R-PRM: Reasoning-Driven Process Reward Modeling

Shuaijie She'*, Junxiao Liu'*, Yifeng Liu', Jiajun Chen', Xin Huang?, Shujian Huang'f
! National Key Laboratory for Novel Software Technology, Nanjing University
2 China Mobile Communications Company Limited Research Institute

{shesj, junxiaoliu,yfliu}@smail.nju.edu.cn, chenjj@nju.edu.cn,

huangxinyjy@chinamobile.com, huangsj@nju.edu.cn

Abstract

Process Reward Models (PRMs) have emerged
as a promising solution to address the reason-
ing mistakes of large language models (LLMs).
However, existing PRMs typically output eval-
uation scores directly, limiting both learning
efficiency and evaluation accuracy. This limi-
tation is further compounded by the scarcity
of annotated data. To address these issues,
we propose Reasoning-Driven Process Reward
Modeling (R-PRM), which activates inherent
reasoning to enhance process-level evaluation.
First, we leverage stronger LLMs to generate
seed data from limited annotations, effectively
activating reasoning capabilities and enabling
comprehensive step-by-step evaluation. Sec-
ond, we explore self-improvement of our PRM
through preference optimization, without re-
quiring additional annotated data. Third, we
introduce inference time scaling to fully har-
ness our model’s reasoning potential. Exten-
sive experiments demonstrate R-PRM’s effec-
tiveness: on ProcessBench and PRMBench, it
surpasses strong baselines by 13.9 and 8.5 F1
scores. When applied to guide mathematical
reasoning, R-PRM achieves consistent accu-
racy improvements of over 8.6 points across
six challenging datasets. Further analysis re-
veals that R-PRM exhibits more comprehensive
evaluation and robust generalization, indicating
its broader potential.

1 Introduction

Recently, large language models (LLMs) have
demonstrated significant progress in solving chal-
lenging mathematical problems through chain-of-
thought reasoning (Wei et al., 2023; Yang et al.,
2024; Shao et al., 2024). However, LLMs still tend
to make reasoning errors, undermining the reliabil-
ity of their solutions and hindering their capacity
to generate correct solutions.

Therefore, Process Reward Models (PRMs) have
been proposed to further improve model reason-

ing ability (Lightman et al., 2023). Unlike Out-
come Reward Models (ORMs) that only focus
on the final results, PRMs evaluate each reason-
ing step in a more fine-grained manner, enabling
them to better identify and mitigate error processes,
thereby improving both performance and general-
ization (Lightman et al., 2023; Wang et al., 2024b).

A primary challenge in PRM development arises
from data scarcity. While human annotation can
provide high-quality process-level labels (Light-
man et al., 2023), it incurs substantial costs. Al-
ternative automated approaches, such as Monte
Carlo (MC) methods that estimate step correctness
based on the probability of reaching the correct fi-
nal answer (Wang et al., 2024b,a; Luo et al., 2024b),
or methods that use stronger language models as
judges for data filtering (Zhang et al., 2025b), have
shown some promise. However, these methods
either require significant computational resources
or still struggle with noise and bias, leaving the
challenge of sufficient high-quality training data
unresolved.

Moreover, existing process reward models di-
rectly provide evaluations based on the given steps.
We argue that for challenging process-level eval-
uation tasks, this direct evaluation approach con-
strains the model’s learning process and reduces
learning efficiency. Furthermore, it lacks inter-
pretability, as it fails to identify why specific steps
are incorrect, making it difficult to provide con-
structive feedback for improvement.

To address these issues, we propose a Reasoning-
Driven Process Reward Modeling (R-PRM) frame-
work that leverages the inherent reasoning capa-
bilities of LLMs to conduct process-level eval-
vation. The framework consists of three key
components: First, we construct seed data by
prompting stronger LL.Ms based on a small set
of human-annotated process-level labels and sub-
sequently fine-tune Qwen2.5-Math-7B-Instruct as
a quick cold-start. Through this reasoning-centric
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paradigm, our model develops the capability to per-
form comprehensive and transparent analyses for
evaluating complex solution steps of challenging
questions. Second, we explore the self-evolution of
our model through preference optimization, which
encourages the model to generate reasoning trajec-
tories that yield correct evaluations. This approach
enables our model to improve its capabilities with-
out requiring additional annotated data. Finally,
we further exploit the reasoning capabilities of our
model at inference time, allowing multiple evalua-
tion trajectories to be sampled for a more compre-
hensive and robust assessment without training.
When evaluated on ProcessBench and PRM-
Bench, our R-PRM achieves F1 score improve-
ments of 13.9 and 8.5 points, respectively, over the
strongest baseline trained on the same data. Further-
more, when used to guide policy model reasoning
via Best-of-N and Guided Search strategies, our
approach improves accuracy by average margins of
8.6 and 8.4 points over the Pass@1 baseline across
six challenging math datasets, outperforming both
majority voting and all existing PRM baselines.
Further analysis reveals our three key additional ad-
vantages: (1) comprehensive evaluation coverage
through multi-dimensional analysis, (2) enhanced
generalization capability across diverse datasets,
and (3) progressive accuracy improvement with in-
creased reasoning budgets, suggesting significant
potential for reasoning-system optimization.

2 Related Work

2.1 Mathematical Reasoning

Recent studies have demonstrated that LLMs ex-
hibit enhanced reasoning capabilities when gener-
ating step-by-step solutions before providing the
final answers (Wei et al., 2023). Building on this
insight, several pioneering works have focused on
developing large-scale mathematical datasets with
high-quality reasoning annotations for fine-tuning
of LLMs (Luo et al., 2025; Wang et al., 2023;
Shao et al., 2024; Yang et al., 2024). However,
even when models arrive at correct final answers,
their intermediate reasoning steps may contain crit-
ical errors. This discrepancy undermines the re-
liability of their problem-solving processes and
poses significant obstacles for future model im-
provements (Zheng et al., 2024).

Parallel advancements (Snell et al., 2024; O1,
2023; DeepSeek-Al, 2025; QwQ, 2023) in infer-
ence time have demonstrated that increasing the

computational budget to enable multiple reason-
ing attempts, coupled with majority voting mecha-
nisms for answer selection, can achieve remarkable
accuracy improvements.

2.2 Reward Modeling of Reasoning

Reward models are introduced to further improve
mathematical reasoning by enhancing training data
quality, guiding model learning (Lightman et al.,
2023; Cobbe et al., 2021; Uesato et al., 2022),
and guiding the policy model’s reasoning pro-
cess through Best-of-N and Guided-Search meth-
ods (Wang et al., 2024b; Zhang et al., 2025b).

Currently, reward models are typically catego-
rized into Outcome Reward Models (ORMs) and
Process Reward Models (PRMs) (Lightman et al.,
2023). ORMs focus on providing an overall evalu-
ation based on whether the correct answer is ulti-
mately obtained (Cobbe et al., 2021). In contrast,
PRMs provide a fine-grained evaluation for each
reasoning step, and many works have shown that
they can achieve better results (Lightman et al.,
2023; Uesato et al., 2022). Data for PRM is ex-
tremely scarce, and its annotation is costly (Light-
man et al., 2023; Wang et al., 2024b; Luo et al.,
2024b; Zhang et al., 2025a). Some studies ex-
plore automatic synthesis strategies, such as us-
ing Monte Carlo (MC) estimation methods (Wang
et al., 2024b; Luo et al., 2024b). However, MC
methods incur a large computational cost and in-
evitably introduce bias and noise (Zheng et al.,
2024). (Zhang et al., 2025b) propose combining
MC with LLM as a judge, helping to reduce noise.
The quality and quantity of step-level reasoning
evaluation data are still limited, and this remains
an unsolved challenge.

3 Method

In this section, we propose a novel reasoning-
driven process-level reward modeling framework.
Its core objective is to fully leverage the inher-
ent reasoning capabilities of LLMs to evaluate
the given reasoning steps, achieved through three
stages: cold start with limited labeled data, self-
evolution via preference optimization, and infer-
ence time scaling.

3.1 Reasoning for Process Reward Modeling

Given a mathematical problem (), the policy model
generates a sequential chain-of-reasoning process
S = {s1, s2, ..., Sn}, where each reasoning step s;
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Figure 1: Illustration of R-PRM framework. For brevity, only partial analytical reasoning trajectories are shown.
White robots indicate initial models, while colored ones represent models after our training procedure.

is generated conditioned on both the problem @
and all preceding steps {s1, ..., s;—1}. To evaluate
the quality of each reasoning step, current process-
level reward models employ a direct prediction
mechanism that assigns a score to each step. This
evaluation process can be formally expressed as:
Ri = M(Q, Sy eeey Si)

where M () represents the reward model that out-
puts a scalar reward R; for the step s;. However,
evaluating reasoning steps on hard math questions
is quite challenging, and direct prediction is rela-
tively difficult for the reward model. Additionally,
scores generated directly often suffer from a lack
of explainability.

To solve these issues, we propose a reasoning-
driven process reward model G that performs two
phases within a single generation process as illus-
trated in Figure 1. First, G generates a comprehen-
sive analysis A; of each reasoning step s;, consist-
ing of multiple analytical dimensions: examining
historical reasoning steps, assessing the objective
and data sources of the current step, verifying its
coherence with preceding steps, and validating the
calculations involved. Then, G generates a natural
language judgment J; indicating the correctness of
the step, expressed as “Yes” or “No”.

Ai = G(Q, Sy --

asi)
Ji = G(Q7 81y .44y Siy AZ)

To help LLMs fully leverage their reasoning abil-
ities, we designed a quick cold-start phase. In this
phase, we prompt a stronger LLM with samples

from PRMS80OOK to generate (Q, si1.;, A;, J;) tu-
ples !. We retain only those evaluation analyses
that produce a judgment consistent with human la-
bel. Subsequently, we concatenate the analysis and
judgment as the target sequence, which is then used
to fine-tune our PRM. Let Y; denote the evaluation
trajectory for s;:
Yi=AieJi={y,y2,---,u}

t
Lsrr = — Y 1ogp(y;1Q, s1:6,y155-1)
7=1

where y; denotes the j-th token in the output se-
quence Y;, and ¢ is the total length of the sequence.
This is equivalent to standard instruction tuning,
where the model learns to generate both the analy-
sis and the judgment in a single forward pass.

3.2 Process Reward Modeling
Meta-Optimization

Although cold start activates the model’s reason-
ing ability, it may still yield incorrect judgments.
Facing the challenge of data scarcity, we further
explore how our process reward model can self-
evolve without incorporating additional data. We
propose Meta-Optimization, which employs prefer-
ence optimization method to refine the reasoning
behavior of our R-PRM, thereby guiding it towards
making accurate judgments.

For simplicity, we implement our approach us-
ing Direct Preference Optimization (DPO, Rafailov
et al., 2024), one of the popular preference opti-
mization algorithms. DPO involves an input pair

'"The prompt we used is listed in Appendix G
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(Y™, Y"), where Y'" is favored over Y. Accord-
ingly, multiple evaluation processes and their cor-
responding judgments are sampled and categorized
into two groups depending on whether the judg-
ments align with the annotated labels. We encour-
age our PRM to generate evaluation trajectory that
can yield correct judgments; therefore, we treat
consistent trajectories as Y and inconsistent ones
as Y to construct preference pairs. We copy and
freeze R-PRM-SFT as the reference policy 7. and
optimize it using the following loss function:

Lppo(7g; Tref) = —E(y yw yi)un

7o (Y | ) mo(Y! | 2)
[log“ (5 o8 (Vo [2) PO (VT x))]

3.3 Inference-Time Scaling Strategy

Leveraging R-PRM’s capability to generate diverse
evaluation trajectories, we explore the scalable in-
ference strategy that enhances evaluation perfor-
mance without training. During inference, for each
reasoning step s;, we sample K independent ana-
lytical processes as follows:

(AP, JP) = G(Q. 51, ..

) %

,Si),k S [1,K]

where each A%) represents a distinct analytical
reasoning process and .J (k) is the corresponding
judgment. This multi-trajectory approach helps
mitigate potential reasoning inconsistencies and
stochastic variations inherent in LLMs. To aggre-
gate multiple evaluations, we calculate the average
probability of “Yes” judgments (using softmax with
“No” judgments) as the reward:

K
1
R; = % I;P(Ji(k) = “Yes”|Q, s1, ..., Si,AEk)).

4 Experiment

4.1 Experiment Settings

Tasks and Benchmarks: To validate the accu-
racy of our method in process reward modeling,
we conduct evaluations on two challenging bench-
marks ProcessBench (Zheng et al., 2024) and PRM-
Bench (Song et al., 2025).

* ProcessBench (Zheng et al., 2024) assesses a
model’s ability to detect the first incorrect step
in LLM-generated mathematical solutions. It
consists of 3,400 problems of varying diffi-
culty, each paired with a step-by-step solution
and human annotation of the earliest error.

* PRMBench (Song et al., 2025) constitutes
a comprehensive benchmark for evaluating
PRMs, with particular emphasis on granular
error diagnosis. It assesses evaluation capabil-
ities across three error dimensions: Simplicity,
Soundness, and Sensitivity, which are further
divided into nine specific aspects .

Furthermore, we validate the effectiveness

of our model by employing it to guide two
distinct test-time scaling paradigm: Best-of-N
and Guide Search. Performance is evaluated
on MATHS500 (Lightman et al., 2023), Min-
erva Math (Lewkowycz et al., 2022), Olympiad-
Bench (He et al., 2024), College Math (Tang et al.,
2024) 3, AIME24, and AMC23. Consistent with
previous work (Zhang et al., 2025b), we used
Qwen2.5-7B-Instruct to generate eight candidate
steps with temperature 7=1.0.

* Best-of-N: selects the response with the high-
est score among N candidates, as evaluated
by a PRM.

* Guide Search: at each step, the model gen-
erates [V candidate continuations and selects
the one with the highest reward score, as eval-
uated by the PRM, to extend the reasoning.
This process repeats until the solution is com-
plete.

Baselines: We selected the following strong pro-
cess reward models as baselines.

* Math-Shepherd (Wang et al., 2024b): Auto-
matically obtaining the probability of reach-
ing the correct solution as step labels based
on Monte Carlo Tree Search (MCTS).

* Math-PSA (Wang et al., 2024a): combining
existing automatic annotation techniques (Luo
et al., 2024a) and integrating data from Math-
Shepherd and PRM80OK datasets.

* RLHFlow-DeepSeek/Mistral (Dong et al.,
2024): Similar to Math-Shepherd, but trained
with iterative DPO.

* Skywork-PRM-7B (o1 Team, 2024): based
on Qwen2.5-Math-Instruct and recently re-
leased by Skywork.

* ReasonEval-7B (Xia et al., 2025): Evaluates
mathematical problem-solving step by step,
assessing validity and redundancy.

¢ Llemma-PRMS800K-7B (Sun et al., 2024):
Trained exclusively on PRM8O0OK from levels

2See Appendix C for detailed description.

*Due to the large size of OlympiadBench and College
Math, we randomly select 200 samples from each for evalua-
tion.
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MODEL GSMSK MATH OlympiadBench OmniMATH Ave, F1
error correct F1 error  correct F1 error  correct F1 error  correct F1
LLM-as-judge, Proprietary language models
GPT-40* 70.0 91.2 79.2 54.4 76.6 63.6 458 58.4 51.4 45.2 65.6 53.5 61.9
ol-mini* 88.9 97.9 93.2 83.5 95.1 88.9 80.2 95.6 87.2 74.8 91.7 824 87.9
LLM-as-judge, Open-source language models
Llama-3.3-70B-Instruct 71.0 97.9 823 42.8 95.3 59.0 30.7 94.1 46.3 27.4 88.8 41.9 57.4
Qwen2.5-Math-72B-Instruct 51.7 95.9 67.2 36.9 943 53.0 18.9 96.5 31.6 19.8 95.4 327 46.1
Qwen?2.5-72B-Instruct 62.8 97.4 76.4 46.1 93.1 61.7 37.7 92.9 53.6 375 87.1 52.5 61.1
PRMs
Math-Shepherd-7B* 324 91.7 479 18.0 82.0 29.5 15.0 71.1 24.8 14.2 73.0 23.8 315
Math-PSA-7B 483 88.1 62.4 29.5 72.7 419 20.7 65.8 31.5 154 68.9 252 40.3
RLHFlow-Mistral-8B* 33.8 99.0 50.4 21.7 722 334 8.2 43.1 13.8 9.6 45.2 15.8 28.4
RLHFlow-DeepSeek-8B* 242 98.4 38.8 214 80.0 33.8 10.1 51.0 16.9 10.9 51.9 16.9 26.6
Llemma-PRM800K-7B 36.7 71.0 48.4 39.2 47.8 43.1 33.1 25.1 28.5 354 315 334 384
Skywork-PRM-7B* 61.8 82.9 70.8 43.8 62.2 53.6 17.9 31.9 229 14.0 419 21.0 42.1
ReasonEval-7B 26.1 95.3 41.0 35.7 77.6 48.9 27.5 55.2 36.7 27.0 60.6 374 41.0
Qwen2.5-Math-7B-PRM800K* 53.1 95.3 68.2 48.0 90.1 62.6 35.7 87.3 50.7 29.8 86.1 443 56.5
% R-PRM-7B-SFT 66.2 92.7 77.2 60.3 88.2 71.6 48.6 71.3 59.6 40.1 75.5 52.3 65.2
% R-PRM-7B-DPO 72.0 91.7 80.7 71.2 83.5 76.9 60.2 67.8 63.8 55.5 65.6 60.1 70.4

Table 1: Performance on ProcessBench. s indicates our models. Results marked with * are from Zhang et al.. Bold
indicates the best within PRMs. For LLM-as-judge baselines, we sample 10 trajectories and apply majority voting
to align with our method. The correct and error indicate accuracy on correct and incorrect samples, respectively.

Simplicity

Soundness

Sensitivity

Model Name Overall
NR. NCL. Avg. ES SC. DC. CI Avg. PS DR. MS. Avg.
LLM-as-judge, Proprietary language models
GPT-40* 57.0 62.4 59.7 720 69.7 707 71.1 70.9 625 657 99.2 75.8 66.8
ol-mini* 65.6 63.7 646 745 677 738 723 721  61.8 648 1000 755 63.8
PRMs
Math-Shepherd-7B* 44.0 50.3 47.1 494 445 413 477 457 472 486 86.1 60.7 47.0
Math-PSA-7B 47.6 55.1 513 565 494 471 542 518 517 541 88.9 64.9 523
RLHFlow-Mistral-8B* 46.1 473 467 56.6 551 544 638 575 515 562 97.9 68.5 54.4
RLHFlow-DeepSeek-8B* 46.4 48.9 476 557 550 532 662 575 490 554 99.8 68.1 54.2
Llemma-PRM800k-7B* 49.3 53.4 51.4 56.4 47.1 46.7 53.3 50.9 51.0 53.5 93.6 66.0 52.0
Skywork-PRM-7B* 35.7 41.2 384 367 29.1 306 344 327 368 374 88.8 543 36.2
ReasonEval-7B* 61.0 50.1 555 621 659 615 660 639 556 580 99.5 71.0 60.0
Qwen2.5-Math-7B-PRM800K ~ 48.6 47.8 482 621 594 587 685 622 529 640 99.8 72.2 58.3
% R-PRM-7B-SFT 52.7 64.7 587 70.1 627 634 695 664 614 674 98.3 75.7 64.9
% R-PRM-7B-DPO 522 58.2 552 721 691 689 750 712 612 695 99.1 76.6 66.8

Table 2: Performance on PRMBench. % represents the models we trained. Results marked with * come from Zhang

et al. Bold text denotes the best results within PRM.

1 through 3.

* Qwen2.5-Math-7B-PRM800K (Zheng et al.,
2024): Qwen2.5-Math-7B-Instruct fine-tuned
on the PRM800K dataset.

Implementation details: We prompt LLaMA3.3-
70B-Instruct to generate four evaluation trajecto-
ries per PRM80OK case, yielding approximately
289k SFT and 269k DPO samples. Qwen2.5-Math-
7B-Instruct is fine-tuned for one epoch with batch
size 128 and learning rates of S5e-6 (SFT) and 5e-7
(DPO). We reserve 20k samples for validation and
select the checkpoint with the lowest validation
loss. Unless stated otherwise, results are reported
using ten evaluation trajectories per step.

4.2 Experiment Results

R-PRM achieves high evaluation accuracy effi-
ciently. As detailed in Table 1 and Table 2, our
SFT approach demonstrates strong performance,
achieving F1 scores of 65.2 on ProcessBench
and 64.9 on PRMBench. These results signifi-
cantly outperform state-of-the-art baselines, includ-
ing Qwen2.5-Math-7B-PRMS800K (the strongest
PRMS800K-based method), by 8.7 and 6.6 points,
respectively. The model’s capabilities are further
elevated through meta-optimization, leading to re-
markable F1 scores of 70.4 on ProcessBench and
66.8 on PRMBench. These improvements high-
light the potential of our reasoning driven evalua-
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Olympiad College Minerva

Setting AIME24 AMC23 MATHS00 Bench Math Math Avg.
Pass@1 11.2 47.8 73.0 38.0 38.6 37.2 41.0
Maj@8 20.0 57.5 79.6 47.0 41.5 42.7 48.0
Pass@8 (Oracle) 33.3 82.5 88.8 58.5 47.5 57.7 61.4
Math-Shepherd-7B 133 525 74.6 385 36.5 41.2 42.8
Math-PSA-7B 6.7 57.5 79.8 425 41.0 39.3 44.5
RLHFlow-PRM-Mistral-8B 10.0 57.5 73.4 37.5 38.0 41.2 42.9
RLHFlow-PRM-DeepSeek-8B 13.3 52.5 74.8 39.5 37.0 40.8 43.0
Llemma-PRM800K-7B 133 57.5 73.8 40.0 36.5 38.2 43.2
Skywork-PRM-7B 10.0 57.5 77.8 41.5 39.0 43.4 44.9
ReasonEval-7B 33 55.0 73.0 37.5 35.5 379 40.4
Qwen2.5-Math-7B-PRM800K 23.3 45.0 78.2 42.0 35.5 38.6 43.8
% R-PRM-7B-DPO 16.7 70.0 80.0 46.5 39.5 434 494

Table 3: The performance of PRM-guided greedy search with the Qwen2.5-7B-Instruct policy model, where superior
performance indicates a more accurate reward from the PRM and consequently, more effective guidance.

tion paradigms and our training framework.

Impressively, R-PRM-DPO achieves F1 score
improvements of 13.0 points over LLaMA3.3-70B-
Instruct (used for generating our synthetic cold-
start data) and 8.5 points over GPT-40. Collectively,
these findings directly demonstrate that our method
extends beyond simple distillation and maximizes
the utility of human-annotated data.

We also conducted additional experiments to val-
idate the effectiveness of continuous self-evolution
through two rounds of iterative training. After the
second iteration, our model achieved an average
F1 score of 74.1 on ProcessBench, these results
demonstrate the significant potential of our method.
Please refer to Appendix 5.1 for comprehensive
results.

R-PRM provides comprehensive evaluations in
multiple dimensions. In rigorous benchmark-
ing with PRMBench, R-PRM-DPO demonstrates
advantages over Qwen2.5-Math-7B-PRMS800K,
achieving improvements of 7.0, 9.0, and 4.4 points
across the three evaluation dimensions. Notably, it
surpasses GPT-4o in both soundness and sensitivity
metrics, establishing itself as a more comprehen-
sive assessment paradigm.

R-PRM especially excels in soundness evalua-
tion through its reasoning paradigm for empirical
validity, step consistency, and domain consistency.
This structural evaluation paradigm enables supe-
rior detection of logical errors by analyzing each
reasoning step in context of previous ones. More-
over, R-PRM even outperforms ol-mini in prereq-
uisite sensitivity, effectively identifying reasoning
steps that appear superficially valid but contain
logical flaws—precisely the type that conventional
evaluation systems frequently fail to detect.

R-PRM demonstrates superior generalization
capability. As shown in Table 1, all listed open-
source PRMs, except Skywork-PRM-7B for which
the training data sources is unknown, have been
trained exclusively on GSM8K and MATH. Among
these PRMs, only Math-PSA-7B and Qwen?2.5-
Math-7B-PRMS800K achieve F1 scores above 60 on
certain ProcessBench subsets, while others perform
relatively poorly, particularly on out-of-domain
datasets such as OmniMATH and OlympiadBench.
By contrast, R-PRM not only performs well on the
MATH dataset but also achieves F1 scores above
60 on all out-of-domain datasets. This suggests that
R-PRM acquires a generalizable reasoning pattern,
enabling it to perform well across datasets with
varying difficulty.

R-PRM guides policy model to reach correct
answer effectively. As shown in Table 3 and Ta-
ble 4, our method achieves 8.4 and 8.6 average
accuracy improvements over the Pass@1 baseline
in the Guide Search and Best-of-N settings, re-
spectively. It also achieves state-of-the-art per-
formance by outperforming Qwen2.5-Math-7B-
PRMS800K by 5.6 and 1.9 points, and surpassing
Majority Voting in both settings. Moreover, on the
AIME24 benchmark, R-PRM boosts DeepSeek-
R1-Distilled-Qwen-7B’s Pass @1 from 54.5 to 60.8,
demonstrating its effectiveness even for advanced
reasoners (see Appendix B for details). These re-
sults directly demonstrate that our method’s ac-
curate reward evaluation at each reasoning step
effectively guides the policy model to arrive at cor-
rect solutions. Furthermore, we believe our ap-
proach holds greater potential for integration with
backtracking-enabled strategies like Monte Carlo
Tree Search and multi-candidate strategies such as
Beam Search, which further boost the performance
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Olympiad College Minerva

Setting AIME24  AMC23  MATH500 P Math  Math AvE
Pass@1 11.2 47.8 73.0 38.0 38.6 372 410
Maj@8 20.0 575 79.6 47.0 415 427 480
Pass @8(Oracle) 333 82.5 88.8 58.5 475 577 614
Math-Shepherd-7B 16.7 425 76.0 42.0 37.0 393 423
Math-PSA-7B 20.0 55.0 80.8 475 39.5 401 472
RLHFlow-Mistral-8B 10.0 55.0 76.8 42.0 39.5 371 434
RLHFlow-DeepSeck-8B 13.3 575 76.2 40.0 39.0 39.7 443
Llemma-PRMS00K-7B 10.0 525 76.6 425 39.0 427 439
Skywork-PRM-7B 16.7 55.0 81.2 44.0 40.5 445 470
ReasonEval-7B 6.7 55.0 75.2 41.0 40.0 404 431
Qwen2.5-Math-7B-PRM800K ~ 13.3 575 80.0 445 435 430 477
% R-PRM-7B-DPO 20.0 62.5 82.2 48.0 41.0 441 496

Table 4: Performance comparison on the Best-of-8 strategy of the policy model Qwen2.5-7B-Instruct, where
superior performance indicates a more accurate reward from the PRM and consequently, more effective guidance.

R-PRM-SFT
W= R-PRM-DPO
W= R-PRM-DPO-lterl
= R-PRM-DPO-lter2

F1 Score

GSM8K MATH OlympiadBench

Datasets

OmniMATH Average

Figure 2: Performance of R-PRM on ProcessBench
across self-improving iterations.

of policy model.

5 Analysis

In this section, we further delve into our R-PRM’s
core strengths: impressive self-evolution, remark-
able data efficiency, and efficient inference-time
scaling, culminating in a case study that demon-
strates its practical efficacy.

5.1 Self-Improve Further Boosts Performance

To investigate the potential for self-improvement,
we explore an iterative refinement strategy. In the
first iteration, we employ the R-PRM-DPO model
to sample trajectories from the PRM8O0OOK dataset,
from which we construct a new preference dataset
of 30k examples. Fine-tuning on this data for one
epoch yields R-PRM-DPO-Iter1. As shown in Fig-
ure 2, this iterative process leads to consistent per-
formance gains across all benchmarks. Notably,
R-PRM-DPO-Iter] improves the performance on
OlympiadBench by 3.4 points to 67.2 and achieves
an average improvement of 2.2 points on Process-
Bench. A second iteration (R-PRM-DPO-Iter2)
continues this upward trend, demonstrating that it-

70- *
*
O
60- o LLaMA3.3-70B-Instruct
© o Qwen2.5-PRMBOOK
S s0-
(2]
T < Math-Shepherd
a0 ° B RLHFlow-DeepSeek
A V  RLHFlow-Mistral
A Llemma-PRM800K
’ £ Qwen2.5-PRM800K
30- Q ReasonEval
.v % R-PRM

0 100 200 300 400 500 600 700
Training Data Amount (K)

Figure 3: Average F1 score on ProcessBench with dif-
ferent training data scales.

erative DPO progressively enhances the model’s
reasoning capabilities for tackling more challeng-
ing evaluation tasks.

5.2 Effective Data Scaling

Figure 3 visualizes the F1 performance on Process-
Bench versus the data scale. With 12.8k training
samples, our R-PRM already surpasses most open-
source PRMs. Notably, with only 64k samples, R-
PRM outperforms Qwen2.5-Math-7B-PRM800K
(trained on 265k samples) by 3.6 points. Further
scaling to the full 285k-sample dataset yields con-
tinued gains, reaching an F1 score of 65.2, clearly
demonstrating the strong data efficiency and scala-
bility of our approach.

Moreover, our proposed meta-optimization,
without requiring any additional labeled data, fur-
ther boosts performance to an impressive F1 score
of 70.4. Even more notably, R-PRM also exceeds
the Llama3.3-70B-Instruct model used for cold-
start data construction, demonstrating that our ap-
proach is not merely a distillation of the teacher
model but a meaningful advancement beyond it.
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Figure 5: Efficient scaling inference-time compute on
ProcessBench. Results for R-PRM-DPO.

5.3 Effective Inference Time Scaling

We investigated how R-PRM’s performance scales
with the inference budget. As shown in Figure 5,
R-PRM demonstrates consistent performance gains
as the number of evaluation trajectories increases.
Notably, scaling from K = 2 to K = 4 trajecto-
ries yields a substantial F1 improvement from 62.8
to 67.6, which demonstrates the robustness of our
scaling strategy and highlights a unique advantage
of our reasoning-driven approach. Crucially, this
performance scaling is achieved with an acceptable
computational overhead, confirming the practical
efficiency of our method. A detailed analysis of
the performance-cost trade-off is provided in Ap-
pendix A. We recommend using K = 4 as it offers
an excellent trade-off between performance and
computational cost.

5.4 Threshold Robustness

During evaluations of ProcessBench and PRM-
Bench, we adopt a fixed threshold of 0.5 for binary
classification to determine whether each step is cor-
rect. We further analyze the model’s sensitivity to
threshold variations across different problem com-
plexities. As shown in Figure 4, on the MATH sub-
set of ProcessBench, R-PRM demonstrates strong

robustness to threshold variation, with minimal
performance fluctuations on ProcessBench. In
contrast, Qwen2.5-Math-7B-PRMS800K exhibits
greater sensitivity, showing a noticeable rightward
shift in its performance curve on ProcessBench.

On the more challenging out-of-domain test sub-
set OlympiadBench, our method maintains its ro-
bustness to threshold variations, while Qwen2.5-
Math-7B-PRMS800K exhibits a larger threshold
shift, indicating its tendency to misclassify incor-
rect solutions as correct. This demonstrates that
our method has better generalization capability,
maintaining more accurate evaluation even when
problem types and domains change. For detailed
performance analysis of scores and thresholds on
PRMBench, please refer to the Appendix D.

5.5 Case Study

As illustrated in Figure 6, the solution mistakenly
skipped verifying the number 19 in Step 7 and
proceeded directly to check number 23 in Step 8.
Unfortunately, the strong baseline Qwen2.5-Math-
7B-PRMS800K failed to recognize the omission,
incorrectly assigning a high reward score of 0.86
to Step 8.

In contrast, R-PRM carefully analyzed both the
previous and current steps before making its judg-
ment. Based on this analysis, R-PRM concluded
that the task required verifying the numbers in as-
cending order, which showcases its advanced logi-
cal reasoning capabilities. Subsequently, R-PRM
resumed the reasoning process for Step 7 to ver-
ify the correctness of number 19, thus identifying
the discrepancy between its own result and the an-
swer in Step 8. Through this reasoning process,
R-PRM assigned a reward score of 0.05 to Step 8,
successfully detecting the error. Please refer to the
Appendix E for more cases.
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Problem: An emirp is an integer that, when its digits are written in reverse order, is a prime number. For example, 73 is
an emirp because 37 is prime. What is the smallest two-digit prime number that is NOT an emirp?

Solution: ...

Step7: Continue to the next smallest two-digit prime number. 19 is prime.
Step 8: Check if 23 is an emirp. Reverse the digits of 23: 32. Check if 32 is prime: No, 32 is not prime (divisible by 2).
Since 23 is a prime number and its reverse, 32, is not a prime number, 23 is not an emirp. ...

Qwen2.5-Math-7B-PRMS800K score: 0.859

R-PRM: Analysis: Previous Steps Analysis: ...

Calculation Analysis:

Verification: Is the step correct (Yes/No)? No

...... Upon reviewing, the mistake in the analysis is assuming 23 is the answer without
properly checking if there are smaller primes that are not emirps.
regarding the thorough checking of primes and their reversals, the conclusion that 23 is the smallest such prime
without properly validating against all primes in sequence is premature. ......

Conclusion: The Now Step incorrectly concludes that 23 is the smallest two-digit prime number ......

...... Given the oversight in the analysis

R-PRM (Majority Voting) score: 0.055

Figure 6: A case study from ProcessBench MATH dataset. Red text denotes the error step, and the blue text

highlights our model’s critique of the error.

6 Conclusion

In this paper, we present Reasoning-Driven Pro-
cess Reward Modeling (R-PRM), a novel frame-
work that advances the process reward modeling of
mathematical reasoning. Our framework consists
of three components. First, we leverage stronger
LLMs to construct seed data, enabling our model to
perform a comprehensive evaluation process. Sec-
ond, we use preference optimization to enhance per-
formance without requiring additional annotated
data. Third, we introduce inference-time scaling
to fully harness the model’s reasoning capabili-
ties. Extensive experiments demonstrate that our
method achieves significant performance improve-
ments on ProcessBench and PRMBench, while also
effectively guiding LLM reasoning. Further anal-
ysis shows that R-PRM exhibits more comprehen-
sive, robust, and generalizable evaluation capabili-
ties, as its performance continues to improve with
increased inference, highlighting its substantial po-
tential.

Limitations

Due to computational resource constraints, we have
not yet verified our approach on larger models such
as 70B, despite extensive experiments demonstrat-
ing its effectiveness on 7B models. We hypothesize
that larger models, given their enhanced reasoning
capabilities, could achieve higher modeling accu-
racy when combined with our methodology. Ad-
ditionally, while we have tested popular inference
strategies like Best-of-N and Guided Search, our
exploration of advanced search algorithms remains
limited. Sophisticated methods such as Monte

Carlo Tree Search (MCTS) and Beam Search re-
main underexplored, although they could poten-
tially better leverage the characteristics of PRM
and yield improved generation results.
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A Practical Inference-Time Overhead
Analysis of R-PRM

To evaluate the practical computational overhead of
R-PRM in real-world use cases, we benchmarked
inference speed under realistic deployment settings.
Figure 7 presents the average time required to eval-
uate a single ProcessBench example at different
sample sizes (K) on a single NVIDIA H100 GPU
(VLLM 0.8.4).

Experiments show that with K=4, evaluating a
single data point takes only 0.52 s, which balances
performance and computational cost. To contextu-
alize this for a practical application like online rein-
forcement learning, consider a common setup with
128 prompts and 8 rollouts. In this scenario, com-
puting rewards with our R-PRMs across 8 GPUs
requires only 66.56 seconds for K=4, and this time
reduces to just 23.4 seconds for K=1.

These results indicate that R-PRM’s inference
overhead is acceptable for typical online training
pipelines, and even more favorable for offline or
latency-insensitive tasks such as SFT or DPO data
synthesis. The sublinear scaling further suggests
that increasing the number of samples yields better
accuracy with moderate additional cost, making
R-PRM practical for large-scale or production en-
vironments.

B R-PRM Guidance for Long-Reasoning
Model

To assess R-PRM’s efficacy on long-form reason-
ing, we evaluated it on the DeepSeek-RI-Distilled-
Owen-7B model using the AIME24 benchmark.
To manage the lengthy reasoning, we restricted
R-PRM guidance to the initial 30 steps. Specifi-
cally, we constructed a guided prefix by iteratively
selecting the highest-scoring continuation out of
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Figure 7: R-PRM-DPO-Iter2 Inference Time vs F1 on
ProcessBench

Model Avg@16 (%)
DeepSeek-R1-Distilled-Qwen-7B 54.5
w/ R-PRM-DPO (Guide Search) 60.8

Table 5: Accuracy of DeepSeek-R1-Distilled-Qwen-7B
on AIME24 with and without R-PRM guidance.

8 candidates at each step. Following this 30-step
guided generation, the model completed the reason-
ing chain autoregressively. We sampled 16 such
completions and found that this partial guidance in-
creased the average accuracy (avg@16) to 60.8%, a
notable improvement over the 54.5% baseline. This
result demonstrates that even limited, early-stage
guidance from R-PRM can significantly enhance
the performance of long-reasoning models.

C Detailed Description of PRMBench
Subcategories

* Non-Redundancy (NR): Evaluates the
model’s ability to identify and eliminate
unnecessary steps within the reasoning pro-
cess, ensuring efficiency without sacrificing
correctness.

* Non-Circular Logic (NCL): Assesses
whether the model can detect circular reason-
ing, where conclusions are reintroduced as
premises, leading to logical loops.

Empirical Soundness (ES): Measures the
model’s capability to identify and reject rea-
soning steps that contradict established facts
or real-world knowledge.

» Step Consistency (SC): Evaluates whether
the reasoning steps maintain consistency with
each other, ensuring that all steps logically
flow from one to the next.
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* Domain Consistency (DC): Assesses the
model’s ability to apply domain-specific
knowledge correctly, avoiding the misuse of
concepts or theories across different domains.

¢ Confidence Invariance (CI): Tests whether
the model maintains appropriate confidence
levels throughout the reasoning process, espe-
cially when errors are detected or uncertain-
ties arise.

Prerequisite Sensitivity (PS): Evaluates
whether the model detects missing prerequi-
sites or conditions essential for valid reason-
ing, ensuring the completeness of the logic.

Deception Resistance (DR): Measures the
model’s ability to detect and reject mislead-
ing information that might appear correct but
contains subtle errors.

Multi-Solution Consistency (MS): Assesses
the model’s ability to handle multiple valid
solutions to the same problem, ensuring con-
sistency across different reasoning paths.

D Threshold Robustness on PRMBench

As illustrated in Figure 8, the experimental results
of PRMBench show that R-PRM has significant
robustness advantages, while Qwen2.5-Math-7B-
PRMS8O00K exhibits a performance gap of 8.2 points
between the 0.5 threshold and its optimal perfor-
mance.

8 R-PRM-DPO
Bl Qwen2.5-Math-7B-PRM800K

Max: 66.5%

0558EiIIIIII

Threshold

65

PRMBench Overall Score
P
o
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Figure 8: PRMBench Overall Score with Different
Threshold

E Additional Case

As shown in this case, Qwen2.5-Math-7B-
PRMSOOK fail to detect the calculation error in
this step, yet they show high confidence in their
judgments with their correctness scores around 0.9.
On the other hand, our R-PRM shows its strong

ability by explaining the step, checking the calcu-
lation, and finding the error, with a final score of
around 0.3.

F Used Scientific Artifacts

Below are the scientific artifacts used in our work.
For the sake of ethics, our use of these artifacts is
consistent with their intended use.

» Transformers (Apache-2.0 license), a frame-
work to facilitate downloading and training
state-of-the-art pretrained models.

* trl (Apache-2.0 license), a full stack library
that provides a set of tools to train transformer
language models with Reinforcement Learn-
ing. The library is built on top of the Trans-
formers library.

* PRMSOOK(MIT license), a large-scale dataset
proposed by OpenAl, containing 800,000 step-
level correctness labels for model-generated
solutions to problems from the MATH dataset.

* PRMBench(Apache-2.0 license), a benchmark
designed to evaluate the ability of PRMs
to identify error-types in the solution pro-
cess, consisting of 6,216 fine-grained data in-
stances.

G Prompt for Construction Data
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Problem: Suppose ¢ is a positive integer such that lem[12, ¢]* = (12¢)?. What is the smallest possible value for ? \

Solution:

To solve this problem, we can start by using the properties of the least common multiple (LCM). Given: lem[12,¢]® =
(12t)2.

Step 1: Take the cube root of both sides of the equation. {/lem[12,¢]> = {/(12¢)2. This simplifies to: lem[12,¢] =
12¢%/3,

...Step 31: We can see that 13824 = 23042, so t = 48 satisfies the original equation. Therefore, the smallest possible
value for ¢ is .

Qwen2.5-Math-7B-PRM800K score: 0.8711 ‘

R-PRM (Ours): Analysis: Previous Steps Analysis: Step 1: This step states the problem and sets up the equation to be
solved, which is lem[12, t]* = (12¢)2.This step is a correct restatement of the problem . .. ...

Calculation Analysis: The calculation involves taking the cube root of (12t)2. By the properties of exponents, </(12t)2 =
V122 .42 = 122/% . t*/3_ This is because the cube root of a product can be expressed as the product of the cube roots,
and the cube root of a power can be expressed as that power divided by 3. Therefore, the correct simplification should be
lem[12,¢] = 12%/% . £2/3_ not 12t/ as stated in the Now Step.

Conclusion: The Now Step incorrectly simplifies the expression {/(12¢)? to 12t%/3 The correct simplification should be
12%/3 . ¢2/3 which is different from what is presented. Therefore, the Now Step contains an error.

Verification: Is the step correct (Yes/No)? No"

R-PRM score: 0.2992 |

Figure 9: A case study from MATH subset of ProcessBench. Red text denotes the error step and the scores of other
models, and the blue text highlights our model’s critique of the error and our score for that step.
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You are an excellent math teacher. Please verify the correctness of the Now Step.

You first need to analyze the Now Step and the Previous Steps and then summarize based on your analysis.

Analysis:

You need to analyze the following aspects.

**Previous Steps Analysis**: You need to analyze the Previous Steps step by step. For each step, you need to first explain
what the current step is doing, then you try to find any error in the current step.

**Now Step Analysis**: You first need to explain what the Now Step is doing, and then point out which part of the Question
it is trying to solve or which part of the information it states.

**Data Source Analysis**: First you need to find out what data are used in the Now Step, and then you need to determine
whether the source of the data is reasonable and correct. When you judge whether the source of a data is reasonable and
correct, you need to specify the specific source of this data: such as which part of the question, or which content of the
previous step; and then determine the source and current use is consistent, the Now Step is used correctly.

**Consistency Analysis**: You need to check that the Now Step is consistent with the contents of the Previous Steps, and
then you need to check that all the information inside the Now Step is consistent.

**Calculation Analysis**: If the Now Step involves any calculations, such as addition, subtraction, multiplication, division,
equations, modulo operations, etc., you will first need to perform a check on the calculation, such as a reverse operation, to
see if the calculation was done correctly, and then analyze the results of your check to see if there was an error in the
calculation.

Conclusion:

Please verity the correctness of the Now Step based on your analysis, if there is any error in the Now Step then the Now Step
is wrong and vice versa the Now Step is correct. At the end of the Conclusion, when you give your final answer, write it in
the form "Verification: Is the step correct (Yes/No)? X", where X is either Yes or No.

Question: [Math Problem]

Previous Steps: [Previous Steps]

Now Step: [Current Step]

Please carefully analyze the correctness of the Now Step.
Reply:

Table 6: The Prompt to Construct Data
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