@inproceedings{calabrese-etal-2025-compositional,
title = "Compositional Generalisation for Explainable Hate Speech Detection",
author = {Calabrese, Agostina and
Sherborne, Tom and
Ross, Bj{\"o}rn and
Lapata, Mirella},
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.703/",
pages = "13932--13954",
ISBN = "979-8-89176-332-6",
abstract = "Hate speech detection is key to online content moderation, but current models struggle to generalise beyond their training data. This has been linked to dataset biases and the use of sentence-level labels, which fail to teach models the underlying structure of hate speech. In this work, we show that even when models are trained with more fine-grained, span-level annotations (e.g., ``artists'' is labeled as target and ``are parasites'' as dehumanising comparison), they struggle to disentangle the meaning of these labels from the surrounding context. As a result, combinations of expressions that deviate from those seen during training remain particularly difficult for models to detect. We investigate whether training on a dataset where expressions occur with equal frequency across all contexts can improve generalisation. To this end, we create U-PLEAD, a dataset of {\textasciitilde}364,000 synthetic posts, along with a novel compositional generalisation benchmark of {\textasciitilde}8,000 manually validated posts. Training on a combination of U-PLEAD and real data improves compositional generalisation while achieving state-of-the-art performance on the human-sourced PLEAD."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="calabrese-etal-2025-compositional">
<titleInfo>
<title>Compositional Generalisation for Explainable Hate Speech Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Agostina</namePart>
<namePart type="family">Calabrese</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tom</namePart>
<namePart type="family">Sherborne</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Björn</namePart>
<namePart type="family">Ross</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>Hate speech detection is key to online content moderation, but current models struggle to generalise beyond their training data. This has been linked to dataset biases and the use of sentence-level labels, which fail to teach models the underlying structure of hate speech. In this work, we show that even when models are trained with more fine-grained, span-level annotations (e.g., “artists” is labeled as target and “are parasites” as dehumanising comparison), they struggle to disentangle the meaning of these labels from the surrounding context. As a result, combinations of expressions that deviate from those seen during training remain particularly difficult for models to detect. We investigate whether training on a dataset where expressions occur with equal frequency across all contexts can improve generalisation. To this end, we create U-PLEAD, a dataset of ~364,000 synthetic posts, along with a novel compositional generalisation benchmark of ~8,000 manually validated posts. Training on a combination of U-PLEAD and real data improves compositional generalisation while achieving state-of-the-art performance on the human-sourced PLEAD.</abstract>
<identifier type="citekey">calabrese-etal-2025-compositional</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.703/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>13932</start>
<end>13954</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Compositional Generalisation for Explainable Hate Speech Detection
%A Calabrese, Agostina
%A Sherborne, Tom
%A Ross, Björn
%A Lapata, Mirella
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F calabrese-etal-2025-compositional
%X Hate speech detection is key to online content moderation, but current models struggle to generalise beyond their training data. This has been linked to dataset biases and the use of sentence-level labels, which fail to teach models the underlying structure of hate speech. In this work, we show that even when models are trained with more fine-grained, span-level annotations (e.g., “artists” is labeled as target and “are parasites” as dehumanising comparison), they struggle to disentangle the meaning of these labels from the surrounding context. As a result, combinations of expressions that deviate from those seen during training remain particularly difficult for models to detect. We investigate whether training on a dataset where expressions occur with equal frequency across all contexts can improve generalisation. To this end, we create U-PLEAD, a dataset of ~364,000 synthetic posts, along with a novel compositional generalisation benchmark of ~8,000 manually validated posts. Training on a combination of U-PLEAD and real data improves compositional generalisation while achieving state-of-the-art performance on the human-sourced PLEAD.
%U https://aclanthology.org/2025.emnlp-main.703/
%P 13932-13954
Markdown (Informal)
[Compositional Generalisation for Explainable Hate Speech Detection](https://aclanthology.org/2025.emnlp-main.703/) (Calabrese et al., EMNLP 2025)
ACL