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Abstract

In-Image Machine Translation (IIMT) aims to
translate images containing texts from one lan-
guage to another. Current research of end-to-
end [IMT mainly conducts on synthetic data,
with simple background, single font, fixed text
position, and bilingual translation, which can
not fully reflect real world, causing a significant
gap between the research and practical condi-
tions. To facilitate research of IIMT in real-
world scenarios, we explore Practical In-Image
Multilingual Machine Translation (IIMMT). In
order to convince the lack of publicly available
data, we annotate the PRIM dataset, which con-
tains real-world captured one-line text images
with complex background, various fonts, di-
verse text positions, and supports multilingual
translation directions. We propose an end-to-
end model VisTrans to handle the challenge
of practical conditions in PRIM, which pro-
cesses visual text and background information
in the image separately, ensuring the capabil-
ity of multilingual translation while improv-
ing the visual quality. Experimental results
indicate the VisTrans achieves a better transla-
tion quality and visual effect compared to other
models. The code and dataset are available at:
https://github.com/BITHLP/PRIM.

1 Introduction

In-Image Machine Translation (IIMT) aims to
transform images containing texts from one lan-
guage to another (Mansimov et al., 2020; Tian et al.,
2023,2025; Lan et al., 2024; Qian et al., 2024). The
challenge of IIMT lies in that both the input and
output are images, detaching from the text modal-
ity, which is a significant distinction from other
Neural Machine Translation (NMT) tasks incor-
porating image modality (Zhu et al., 2023; Liang
etal., 2024; Ma et al., 2024; Li et al., 2025a; Zhang
et al., 2025b; Fang and Feng, 2022; Chen et al.,
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Figure 1: Comparison between PRIM to publicly avail-
able IIMT datasets. The sources of datasets are di-
vided into synthetic (Synth.) and real world (Real.),
and “ML.”, “RB.”, “Fonts” and “Pos.” specifies whether
the dataset including multilingual translation, real-world
backgrounds, various fonts and different text positions.
Previous research primarily conducts on synthetic data
with simple background, single font, fixed text posi-
tion, and bilingual translation. Our research utilizes
real-world captured images with complex background,
various fonts, diverse text positions, and multilingual
translation, which is more aligned to real conditions.

2025), as they still center around text, with the
input or output remaining text-based.

The translated target images of IIMT help peo-
ple understand texts in visual modality directly,
holding significant application value in translation
software. A commonly used approach for IIMT is
the cascade model: It begins with using an Optical
Character Recognition (OCR) model to recognize
text in the source image, followed by employing
an NMT model for translation. Finally, the text re-
gion in the source image is removed and rendered
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with translated target text. The drawbacks of the
cascade model mainly lie in: (1) The cascade OCR-
NMT procedure has the risk of error propagation
and negatively affected translation quality. (2) The
removing and rendering process damages the in-
tegrity of background in the image, resulting in the
suboptimal visual quality of the output image.

To address the issues in the existing cascade
model, recent research has focused on the end-to-
end IIMT model (Mansimov et al., 2020; Tian et al.,
2023; Lan et al., 2024). As shown in Figure 1,
previous research mainly focuses on images with
simple backgrounds, single font style, fixed text
position, and bilingual translation.

However, real-world images may contain com-
plex backgrounds, various font styles, diverse text
positions, and a wide range of translation direc-
tions, which leads to certain limitations in previ-
ous research. To overcome these limitations, we
explore Practical In-Image Multilingual Machine
Translation (IIMMT), which emphasizes two key
aspects: real-world captured images and multilin-
gual translation. We annotate a dataset PRIM to
convince the lack of publicly available real-world
data, which contains real-world captured source
images with one-line text and manually annotated
target images. The images of PRIM include real-
world backgrounds, various font styles, diverse text
positions, and supporting 5 translation directions.

To tackle the challenge of practical conditions in
the PRIM dataset, we design an end-to-end model
VisualTranslator (VisTrans), which handles the vi-
sual text and background information in the image
separately, with a two-stage training and multi-task
learning strategy. The separate processing of visual
text and background ensures that the model retains
the multilingual translation capability while main-
taining the integrity of the background, thereby
helps mitigate error propagation and improves vi-
sual quality.

The main contributions of this paper are as fol-
lows:

* In order to closely resembles practical con-
ditions, we explore Practical In-Image Mul-
tilingual Machine Translation IIMMT). The
challenge of the task lies in the lack of pub-
licly available dataset, and the model needs to
handle complex real-world images with multi-
lingual translation directions.

* To mitigate the lack of real-world dataset,
we present the first annotated dataset PRIM,

which contains real-world captured images
with multilingual translation directions.

* We propose a novel model VisTrans, the first
end-to-end model designed for practical con-
ditions. By handling the visual text and back-
ground information of the images separately,
our model is able to generate multilingual tar-
get images with integrity backgrounds.

2 Related Work

In-Image Machine Translation. The end-to-end
IIMT research mainly focuses on simple scenarios
with synthetic datasets. Mansimov et al. (2020)
and Tian et al. (2023) conduct on a dataset contain-
ing one-line black texts within a white background.
Lan et al. (2024) further extend the dataset, in-
cluding multiple lines of black text with random
rotating in a solid-colored background.

Another type of research in [IMT does not focus
on end-to-end models but instead utilizes existing
pre-trained models to construct a more effective
cascade model. Qian et al. (2024) propose Any-
Trans, an advanced pipeline that applies Qwen (Bai
et al., 2023) instead of the NMT model, AnyText
(Tuo et al., 2024) alternating Removing and Ren-
dering procedures. Although AnyTrans utilizes
large pre-trained models, it is still constrained by
the cascade process, which poses a risk of error
propagation. It is also limited by the capability of
the text editing model AnyText, making it hard to
generate target images containing lengthy text.

Text-Image Translation. Text-Image Transla-
tion (TIT) aims to translate the text in the image
into the target text. Research on TIT can be cate-
gorized into two main types: translating sentences
within images (Lan et al., 2023; Zhu et al., 2023;
Ma et al., 2024; Li et al., 2025a), and translating
paragraph texts in images with layout information
(Liang et al., 2024; Zhang et al., 2025b; Liang et al.,
2025b,a; Zhang et al., 2025a).

Two-pass Model. The two-pass model is initially
used for end-to-end Speech-to-Speech Translation
(S2ST) task (Jia et al., 2022a; Inaguma et al., 2023),
that the model firstly generate the target text with
the source speech (1-pass), and the hidden repre-
sentation of the target text is then used to generate
the target spectrogram or the discrete code (2-pass).
Fang et al. (2024) investigate the vocabulary mis-
match issue between the two decoders in the two-
pass model, which makes it challenging to utilize
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Figure 2: Annotation procedure of PRIM. The first step is inpainting the text region of the source image manually,
obtaining the background. The second step is translating the source text into multilingual target texts. The third step
is rendering the multilingual target texts into the background to get multilingual target images.

existing Speech-to-Text Translation (S2TT) and
Text-to-Speech (TTS) models, and propose a CTC
(Graves et al., 2006) based vocabulary adaptor, and
Yao et al. (2024) explore translation robustness un-
der different vocabulary sizes.

3 Data Construction

PRIM. To address the lack of publicly available
real-world IIMMT benchmark, we annotate a test
set containing real-world source images with one-
line texts and annotated target images, namely
Practical In-Image Multilingual Machine Transla-
tion (PRIM). The construction procedure is shown
in Figure 2. To better align with real-world scenar-
ios, PRIM follows the design paradigm commonly
adopted in S2ST (Fang et al., 2023, 2024; Zhang
et al., 2024b), such as CVSS (Jia et al., 2022b),
which uses real-world human speech as source in-
put and synthetic target speech.

Recognizing the importance of realism on the
source side, we adopt the same approach in PRIM,
using real-world source images with annotated tar-
get images. We take images collected from the real
world by Ma et al. (2024) and Li et al. (2025a) as
source images, where both datasets are originally
designed for TIT task. Ma et al. (2024) capture
images from video subtitles, and the English texts
in the images are represented with different fonts,
sizes, and positions. Li et al. (2025a) crawl textual
images from websites and most of which are e-
commerce platform advertising boards. Unlike the
video subtitle scenarios, where the source text may
be accessible through metadata, advertising boards
typically do not provide such textual information.
This scenario further emphasizes the necessity of
the IIMT task, which aims to directly translate the

input image into a target-language image without
relying on the availability of source texts.

We crop the text regions of images in the above
datasets with a size of Height x Width = 32 x 512
from the dataset and primarily select images with
non-solid color backgrounds. After source images
are fully collected, the text areas are inpainting
manually by the raster graphics editor software,
obtaining the corresponding background of each
source image. Although PRIM only contains one-
line text images captured from real world and does
not fully reflect the real-world conditions, collect-
ing and annotating such data remains highly chal-
lenging (Lan et al., 2024). Compared with existing
public datasets, PRIM offers a closer approxima-
tion to real-world conditions.

We adopt a multilingual translation setting, fo-
cusing on one-to-many translation, which includes
the following 5 translation directions, English-
Russian (En-Ru), English-French (En-Fr), English-
Romanian (En-Ro), English-German (En-De), and
English-Czech (En-Cs). The source texts are trans-
lated to multilingual target texts by GPT-4 ! and
Google Translate, which are two commonly used
methods to annotate translation texts (Li et al.,
2025a; Liang et al., 2024). The multilingual trans-
lated texts are then rendered into the background,
to build the target images. By manually annotating
target images, automatic evaluation metrics such
as FID can be used to assess the visual quality by
comparing the target images with the generated
images (Tuo et al., 2024).

We perform inspections on PRIM, including the
translation quality and integrity of image, and more

Lopt-4-turbo with prompt “Translate the following sen-
tence from English to {target_language): {source_text}”
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Figure 3: Architecture of VisTrans. The trapezoid represents Vision Transformer (ViT) (Dosovitskiy et al., 2021),
while the rectangle represents Transformer Decoder (Vaswani et al., 2017). More specifically, the rectangle with
an upper triangular mask indicates an autoregressive decoder, whereas a staircase-like mask represents a semi-

autoregressive decoder.

details and evaluation results of PRIM are intro-
duced in Appendix A.

Training Set. Collecting and annotating large-
scale IMMT datasets from reality for training mod-
els is challenging, as the IMMT dataset requires
both source images and target images with parallel
texts. Such a challenge also appears in the train-
ing of early OCR models, and one solution is to
synthesize a large number of images using vari-
ous fonts and backgrounds to simulate real-world
scenarios (Jaderberg et al., 2014). Following the
above method, we use TRDG toolkit 2 to render
source texts with various styles, and the target im-
ages are rendered target texts using Arial font with
different font sizes by PIL library. The texts are
sourced from the MTed dataset (Duh, 2018), and
the backgrounds of the source and target images are
extracted from frames of the corresponding video
based on the timestamps of the text. Since image
generation tasks typically use fixed input and out-
put dimensions (Esser et al., 2021; Rombach et al.,
2022; Zhang et al., 2024a), we extract the bottom
part of the aforementioned frames with a size of
Height x Width = 32 x 512.

The generated images are filtered to ensure that
the source and target texts are fully rendered into
the images. More details of the training set are
introduced in Appendix B.

Explanation of images with single-line texts.
The images in our dataset contain single-line text
with various font styles, sizes and positions, since
the single-line text represents a fundamental and
frequently encountered case in practical applica-

Zhttps://github.com/Belval/
TextRecognitionDataGenerator

tions. Prior research on TIT, such as PEIT (Zhu
et al., 2023) and METIMT (Ma et al., 2024), typi-
cally uses single-line source images as input. In par-
ticular, the constructed ECOIT dataset contains a
large collection of single-line text images captured
from an e-commerce platform, indicating that such
images are present at scale in real-world scenarios.

4 Method

We design the VisTrans model which is shown in
Figure 3. We first introduce the overall architecture
and inference process of the model, where the out-
put target image is generated given an input source
image. Then, we describe the training methodology
of the model.

4.1 Architecture

The source image I, € RE*W*C is used as in-

put for two sub-modules. Firstly, it is encoded
by a set of Vision Transformer (ViT) (Dosovitskiy
et al., 2021), BackEncoder, BackDecoderl, and
BackDecoder2, obtaining the output representation

HW
Hpaek € R72 P where P and D are the patch
size and dimension of the ViT. Secondly, it is en-

. . HY «D
coded into representation Hi,,s € R P2 by
another ViT, MT Encoder.

The 1-Pass Decoder is used to generate the tar-
get translation text, and its hidden representation
Hipass € RLs*D where Lg and D are the lengths
of subword target text and dimension of the 1-Pass
Decoder, serving as input for the subsequent mod-
ule. Specifically, the 1-Pass Decoder takes the em-
beddings of the shifted target text, which is pre-
fixed with a language tag (e.g., “<de>" for German,
“<fr> for French), along with Hy,ps as input, and
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Figure 4: The two stages training of VisTrans. The modules and arrows with dashed lines represent auxiliary
modules and tasks introduced during training, which will not be used during model inference.

then autoregressively generates the target language
text and the hidden representation Hpass.

The hidden representation Hp,g i used as in-
put of a Subword-to-Char (S2C) Decoder, which
aims to transform the subword-level representation
H)pyss into the char-level representation Hepar €
REexD where L. is the length of char target text.
The S2C Decoder is implemented with a Semi-
Autoregressive (SAT) decoder (Wang et al., 2018),
which generates a group of K tokens at each step,
rather than producing a single token like an autore-
gressive (AT) decoder. Compared with the AT de-
coder, the SAT decoder has a certain performance
degradation while achieving higher decoding effi-
ciency. The architectural difference between SAT
and AT decoders lies in the design of the atten-
tion mask. AT typically employs a strict causal
mask which visually appears as an upper triangle,
whereas SAT utilizes a relaxed causal mask which
visually appears as a staircase.

The char-level representation Hp,e is used to
generate the code sequence with the 2-Pass De-
coder autoregressively, and each code in the se-
quence is looked up with a codebook, converted to
a vector sequence Hyde, Which is added with the
output of BackDecoder2 Hp,ck, to generate the tar-
get image with ImgDecoder and Transposed Con-
volution.

The reason for using the S2C Decoder to convert
subword-level representation into char-level repre-

sentation is to align with the representations in the
codebook. The designed codebook stores the visual
text information of the target image, where each
code corresponds to a small patch (e.g., 16 x 16)
of the image. Therefore, a single code is usually
insufficient to fully capture the visual characteris-
tics of the region corresponding to a subword. In
other words, the granularity of subword representa-
tion is too large compared to code representation,
which requires transforming the subword into a
finer-grained representation, to reduce the granular-
ity gap between it and the code representation.

4.2 Training

We employ a multi-task learning strategy along
with auxiliary modules to train our model, and the
training process includes two stages, as illustrated
in Figure 4. The solid-lined modules are required
during inference, while the dashed-lined modules
are auxiliary components used only for training.
The auxiliary modules aim to generate background,
text-image (images containing visual texts with an
empty background), and recognized text, which are
not required during inference. The following is an
introduction to the three loss functions used in the
training process.

The image reconstruction loss with perceptual
loss (Zhang et al., 2018) is used to train the image
generation task, described as:

Limg(y,9) = lly — 911 + ApLperceptuar (1, 9), (1)
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where y is the generated image of the model and g
is the ground truth image. A, is loss weight, and it
is set to 0.1 in our experiments.

The vector quantization (vq) loss is used to train
the codebook, formally as:

qu(ya .7;) = Hy - ?)Hz + )\pEPerceptual(y, .7;)

2
+ |Isglzq] — E()I13,

where y is the generated image of the model and
¢ is the ground truth image. ||sg[z,] — E()]||3 is
the commitment loss with stop-gradient operation
sg[-], and z, is the vector obtained by quantization
using the codebook, while E(x) is the encoded
feature of image z, which serves as the input to the
quantization layer. A, is loss weight, and it is set
to 0.1 in our experiments.

The cross-entropy loss Lcg is used to train the
sequence generation task, such as the generation
of the target text and code sequence, and the cross
entropy loss is applied label smoothing with 0.1.

Stage 1: Vision. In this stage, the model is
trained in two parallel branches simultaneously.
The first branch is primarily designed to learn the
visual text information in the target image. The
target image is used as input of the CodeEncoder
and CodeDecoder1, obtaining the representation
E(zx), which serves as the input of a codebook.

Specifically, the codebook ¢ contains V' learn-
able vectors {ej,e9,...,ey}, and each encoded
feature x; is quantized by the nearest vector in ¢,
obtaining z;. Formally as:

zi = q(E(x;)) = arg glin ||E(x;) — ekll2- (3)
ex€q

With the quantization of the codebook, the target
image is converted into a code sequence and the cor-
responding vector sequence. The vector sequence
is further fed into the CodeDecoder2 to obtain the
representation Hoge.

To align the learnable vectors in the codebook
with the visual text in the image, transposed convo-
lutions are applied to generate output images I oge1
and I .4e2 based on the hidden representations of
CodeDecoder] and CodeDecoder2, which are used
to train the reconstruction of the target text-image
Iig-text- The loss function of the first branch is de-
scribed as follows:

['bl = Eimg(Icodel ) Itgt—text) + qu(lcode% Itgt—text)‘
4)

The second branch is mainly used to learn the
background information in the source image. The
hidden representation of the background Hp,ck is
obtained by encoding the source image using a
set of BackEncoder, BackDecoderl, and BackDe-
coder2. Similar to the first branch, the hidden rep-
resentations of BackDecoderl and BackDecoder2
are used to generate the output images Ip,cx; and
Tvackz With transposed convolutions, aiming to re-
construct the background Ip,c.

In addition, the second branch also learns the
information required for the training in the sub-
sequent translation stage, an MT Encoder and a
1-Pass Decoder are used to generate the multilin-
gual target texts (TIT task), with the OCR Decoder
to recognize the texts in source images for auxiliary.
The two tasks are trained with cross-entropy loss,
denoted as E&T and £8SR. The loss function of
the second branch is described as follows:

L2 = Limg(Lvack1s Ivack) + Limg (Iback2, Iback)

+LEE + LS

®)

The final output representations of two branches,
H_oge and Hy,e are added, to generate the image
Iimg by the ImgDecoder and Transposed Convo-
lution, aiming to reconstruct the target image [ig.
The total loss function of stage 1 is the sum of all
the loss functions mentioned above, expressed as:

ﬁstagel = £b1 + £b2 + Eimg(Iimg7 Itgt)- (6)

Stage 2: Translation. The training in stage 1
is divided into two branches, which obtain the vi-
sual text information of the target image by the
quantization of the codebook, and the background
information of the source image. The final output
image can be generated with the addition of the two
types of information. The background information
can be obtained directly from the source image, but
the code sequence corresponding to the visual text
information cannot be directly obtained.
Therefore, the training objective of stage 2 is to
generate the code sequence for the target image
based on the representations from the pre-trained
MT Encoder and 1-Pass Decoder in stage 1. Specif-
ically, the hidden representation of the 1-Pass De-
coder and the embedding of the shifted char target
text is inputted into the S2C Decoder, transform-
ing the subword-level representation of target text
into the char-level representation. The char-level
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Systems BLEU 1/ COMET | FID |
En-De  En-Fr En-Cs En-Ru En-Ro Avg. Avg.
Golden 74.2/89.6 73.7/869 73.3/89.7 47.1/844 65.1/753 66.7/852 | 0.00

pre-trained cascade models
EasyOCR-NLLB-Render 247/584 27.0/604 24.0/67.8 14.1/60.8 252/66.0 23.0/62.7 | 100.2
QwenVL-Render 19.8/56.7 233/569 145/61.2 11.3/568 16.7/604 17.1/584 | 102.2
AnyTrans 0.1/298 0.1/30.6 0.0/309 0.1/324 0.0/31.1 0.1/31.0 | 204.1
cascade models
PARSeq-mTransformer-Render 9.5/41.7 13.8/469 7.7/439 55/48.1 12.8/53.5 99/46.8 103.8
PEIT-Render 10.4/451 14.0/48.1 79/46.2 53/477 142/529 10.4/48.0 | 101.4
end-to-end models

TranslatotronV 1.7/343 19/302 1.1/305 09/320 13/339 14/322 69.1
VisTrans (ours) 12.6/444 17.0/494 59/41.8 72/494 139/50.2 11.3/47.0 28.8

Table 1: Experimental results of different systems. Metrics include translation quality (BLEU, COMET) and visual
effect (FID), and “Avg.” represents the average across all translation directions. 1 or | indicates higher or lower
values are better. The best and second-best performance are in bold and underline, respectively.

representation, along with the embedding of the
shifted code sequence, is further used in the 2-Pass
Decoder to generate the code sequence. Both tasks
are trained using cross-entropy loss, denoted as
Eél%ar, EE"]SG. The complete loss function of stage 2
is the sum of them, expressed as:

ﬁstageZ = ﬁgﬁ‘r + ﬁgﬁde. (7)

S Experiments

5.1 Metrics

The evaluation of IIMT requires to recognize the
texts in the output images (Tian et al., 2023, 2025;
Lan et al., 2024; Qian et al., 2024), and we use
EasyOCR 3, a widely used OCR toolkit that sup-
ports multilingual text recognition, to recognize
the generated images of each system. Based on the
OCR recognition results and the reference texts,
we calculate BLEU (Papineni et al., 2002) and
COMET (Rei et al., 2020) to assess the translation
quality. The BLEU is calculated with SacreBLEU
4 and COMET is calculated with Unbabel-COMET
> by wmt22-comet-da model.

To evaluate the visual effect of the output im-
ages automatically and objectively, we calculate
the Fréchet Inception Distance (FID) between the
generated images and the reference images. The
FID correlates well with human judgment of visual
quality, and it is a widely used metric in image
generation tasks (Esser et al., 2021; Rombach et al.,

3https://github.com/JaidedAI/EasyOCR
4https ://github.com/mjpost/sacrebleu
Shttps://github.com/Unbabel/COMET

2022; Peebles and Xie, 2023; Tuo et al., 2024). We
employ pytorch-fid © to calculate the FID.

5.2 Experimental Settings

We use PRIM mentioned in Section 3 to evaluate
the systems, including pre-trained cascade mod-
els, cascade models, and end-to-end models. The
following is a brief introduction to each system.

Golden. Since evaluating IIMMT models re-
quires recognizing the texts in the output images
with the OCR model, which could introduce errors,
negatively impacting the evaluation of translation
quality. We use the same OCR model to evaluate
the golden reference target images in the test set,
and these results represent the theoretical upper
bound for all system.

EasyOCR-NLLB-Render. A cascade system in-
cludes pre-trained EasyOCR, NLLB-3.3B (NLLB
Team et al., 2022), and text render. The text ren-
der first requires removing the texts in the source
images, and we replace each text area detected by
EasyOCR with the mean color of the region. Then
the translated texts are rendered in Arial font. Un-
less otherwise specified, this render method is also
used in other cascade models, which ensures the
integrity of the images as much as possible.

QwenVL-Render. A cascade system includes
Qwen2.5VL-7B (Bai et al., 2025) with prompt
“Translate the text in the image to {target_language},
and only output the translated text”, and text ren-
der.

®https://github.com/mseitzer/pytorch-fid
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Input Images
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Output Images

Portable large capacity, diihksfora day of v
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VisTrans RV 3 M=t
Idéal peurlles'deplacements;
Ideal for traveling, Cascade _
VisTrans

Table 2: Comparison of cascade model (EasyOCR-NLLB-Render) and our end-to-end VisTrans. The issues of the
cascade system output images lie in that the background of the images is damaged, negatively affecting the visual
quality; and the texts are not fully rendered, decreasing the translation quality.

AnyTrans. An advanced cascade model (Qian
et al., 2024) with pre-trained PPOCR, Qwenl.5-
7B, and AnyText. More explanation of AnyTrans
is introduced in Appendix F.

PARSeq-mTransformer-Render. A cascade
model contains SOTA OCR model PARSeq
(Bautista and Atienza, 2022), a commonly
used multilingual machine translation model
mTransformer (Johnson et al., 2017), and text
render.

PEIT-Render. A cascade model contains the
SOTA TIT model PEIT (Zhu et al., 2023), and
text render.

TranslatotronV. An end-to-end IIMT model
(Lan et al., 2024) with the architecture of ViT-
VQGAN (Yu et al., 2022) and multi-task learning.

VisTrans. Our end-to-end IIMT model is intro-
duced in Section 4. Detailed implementation is
introduced in Appendix D.

5.3 Main Results

The experimental results are shown in Table 1.

Translation Quality. The EasyOCR-NLLB-
Render achieves the best performance, which ben-
efits from the strong translation performance of
NLLB. Except for pre-trained models, our VisTrans
and PEIT-Render achieve better performance com-
pared with other baselines.

Visual Effect. Although a more complex render-
ing method is applied for the cascade models (re-
placing text regions with average pixels instead of
directly removing), the visual quality still remains
poor. The end-to-end models achieve better visual
quality due to the incorporation of image gener-
ation modules. Compared to TranslatotronV, our
VisTrans processes visual text and background in-
formation separately, leading to improved visual
performance.

6 Analysis

6.1 Ablation Study: Does S2C Decoder
contribute to translation quality?

The core idea of VisTrans is to handle the back-
ground and visual text separately, making all com-
ponents except the S2C Decoder essential. To in-
vestigate the different performance with the S2C
Decoder, we conduct an ablation study, by replac-
ing it with other type of decoder. The experimental
results are shown in Table 3.

S2C Decoder Avg. BLEU 1T Speedup T
None 5.27 1.00x
CTC 6.06 0.96 x

AT 11.87 0.74x
SAT (K=2) 11.32 0.88x
SAT (K=4) 8.97 0.92x
SAT (K=6) 7.16 0.93x

Table 3: Average BLEU and Speedup on different S2C
Decoder.

Different types of S2C Decoder have an impact
on translation quality. Specifically, by removing
the S2C Decoder (None), the translation quality
decreases significantly. The S2C Decoder with
CTC is trained by upsampling the hidden repre-
sentation from the 1-Pass Decoder, leading to an
improvement compared to none S2C Decoder. The
best translation quality is achieved using AT for
the S2C Decoder, but the autoregressive decoding
results in slower inference speed. As K increases,
SAT yields faster inference but lower translation
quality. We adopt K = 2 in the SAT S2C Decoder
to balance quality and speed.

6.2 Case Study: Why not render texts into
images directly?

Cascade models with text render have certain ad-
vantages: they leverage well-established text-based
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translation models, and the techniques for render-
ing texts into images are mature, ensuring clear and
readable fonts.

Howeyver, as illustrated in Table 2, the cascade
model (EasyOCR-NLLB-Render) causes notice-
able damage to the output images, which is also
reflected in the FID metric in Table 1. Moreover,
when render the translated text into the image, the
text length is constrained by the image size, pre-
venting complete rendering and leading to a de-
cline in translation quality. Therefore, the error
propagation in cascade models is not limited to the
OCR-NMT process, and there still exists the issue
of incomplete text rendering in the target image,
which is another form of error propagation. Since
different font sizes are used for rendering the target
images of the training set, our VisTrans can auto-
matically adjust the font size in the output image,
ensuring text completeness. More output images
of our VisTrans are shown in Appendix E.

6.3 Robustness Study: Does VisTrans fit for
images containing multi-line texts?

To evaluate the ability of the VisTrans model trans-
lating multi-line text images, we conduct experi-
ments on the IIMT30k dataset (Tian et al., 2025),
which consists of synthetic images, but features
complex backgrounds, diverse font styles, and a
mix of single-line and multi-line texts (e.g., sen-
tences split across two lines).

Systems De-En En-De
Valid Test Valid Test
DebackX 10.8 8.6 9.5 6.9
VisTrans (ours) 14.7 123 165 12.2

Table 4: BLEU score on IIMT30k dataset.

Experimental results in Table 4 demonstrate that
VisTrans is capable of handling images contain-
ing multi-line text, indicating that the model can
generalize to more complex text layouts when ap-
propriately trained.

7 Conclusion

In this paper, we address the limitations of IIMT
in real-world scenarios by exploring Practical In-
Image Multilingual Machine Translation (IIMMT),
and first annotate a dataset PRIM containing real-
world images with multilingual translation direc-
tions. To tackle the challenge of practical condi-
tions in the PRIM dataset, we propose an end-to-

end model VisTrans, which handles the visual text
and background information separately. Experi-
mental results show that our model retrains the
multilingual translation capability while maintain-
ing the integrity of the background, obtaining a bet-
ter translation quality and visual effect compared
to other models.

Limitations

While we explore IIMMT by annotating PRIM
dataset, and propose an end-to-end model VisTrans,
this paper has certain limitations.

Our VisTrans is trained on large amount of train-
ing data, and is adopted a two-stage training with
multi-task learning strategy, leading to the high
computational resource costs and hardware require-
ments. The images are quantized by a codebook,
obtaining the code sequence. We only conduct
experiments with the most basic codebook and de-
coder, lacking the investigation on the use of more
advanced quantization techniques or decoders that
better support long-sequence modeling.

Ethics Statement

We manually annotate PRIM dataset containing
real-world images, and the data has been carefully
selected to avoid any form of offensive or biased
content. We take ethical considerations seriously
and ensure that the data used in this study are con-
ducted in a responsible and ethical manner.
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A Details of PRIM

Our PRIM includes 5 translation directions (En-Ru,
En-Fr, En-Ro, En-De, En-Cs), and each direction
contains 340 images. Each source image corre-
sponds to 2 reference translation images, which
texts are rendered based on translations obtained
from GPT4 and Google Translate respectively. In
the experiments, BLEU is evaluated using 2 refer-
ences, while the computation of COMET and FID
is averaging the results from both references.

Data quality of benchmark is a critical issue (Li
et al., 2025b; Lu et al., 2025; Zeng et al., 2025),
therefore we additionally perform evaluation on the
PRIM benchmark. Following Yu et al. (2025), the
translation quality is evaluated by reference-free
wmt22-cometkiwi-da 7. The evaluation scores for

7https: //huggingface.co/Unbabel/
wmt22-cometkiwi-da
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the PRIM dataset across different translation direc-
tions, and the human-annotated MTed dev and test
sets are used as comparison are shown in Table 5.
Evaluation results show that the translation quality
of the PRIM dataset matches the level of human
annotation.

PRIM only includes source images, target im-
ages, source texts, and target texts for evaluation.
As shown in Figure 5, the real-world source images
demonstrate significant diversity in visual charac-
teristics such as various fonts, diverse text posi-
tions.

B Details of Training Set

The parallel texts used to construct the training set
are sourced from the MTed dataset (Duh, 2018),
which contains transcription texts from Ted talk
videos along with multilingual translation results.

Due to texts in MTed dataset are merged, result-
ing in excessive length unsuitable for rendering
into images, we do not directly use the text from
the dataset. Instead, we extract the unmerged texts,
along with the corresponding video-related infor-
mation and transcript timestamps from the original
XML documents &. The source and target language
texts are filtered based on timestamps, retaining
only parallel texts that can be aligned.

We construct a validation set along with the train-
ing set, which is used to evaluate the performance
of the model during training. The statistical data
for each translation direction is shown in Table 6.

Moreover, due to the length differences between
source and target language texts with same mean-
ing, the space occupied in the images are also
varies. Therefore, the target images adjusts the
font size according to the text length. Compared to
existing publicly available training data, our dataset
offers the most diverse styles and translation direc-
tions.

Figure 6 shows samples of the training set, in-
cluding source images, backgrounds, target images,
target text-images, source texts, and target text,
which enable the two-stage training of our VisTrans
model.

C Formal Representation of Mask for
SAT

In AT, attention is strictly unidirectional, while the
SAT allows bidirectional attention among tokens

8The XML documents are obtained from https://wit3.
fbk.eu/.

within the same group. The relaxed causal mask
M € R™™ for the sequence length n and group
size K can be formalized as follows:

1, ifj< (] +1) x K

8
0, other ®)

MIi][j] = {

D Implementation of VisTrans

Our VisTrans is trained by Huggingface Acceler-
ate framework ° (Gugger et al., 2022) with fp16
mixed precision on 4 TITAN RTX GPUs. The im-
plementation of Vision Transformer in VisTrans
is referred to timm '°, and the codebook is imple-
mented based on vector-quantize-pytorch ', The
texts are tokenized by Sentencepiece 2. The per-
ceptual loss is implemented by PerceptualSimilar-
ity 13. Both of two training stages use AdamW
optimizer (Loshchilov and Hutter, 2019) with in-
verse square root learning rate schedule.

The hyperparameters of VisTrans are shown in
Table 7, and we choose these parameters based on
the performance of model on the validation set.

E More Outputs of VisTrans

More outputs of our VisTrans for different transla-
tion directions are shown in Figure 7.

F Explanation of the AnyTrans

We implement the AnyTrans by PPOCR '4,
Qwenl.5-7B (Bai et al., 2023) and AnyText (Tuo
et al., 2024). The PPOCR firstly detects the text
regions and recognizes source texts. Then, the
source texts are translated by Qwenl.5-7B with
system prompt “You are a multilingual transla-
tion assistant, and only need to output the trans-
lated text.”, and each source text is add the prompt
“Translate the following text from English to {tar-
get_language): {source_text}”.

Since AnyText does not support text editing of
images with size 32 x 512, therefore we resize the
images of the test set into 64 x 512. The AnyText
requires the original image, the image with text
regions removed and the texts prompt as inputs.

thtps://github.com/huggingface/accelerate
1Oht’cps://github.com/huggingface/
pytorch-image-models
11https://github.com/lucidrains/
vector-quantize-pytorch
2https://github.com/google/sentencepiece
13https://github.com/richzhang/
PerceptualSimilarity
“https://github.com/PaddlePaddle/Paddle0CR
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Figure 5: Samples from PRIM, which includes source images, source texts, multilingual target images, and
multilingual target texts. The source images are captured from real world, with real-world backgrounds, various
fonts, diverse text positions, and 5 translation directions.

Source Image & Text Multilingual Target Image & Text

so that was enormously valuable. also war das enorm wertvoll.

so that was enormously valuable. also war das enorm wertvoll.
Background Multilingual Target Text-Image

also war das enorm wertvoll.

of inspiration, innovation and discovery d'inspiration, d'innovation et de découvertes
Background Multilingual Target Text-Image

d'inspiration. d'innovation et de découvertes

je pristup k mnozstvi véci.

* is access fo the capacities of thingé. ‘ Je pristup k mnoZstvi véci.
Background Multilingual Target Text-Image

je pristup k mnozstvi véci.

Source Image & Text Multlllngual Target Image & Text
ancthe pulls out this card'@fid says@Oh look. Look at this.

WionfaocTanfoaHy n3 6pou.nop v cka3an: «B3rnsHu-ka Ha 310,

and he pulls out this card and says, "Oh look. Look at this. U oH goctan oaHy n3 6poLuop 1 ckasan: «BarnaHn-ka Ha aTo,

Background Multilingual Target Text-Image

Source Image & Text
But do remember whenyou were a kid,

But do remember when you were a kid, Amintiti-va, cand erati ici,
Background Multilingual Target Text-Image

Amintiti-va, cand erati mici,

Figure 6: Samples from our training set. Due to the auxiliary training tasks in the training process, the training
set includes not only source images, source texts, multilingual target images, multilingual target texts, but also
backgrounds and multilingual target text-images.
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PRIM-Google

PRIM-GPT4 MTed dev (human) MTed test (human)

En-De 0.8271 0.8246
En-Fr 0.8386 0.8359
En-Cs 0.8388 0.8397
En-Ru 0.8310 0.8308
En-Ro 0.8392 0.8459

0.8075 0.8102
0.8269 0.8188
0.8122 0.8102
0.7901 0.7859
0.8280 0.8250

Table 5: Comparison of translation quality between the PRIM dataset and human-annotated datasets, indicating that
the translation quality of the PRIM dataset matches the level of human annotation.

Input Images

Super Comprehensive Protection

Multilingual Output Images

Super-Comprehensive! Protective Schutzh

Small and Portable

Your Family and Friends <> Vos!familles etivos amisu
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Figure 7: Multilingual output images of VisTrans on PRIM. Our model maintains the integrity of the image
background while ensuring multilingual translation performance.

Direction # Training # Validation

En-Ru 1,629,790 3,404
En-Fr 1,594,303 3,434
En-Ro 1,507,993 3,544
En-De 1,418,009 3,424
En-Cs 848,894 3,555

Table 6: Statistic of training set.

The text regions in the image are removed based
on the regions detected by PPOCR, with regions
expanded by a certain proportion.

However, we find that AnyText cannot gener-
ate good text editing results in our test set, due
to the lengthy text in the images, which occupy
a large amount of space. Although AnyTrans ex-
hibits strong performance, it is limited by the per-
formance of AnyText, and it is not well-suited for
our test set. We present some outputs from the
AnyTrans in Figure 8.

Prompt: "Elle mérite de le savoir, et tu vas le lui dire."”
Output Image

iemeitto d L s a

Prompt: "Plus stable, mains libres."
Output Image

Y _
)
27008 s Wﬁ U7
Prompt: "Finden Sie Ihr Auto jederzeit und tberall."”
Output Image

_Finde] Se/MAuto

Prompt: "Zuwachsen der Touch-Screen-Breite"
Output Image

Figure 8: Outputs from AnyTrans (Qian et al., 2024).
The prompt is the translation result of recognized text by
PPOCR, based on Qwen-1.5 7B. We find that AnyTrans
is not well-suited for our test set, which is limited by
the text editing capability of lengthy text in the image.
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patch_size 16
BackEncoder d_model 512
BackDecoderl d_ff 2,048
BackDecoder2 heads 8
1 6
patch_size 16
CodeEncoder d_model 512
CodeDecoderl d_ff 2,048
CodeDecoder2 heads 8
1 6
dim 32
Codebook size 8.192
patch_size 16
d_model 512
ImgDecoder d_ff 2,048
heads 8
1 6
patch_size 8
d_model 512
MTEncoder d_ff 2,048
heads 8
1 6
d_model 512
OCR Decoder d_ff 2,048
heads 8
1-Pass Decoder ) 6
vocabulary 35,000
d_model 512
d_ff 2,048
S2C Decoder he?ds 2
K 2
vocabulary 176
d_model 512
d_ff 2,048
Code Decoder heads 2
1 6

Table 7: Hyperparameters of VisTrans.

13709



