@inproceedings{liu-etal-2025-neural,
title = "Neural Topic Modeling via Contextual and Graph Information Fusion",
author = "Liu, Jiyuan and
Yan, Jiaxing and
Zhu, Chunjiang and
Liu, Xingyu and
Qing, Li and
Rao, Yanghui",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.670/",
pages = "13258--13274",
ISBN = "979-8-89176-332-6",
abstract = "Topic modeling is a powerful unsupervised tool for knowledge discovery. However, existing work struggles with generating limited-quality topics that are uninformative and incoherent, which hindering interpretable insights from managing textual data. In this paper, we improve the original variational autoencoder framework by incorporating contextual and graph information to address the above issues. First, the encoder utilizes topic fusion techniques to combine contextual and bag-of-words information well, and meanwhile exploits the constraints of topic alignment and topic sharpening to generate informative topics. Second, we develop a simple word co-occurrence graph information fusion strategy that efficiently increases topic coherence. On three benchmark datasets, our new framework generates more coherent and diverse topics compared to various baselines, and achieves strong performance on both automatic and manual evaluations."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2025-neural">
<titleInfo>
<title>Neural Topic Modeling via Contextual and Graph Information Fusion</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jiyuan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiaxing</namePart>
<namePart type="family">Yan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chunjiang</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xingyu</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Li</namePart>
<namePart type="family">Qing</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yanghui</namePart>
<namePart type="family">Rao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Topic modeling is a powerful unsupervised tool for knowledge discovery. However, existing work struggles with generating limited-quality topics that are uninformative and incoherent, which hindering interpretable insights from managing textual data. In this paper, we improve the original variational autoencoder framework by incorporating contextual and graph information to address the above issues. First, the encoder utilizes topic fusion techniques to combine contextual and bag-of-words information well, and meanwhile exploits the constraints of topic alignment and topic sharpening to generate informative topics. Second, we develop a simple word co-occurrence graph information fusion strategy that efficiently increases topic coherence. On three benchmark datasets, our new framework generates more coherent and diverse topics compared to various baselines, and achieves strong performance on both automatic and manual evaluations.</abstract>
<identifier type="citekey">liu-etal-2025-neural</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.670/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>13258</start>
<end>13274</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural Topic Modeling via Contextual and Graph Information Fusion
%A Liu, Jiyuan
%A Yan, Jiaxing
%A Zhu, Chunjiang
%A Liu, Xingyu
%A Qing, Li
%A Rao, Yanghui
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F liu-etal-2025-neural
%X Topic modeling is a powerful unsupervised tool for knowledge discovery. However, existing work struggles with generating limited-quality topics that are uninformative and incoherent, which hindering interpretable insights from managing textual data. In this paper, we improve the original variational autoencoder framework by incorporating contextual and graph information to address the above issues. First, the encoder utilizes topic fusion techniques to combine contextual and bag-of-words information well, and meanwhile exploits the constraints of topic alignment and topic sharpening to generate informative topics. Second, we develop a simple word co-occurrence graph information fusion strategy that efficiently increases topic coherence. On three benchmark datasets, our new framework generates more coherent and diverse topics compared to various baselines, and achieves strong performance on both automatic and manual evaluations.
%U https://aclanthology.org/2025.emnlp-main.670/
%P 13258-13274
Markdown (Informal)
[Neural Topic Modeling via Contextual and Graph Information Fusion](https://aclanthology.org/2025.emnlp-main.670/) (Liu et al., EMNLP 2025)
ACL