore, due to hardware constraints,
our evaluation was restricted to models with ap-
proximately 8 billion parameters. Additionally,
the lack of publicly available datasets annotated
with location-specific information for document-
level self-contradictions limits the scope of broader
evaluation; consequently, all experiments were
conducted exclusively on the ContraDoc dataset.
Moreover, our current approach to constructing
document-level self-contradictions focuses exclu-
sively on the textual modality. The generation and
detection of multimodal document-level contradic-
tions, involving images, tables, or other media, rep-
resent promising directions for future research.

7 Acknowledgements

This work was supported in part by the grants from
National Natural Science Foundation of China
(No.62222213, U22B2059).

References
Ismail Badache, Sébastien Fournier, and Adrian-Gabriel

Chifu. 2018. Predicting contradiction intensity: Low,
strong or very strong? In The 41st International
ACM SIGIR Conference on Research & Development
in Information Retrieval, pages 1125–1128.

Yuhao Chen, Shuochen Liu, Yuanjie Lyu, Chao Zhang,
Jiayao Shi, and Tong Xu. 2025. Xiangqi-r1: En-
hancing spatial strategic reasoning in llms for chi-
nese chess via reinforcement learning. arXiv preprint
arXiv:2507.12215.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Mar-
tic, Shane Legg, and Dario Amodei. 2017. Deep
reinforcement learning from human preferences. Ad-
vances in neural information processing systems, 30.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Sheng-
bang Tong, Saining Xie, Dale Schuurmans, Quoc V
Le, Sergey Levine, and Yi Ma. 2025. Sft mem-
orizes, rl generalizes: A comparative study of
foundation model post-training. arXiv preprint
arXiv:2501.17161.

Marie-Catherine De Marneffe, Anna N Rafferty, and
Christopher D Manning. 2008. Finding contradic-
tions in text. In Proceedings of acl-08: Hlt, pages
1039–1047.

DeepSeek-AI. 2024. Deepseek-v3 technical report.

DeepSeek-AI. 2025. Deepseek-r1: Incentivizing rea-
soning capability in llms via reinforcement learning.

Etienne Fortier-Dubois and Domenic Rosati. 2023. Us-
ing contradictions improves question answering sys-
tems. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 827–840.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Cheng Hsu, Cheng-Te Li, Diego Saez-Trumper, and Yi-
Zhan Hsu. 2021. Wikicontradiction: Detecting self-
contradiction articles on wikipedia. In 2021 IEEE in-
ternational conference on big data (Big Data), pages
427–436. IEEE.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models.

Fred Jelinek, Robert L Mercer, Lalit R Bahl, and
James K Baker. 1977. Perplexity—a measure of the
difficulty of speech recognition tasks. The Journal of
the Acoustical Society of America, 62(S1):S63–S63.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Dong Wang,
Hamed Zamani, and Jiawei Han. 2025. Search-
r1: Training llms to reason and leverage search en-
gines with reinforcement learning. arXiv preprint
arXiv:2503.09516.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Piroska Lendvai, Isabelle Augenstein, Kalina
Bontcheva, and Thierry Declerck. 2016. Monolin-
gual social media datasets for detecting contradiction
and entailment. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation (LREC’16), pages 4602–4605.

Jierui Li, Vipul Raheja, and Dhruv Kumar. 2024. Con-
tradoc: Understanding self-contradictions in docu-
ments with large language models. In Proceedings
of the 2024 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Pa-
pers), pages 6509–6523.

Joao Monteiro, Pierre-Andre Noel, Etienne Marcotte,
Sai Rajeswar Mudumba, Valentina Zantedeschi,
David Vazquez, Nicolas Chapados, Chris Pal, and
Perouz Taslakian. 2024. Repliqa: A question-
answering dataset for benchmarking llms on unseen
reference content. Advances in Neural Information
Processing Systems, 37:24242–24276.

1282

http://arxiv.org/abs/2412.19437
http://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685

OpenAI, :, Ahmed El-Kishky, Alexander Wei, Andre
Saraiva, Borys Minaiev, Daniel Selsam, David Do-
han, Francis Song, Hunter Lightman, Ignasi Clav-
era, Jakub Pachocki, Jerry Tworek, Lorenz Kuhn,
Lukasz Kaiser, Mark Chen, Max Schwarzer, Mostafa
Rohaninejad, Nat McAleese, o3 contributors, Oleg
Mürk, Rhythm Garg, Rui Shu, Szymon Sidor, Vi-
neet Kosaraju, and Wenda Zhou. 2025. Competitive
programming with large reasoning models.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730–27744.

Richard Yuanzhe Pang, Weizhe Yuan, He He,
Kyunghyun Cho, Sainbayar Sukhbaatar, and Jason
Weston. 2024. Iterative reasoning preference opti-
mization. Advances in Neural Information Process-
ing Systems, 37:116617–116637.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your lan-
guage model is secretly a reward model. Advances in
Neural Information Processing Systems, 36:53728–
53741.

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley,
Shaden Smith, and Yuxiong He. 2021. Zero-infinity:
Breaking the gpu memory wall for extreme scale
deep learning. In Proceedings of the international
conference for high performance computing, network-
ing, storage and analysis, pages 1–14.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and
Yuxiong He. 2020. Deepspeed: System optimiza-
tions enable training deep learning models with over
100 billion parameters. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 3505–3506.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, et al. 2024. Deepseekmath:
Pushing the limits of mathematical reasoning in open
language models. arXiv preprint arXiv:2402.03300.

Zhaochen Su, Jun Zhang, Xiaoye Qu, Tong Zhu, Yanshu
Li, Jiashuo Sun, Juntao Li, Min Zhang, and Yu Cheng.
2024. Conflictbank: A benchmark for evaluating
the influence of knowledge conflicts in llm. arXiv
preprint arXiv:2408.12076.

Melanie Subbiah, Faisal Ladhak, Akankshya Mishra,
Griffin Thomas Adams, Lydia Chilton, and Kathleen
McKeown. 2024. STORYSUMM: Evaluating faith-
fulness in story summarization. In Proceedings of

the 2024 Conference on Empirical Methods in Natu-
ral Language Processing, pages 9988–10005, Miami,
Florida, USA. Association for Computational Lin-
guistics.

Tianxiang Sun, Junliang He, Xipeng Qiu, and Xuanjing
Huang. 2022. Bertscore is unfair: On social bias
in language model-based metrics for text generation.
arXiv preprint arXiv:2210.07626.

Qiyao Wang, Shiwen Ni, Huaren Liu, Shule Lu, Guhong
Chen, Xi Feng, Chi Wei, Qiang Qu, Hamid Alinejad-
Rokny, Yuan Lin, et al. 2024. Autopatent: A multi-
agent framework for automatic patent generation.
arXiv preprint arXiv:2412.09796.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Xiaofei Wen, Bangzheng Li, Tenghao Huang, and
Muhao Chen. 2024. Red teaming language mod-
els for processing contradictory dialogues. arXiv
preprint arXiv:2405.10128.

Chujie Zheng, Jinfeng Zhou, Yinhe Zheng, Libiao Peng,
Zhen Guo, Wenquan Wu, Zheng-Yu Niu, Hua Wu,
and Minlie Huang. 2022. Cdconv: A benchmark for
contradiction detection in chinese conversations. In
Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pages 18–
29.

A Hyperparameters

All experiments were conducted on 8 * NVIDIA
L20 GPUs. The reported results represent the av-
erage over five independent runs to ensure the sta-
bility and reliability of the outcomes. During the
evaluation, we set the temperature to 0.7, top-p to
0.9, and max_new_tokens to 4096.

During Supervised Fine-Tuning (SFT), the
model is trained for three epochs on four NVIDIA
L20 GPUs with a learning rate of 1× 10−4 and a
gradient accumulation step of 8. Training adopts
BF16 mixed precision, gradient checkpointing,
and DeepSpeed ZeRO-3 (Rajbhandari et al., 2021;
Rasley et al., 2020) with CPU offloading. The max-
imum sequence length is 4096 tokens. Parameter-
efficient fine-tuning is performed using LoRA (Hu
et al., 2021) with rank 8, α = 32, and a dropout
rate of 0.1. The Adam optimizer (Kingma and
Ba, 2014) is used with default settings for causal
language modeling.

In the Reinforcement Learning (RL) phase,
DeepSpeed ZeRO-3 with CPU offloading and
BF16 precision are maintained. Training is con-
ducted over one epoch with a learning rate of

1283

http://arxiv.org/abs/2502.06807
http://arxiv.org/abs/2502.06807
https://doi.org/10.18653/v1/2024.emnlp-main.557
https://doi.org/10.18653/v1/2024.emnlp-main.557

5 × 10−5, a micro-batch size of 4 per GPU, and
a gradient accumulation step of 2. Gradient clip-
ping with a maximum norm of 1.0 is applied. The
maximum prompt and completion lengths are set to
8192 and 4096 tokens, respectively. LoRA is again
applied with the same configuration as in SFT.

B Training and Testing Data

B.1 Training Dataset Sources

We employ two datasets that are highly unlikely
to be present in the training data of LLMs: Story-
Summ (Subbiah et al., 2024) and REPLIQA (Mon-
teiro et al., 2024). The StorySumm dataset con-
sists of 32 short stories sourced from two fiction-
oriented subreddits. To ensure both the quality and
appropriateness of the content, the dataset excludes
posts labeled as NSFW and those that received
fewer than three upvotes. These community-vetted
stories are concise, usually under one page, and
lack user-written summaries. Their limited online
visibility further reduces the likelihood of over-
lap with LLM training corpora, thus serving as
a clean benchmark. In contrast, REPLIQA is a
large-scale question-answering dataset comprising
17,954 human-authored synthetic documents, each
approximately 1,000 words in length. These docu-
ments span 17 diverse thematic domains, including
cybersecurity, folklore, and others, and depict en-
tirely fictional scenarios, making them particularly
well-suited for evaluating LLM generalization to
genuinely novel content. From this dataset, we de-
rive two evaluation subsets, denoted as repliqa_1
and repliqa_2. To rigorously prevent data leakage
during the partitioning process, we filter examples
by unique ID prefixes and retain only one instance
per prefix, thereby ensuring clear separation be-
tween the subsets.

B.2 Self-Contradiction Generation and
Verification

We utilize LLMs to develop an automated strat-
egy for generating contradictions. This process is
underpinned by four primary operations: Insert,
Delete, Replace, and Swap. Each operation type is
illustrated through examples provided in Figure 2.

The implementation begins by selecting a sub-
set of the dataset for contradiction generation. For
insert and replace operations, factual sentences
are first extracted via queries to LLMs. In con-
trast, delete and swap require only a single query.
We utilize the DeepSeek-V3 (DeepSeek-AI, 2024)

through its online API to generate modified sam-
ples d̂i and corresponding contradiction sets S =
{s1, s2, . . .}, each with an explanation r. Prompts
used for each operation type are shown in Figures 7
to 12, and are designed to ensure alignment with
the intended modifications. Outputs with empty or
non-compliant JSON structures are discarded.

As shown in Figure 2, in the insert example,
the added sentence contradicts the character’s pre-
viously established dedication to gardening. In
the delete case, removing the explanation that the
plants were wilting renders the subsequent action,
cutting back on watering, unjustified and illogical.
In the replace case, if Mary dislikes gardening,
it becomes inconsistent for her to take good care
of the flowers and feel happy every day. In the
swap case, cutting back on watering before realiz-
ing that the plants were growing rapidly introduces
a temporal inconsistency, since there would have
been no need to reduce watering if the plants were
thriving. All four types of operations can lead to
self-contradictions within the document.

You are a helpful and detail-oriented lan-
guage model tasked with detecting logical
contradictions in documents. Below you are
given:
Article: {Article}
Sentences suspected to contradict each
other: {Statements}
Reason (r) explaining why these sentences
may be contradictory: {Reason}
Your task is to carefully read the document
and evaluate whether sentences truly con-
tradict each other in the context of the full
document. Use the reason as a clue but do
not rely on it exclusively. Take into account
nuances such as negation, temporal shifts,
modality, or implied meanings.
Only answer "yes" or "no":

Figure 5: Prompt template for verifying suspected con-
tradictions in a document.

To rigorously verify self-contradiction, we de-
sign specific prompts for positive and negative sam-
ples (see Figure 5 and Figure 6). For a positive
sample, the model is provided with a modified doc-
ument d̂i, a set of contradictory statements S, and
a rationale r explaining the contradiction. A re-
sponse of True indicates a valid contradiction, and

1284

The task is to determine whether the arti-
cle contains any self-contradictions. If yes,
provide evidence by quoting mutually con-
tradictory sentences in a list of strings in
Python. If no, give an empty list.
Article: {Article}
Response: Form your answer in the fol-
lowing format (OR options are provided),
Please answer the Judgment and Evidence
in the prescribed format, Evidence must be
a list that can be parsed by Python:
Judgment: yes OR no
Evidence: ["xxxxxx", "xxxxxx", ...,
"xxxxxx"] OR []
please think step by step, and finally give
the answer. (if using the CoT strategy)

Figure 6: Prompt template used for evaluation.

the sample is retained. Prompt template for neg-
ative samples, where only the original document
d is provided. This setup mirrors the prompt for-
mat used during testing; samples yielding a no re-
sponse, which indicates no contradiction, are kept.
Leveraging the capabilities of the powerful model,
this filtering step provides a coarse screening to
remove obviously unsuitable documents; however,
manual verification does not guarantee 100% accu-
racy. Therefore, using it directly as a test set is not
entirely appropriate.

B.3 Data Statistics
We constructed a training dataset with 2,754 posi-
tive and 4,276 negative samples. For RL, 1,000 pos-
itive and 1,000 negative instances were randomly
selected. The remaining data were distilled using
DeepSeek-R1, yielding 1,360 positive and 1,568
negative samples for SFT. The evaluation was per-
formed on the ContraDoc dataset, a standard bench-
mark for document semantic content detection. To
examine RL’s data efficiency, we also distilled the
RL training data, obtaining 766 positive and 469
negative samples, which were added to the SFT
dataset for further experiments.

C Additional Experiments

C.1 Generalization to Finer-Grained and
Different Scenarios

To more comprehensively validate the robustness
and applicability of our approach, we conducted

additional experiments on the sentence-level contra-
diction detection dataset contraDialog (Wang et al.,
2024). Specifically, we employed the same back-
bone model, Llama-3.1-8B-Instruct, as in the main
experiments, and performed transfer evaluation us-
ing the model trained on contraDoc to ensure com-
parability and consistency of results. Due to the
annotation limitations of the dataset, we only con-
ducted experiments on the binary judgment task.

Method F1 Acc. Cons. Rel.

Zero-Shot 0.329 0.506 0.772 0.254
CoT 0.592 0.518 0.599 0.355
Ours 0.797 0.782 0.783 0.624

Table 4: Performance on the contraDialog dataset.

As shown in Table 4, our method substantially
outperforms both the zero-shot baseline and CoT
prompting across all evaluation metrics, achiev-
ing notable improvements in F1, accuracy, con-
sistency, and reliability. These results highlight
the strong cross-domain generalizability of our ap-
proach, demonstrating its effectiveness in transfer-
ring from document-level to sentence-level tasks.

C.2 Simple Prompting Provides Limited
Improvements

We further explored whether simple modifica-
tions to the prompting strategy could improve
model performance. Specifically, the standard CoT
prompt, “Please think step by step,” was revised to
a sentence-level variant, referred to as the Cover
Prompt, which instructs the model to “Please con-
sider the document sentence-by-sentence.”

Method Binary Judgment Judge then Find

F1 Acc. Cons. Rel. F1 Acc. Cons. Rel.

CoT 0.521 0.596 0.585 0.349 0.399 0.436 0.596 0.247
Cover Prompt 0.529 0.589 0.642 0.378 0.400 0.411 0.652 0.268
Ours 0.649 0.627 0.723 0.469 0.511 0.482 0.762 0.367

Table 5: Comparison between standard CoT prompting,
sentence-level Cover Prompt, and our method on the
ContraDoc dataset.

Experiments were conducted using Llama-3.1-
8B-Instruct on the CONTRADOC dataset. The re-
sults are presented in Table 5. Compared with the
standard CoT prompt, the Cover Prompt slightly
improves F1 and consistency, while leading to a
marginal drop in accuracy. Nonetheless, the ef-
fect of prompt modification remains limited, as the
model often fails to follow sentence-level instruc-
tions strictly. In contrast, our method explicitly

1285

promotes consistency and coverage, resulting in
stronger and more reliable performance, albeit with
additional computation.

C.3 Zero-Shot Evaluation with Large LLM

To further investigate model performance across
different scales, we conducted zero-shot evalua-
tions on stronger models via API. The results on
the ContraDoc dataset are summarized in Table 6.

Overall, larger models achieve better perfor-
mance, yet there remains a clear gap from perfect
accuracy, highlighting the inherent difficulty of the
task. In the simpler Binary Judgment setting, our
method significantly improves the performance of
an 8B model, bringing it close to that of the much
larger 671B DeepSeek-R1. In the more complex
Judge-then-Find setting, a noticeable gap persists,
primarily due to the limited reasoning capacity of
smaller models. Considering that practical applica-
tions often require a trade-off between efficiency
and performance, enhancing the effectiveness of
smaller models remains valuable. In this context,
our approach offers a meaningful and applicable
solution.

Method Binary Judgment Judge then Find

F1 Acc. F1 Acc.

Doubao-1.5-pro 0.702 0.712 0.647 0.652
DeepSeek-R1 0.717 0.696 0.636 0.631
DeepSeek-V3 0.561 0.667 0.526 0.649
Ours (8B) 0.649 0.627 0.482 0.511

Table 6: Zero-shot evaluation results on the ContraDoc
dataset using larger LLMs via API, compared with our
8B model.

D Case Study

In this example (see Figure 13), the Zero-Shot ap-
proach simply outputs "no" without any accompa-
nying explanation, which is clearly inadequate for
practical document-level inconsistency detection
systems that require interpretable reasoning. In con-
trast, the CoT prompting method guides the model
to attend to specific sentences (e.g., sentences 9
and 11); however, due to incomplete or fragmented
reasoning chains, the model still arrives at an incor-
rect conclusion. While CoT occasionally identifies
the correct point of contradiction, it often arbitrar-
ily overlooks other conflicting information in the
document. This variability in focus across different
runs results in unstable and inconsistent outputs.

By comparison, our Reinforced Reference Cov-
erage method encourages the model to compre-
hensively consider relevant content throughout the
entire document. This not only promotes a more
thorough and balanced reasoning process but also
enhances consistency across multiple runs, effec-
tively addressing the instability observed in prior
approaches.

Contradiction Types:
- Attitudinal: Contradiction arises from a
difference in opinion or feeling.
- Definition: Contradiction arises from a
difference in the meaning of a word or con-
cept.
- Logical: Contradiction arises from a logi-
cal inconsistency.
- Factual: Contradiction arises from a dif-
ference in facts or events.
- Scope: Contradiction arises from a differ-
ence in the scope of a statement.
- Temporal: Contradiction arises from a
difference in time or sequence of events.

Figure 7: Definitions of contradiction types used for
sentence generation.

From the provided article, extract exactly
five sentences corresponding to one of the
following categories: Attitudinal, Defini-
tion, Logical, Factual, Scope, or Temporal.
Please format your response as a Python-
parsable list with exactly five elements, in
the following format: ["sentence1", "sen-
tence2", "sentence3", "sentence4", "sen-
tence5"].
Article: {Article}

Figure 8: Prompt template used to extract factual sen-
tences from the original document.

1286

Article: {Article}
Generate a ‘contradicted_sentence‘ that contradicts the original sentence {Statement} in one of the
following ways: Attitudinal, Definition, Logical, Factual, Scope, or Temporal. Insert the contradic-
tory sentence at the appropriate position in the article. If there are ‘other_contradictory_sentences‘,
they must clearly contradict the ‘contradicted_sentence‘.
Contradiction Types: {Contradiction Types}
The contradiction must create a scenario where the original statement cannot coexist. The goal is
to introduce a fact that renders the original fact impossible, not merely negating it.
Good Examples: {Good Examples and Explanations}
Bad Examples: {Bad Examples and Explanations}
Return the result in the following JSON format, fully parsable by Python:
{

"original_sentence": "xxx",//The original sentence
"contradicted_sentence": "xxx",//The contradictory sentence
"insert_position_sentence": "xxx",//The sentence before the insertion point
"next_sentence_after_insert": "xxx",//The sentence after the insertion point
"other_contradictory_sentences": ["sentence1", ...],// Supporting

contradictory sentences
"contradiction_type": "xxx",//Type of contradiction
"contradiction_reason": "xxx"// Explanation of the contradiction

}

Figure 9: Prompt template for inserting a contradictory sentence.

Article: {Article}
Modify the original sentence {Statement} to introduce a contradiction with another sentence in
one of the following ways: Attitudinal, Definition, Logical, Factual, Scope, or Temporal. If there
are ‘other_contradictory_sentences‘, they must clearly contradict the ‘modified_sentence‘.
Contradiction Types: {Contradiction Types}
The contradiction must create a scenario where the original statement cannot coexist. The goal is
to introduce a fact that renders the original fact impossible, not merely negating it.
Good Examples: {Good Examples and Explanations}
Bad Examples: {Bad Examples and Explanations}
Return the result in the following JSON format, fully parsable by Python:
{

"original_sentence": "xxx",//The original sentence
"modified_sentence": "xxx",//The modified sentence
"other_contradictory_sentences": ["sentence1", ...],// Supporting

contradictory sentences
"contradiction_type": "xxx",//Type of contradiction
"contradiction_reason": "xxx"// Explanation of the contradiction

}

Figure 10: Prompt template for modifying an original sentence to introduce contradiction.

1287

Article: {Article}
Swap sentences in the article to create a contradiction in one of these areas: Attitudinal, Definition,
Logical, Factual, Scope, or Temporal. If no contradiction is possible, return an empty list []
in ’modified_sentence_order’. If there are ‘other_contradictory_sentences‘, they must clearly
contradict the ‘modified_sentence_order‘.
Contradiction Types: {Contradiction Types}
The contradiction must create a scenario where the original statement cannot coexist. The goal is
to introduce a fact that renders the original fact impossible, not merely negating it.
Good Examples: {Good Examples and Explanations}
Bad Examples: {Bad Examples and Explanations}
Return the result in the following JSON format, fully parsable by Python:
{

"original_sentence_order": ["sentence1", ...],//The original sentence
order

"modified_sentence_order": ["sentence2", ...],//The modified sentence
order

"other_contradictory_sentences": ["sentence3", ...],// Supporting
contradictory sentences

"contradiction_type": "xxx",//Type of contradiction
"contradiction_reason": "xxx"// Explanation of the contradiction

}

Figure 11: Prompt template for modifying original sentence order to introduce contradiction.

Article: {Article}
Identify three sentences—A, B, and C—in the article. Sentence A and Sentence C should conflict,
while Sentence B resolves the conflict. Removing Sentence B should create a contradiction in one
of the following categories: Attitudinal, Definition, Logical, Factual, Scope, or Temporal. If there
are other contradictory sentences, they must clearly contradict both Sentence A and Sentence C.
Contradiction Types: {Contradiction Types}
The contradiction must create a scenario where the original statement cannot coexist. The goal is
to introduce a fact that renders the original fact impossible, not merely negating it.
Good Examples: {Good Examples and Explanations}
Bad Examples: {Bad Examples and Explanations}
Return the result in the following JSON format, fully parsable by Python:
{

"sentencesA": "xxx",
"sentencesB": "xxx",
"sentencesC": "xxx",
"other_contradictory_sentences": ["sentence1", ...], // Supporting

contradictory sentences
"contradiction_type": "xxx", // Type of contradiction
"contradiction_reason": "xxx" // Explanation of the contradiction

}

Figure 12: Prompt template for removing a key sentence to introduce contradiction.

1288

Article: {ContraDoc_unique_id_3488771888_4}
Zero-Shot:
Judgment: no ✗

Evidence: [] ✗

CoT:
To determine whether the article contains any self-contradictions, I will carefully read through the
article and look for any sentences that contradict each other.
Upon reading the article, I found a potential self-contradiction in sentences 9 and 11. Sentence 9
states: "whereupon Bêlit suddenly orders her crew to step back and spare Conan, being impressed
with the Cimmerianś courage and ferocity (and being sexually attracted to him, as she immediately
and forthrightly declares)."This suggests that Bêlit is impressed with Conan and wants to spare his
life. However, sentence 11 states: "Survivors of butchered Stygian ships curse the name of Bêlit
and her Cimmerian warrior with fierce blue eyes." This implies that Bêlit and Conan are actually
enemies, and that Bêlit is not impressed with Conan. Considering these two sentences, it seems
that the article contains a self-contradiction. Therefore, the answer is:
Judgment: yes ✔

Evidence: ["Bêlit suddenly orders her crew to step back and spare Conan", "Survivors of butchered
Stygian ships curse the name of Bêlit and her Cimmerian warrior with fierce blue eyes"] ✗

Ours:
<think>
Okay, let’s tackle this. The user wants to know if the article has any self-contradictions. I need to
read through the article carefully and check for any statements that contradict each other. Starting
with the first few sentences:
[1]Conan forcefully demands to board a trading ship, Argus....
[2-3]Captain Tito initially refuses, but Conan threatens him with
[4-5]We learn that Conan is a “complete land-lubber” with no sailing
[6-7]Upon reaching Kush’s pirate-infested waters, the ship is
[8-9]After the captain is killed, Conan tries to rally the remaining
[10]Bêlit is impressed and attracted to him...Wait, the text then says that Conan refuses her offer.
[11-14] Yet, it goes on to say “they raid the Black Coast together,” initiate a sadomasochistic
romance, and form a strong partnership.
[15]Later, they explore ruins together
[17-18]Bêlit becomes possessed, gives reckless orders, her
[19-21]After her death, her spirit helps Conan defeat the monster....
Now, let’s look for self-contradictions. The most obvious contradiction appears in this group of
statements: “Bêlit offers Conan the chance to sail with her, be her chosen mate, and help lead her
fierce warriors.” “Unimpressed by this fiery woman, Conan refuses...”
This creates a contradiction between his stated decision and his subsequent actions. If this were a
deliberate “change of heart” by the author, we would expect some narrative transition or internal
reflection to show that Conan reconsidered. But the story provides no such moment. It jumps
straight from ... the contradiction unresolved. Therefore ...
</think>
<Answer>
Judgment: yes ✔

Evidence: ["comparing Conan’s grim god Crom with Bêlit’s ... continuing their sexual romance",
"Unimpressed by this fiery woman, Conan refuses and, for a time, they raid the Black Coast
together brutally pillaging coastal towns and instilling fear into the superstitious natives"] ✔

</Answer>

Figure 13: Comparative Case Study of Llama-3.1-8B-Instruct Under Various Approaches.

1289

