@inproceedings{yunusov-etal-2025-personality,
title = "Personality Matters: User Traits Predict {LLM} Preferences in Multi-Turn Collaborative Tasks",
author = "Yunusov, Sarfaroz and
Chen, Kaige and
Anwar, Kazi Nishat and
Emami, Ali",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.emnlp-main.71/",
pages = "1359--1372",
ISBN = "979-8-89176-332-6",
abstract = "As Large Language Models (LLMs) increasingly integrate into everyday workflows, where users shape outcomes through multi-turn collaboration, a critical question emerges: do users with different personality traits systematically prefer certain LLMs over others? We conduc-ted a study with 32 participants evenly distributed across four Keirsey personality types, evaluating their interactions with GPT-4 and Claude 3.5 across four collaborative tasks: data analysis, creative writing, information retrieval, and writing assistance. Results revealed significant personality-driven preferences: *Rationals* strongly preferred GPT-4, particularly for goal-oriented tasks, while *idealists* favored Claude 3.5, especially for creative and analytical tasks. Other personality types showed task-dependent preferences. Sentiment analysis of qualitative feedback confirmed these patterns. Notably, aggregate helpfulness ratings were similar across models, showing how personality-based analysis reveals LLM differences that traditional evaluations miss."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yunusov-etal-2025-personality">
<titleInfo>
<title>Personality Matters: User Traits Predict LLM Preferences in Multi-Turn Collaborative Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sarfaroz</namePart>
<namePart type="family">Yunusov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kaige</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kazi</namePart>
<namePart type="given">Nishat</namePart>
<namePart type="family">Anwar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ali</namePart>
<namePart type="family">Emami</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-332-6</identifier>
</relatedItem>
<abstract>As Large Language Models (LLMs) increasingly integrate into everyday workflows, where users shape outcomes through multi-turn collaboration, a critical question emerges: do users with different personality traits systematically prefer certain LLMs over others? We conduc-ted a study with 32 participants evenly distributed across four Keirsey personality types, evaluating their interactions with GPT-4 and Claude 3.5 across four collaborative tasks: data analysis, creative writing, information retrieval, and writing assistance. Results revealed significant personality-driven preferences: *Rationals* strongly preferred GPT-4, particularly for goal-oriented tasks, while *idealists* favored Claude 3.5, especially for creative and analytical tasks. Other personality types showed task-dependent preferences. Sentiment analysis of qualitative feedback confirmed these patterns. Notably, aggregate helpfulness ratings were similar across models, showing how personality-based analysis reveals LLM differences that traditional evaluations miss.</abstract>
<identifier type="citekey">yunusov-etal-2025-personality</identifier>
<location>
<url>https://aclanthology.org/2025.emnlp-main.71/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>1359</start>
<end>1372</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Personality Matters: User Traits Predict LLM Preferences in Multi-Turn Collaborative Tasks
%A Yunusov, Sarfaroz
%A Chen, Kaige
%A Anwar, Kazi Nishat
%A Emami, Ali
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-332-6
%F yunusov-etal-2025-personality
%X As Large Language Models (LLMs) increasingly integrate into everyday workflows, where users shape outcomes through multi-turn collaboration, a critical question emerges: do users with different personality traits systematically prefer certain LLMs over others? We conduc-ted a study with 32 participants evenly distributed across four Keirsey personality types, evaluating their interactions with GPT-4 and Claude 3.5 across four collaborative tasks: data analysis, creative writing, information retrieval, and writing assistance. Results revealed significant personality-driven preferences: *Rationals* strongly preferred GPT-4, particularly for goal-oriented tasks, while *idealists* favored Claude 3.5, especially for creative and analytical tasks. Other personality types showed task-dependent preferences. Sentiment analysis of qualitative feedback confirmed these patterns. Notably, aggregate helpfulness ratings were similar across models, showing how personality-based analysis reveals LLM differences that traditional evaluations miss.
%U https://aclanthology.org/2025.emnlp-main.71/
%P 1359-1372
Markdown (Informal)
[Personality Matters: User Traits Predict LLM Preferences in Multi-Turn Collaborative Tasks](https://aclanthology.org/2025.emnlp-main.71/) (Yunusov et al., EMNLP 2025)
ACL