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Abstract

Existing large language model (LLM) evalu-
ation benchmarks primarily focus on English,
while current multilingual tasks lack parallel
questions that specifically assess cross-lingual
reasoning abilities. This dual limitation makes
it challenging to assess LLMs’ performance in
the multilingual setting comprehensively. To
fill this gap, we introduce MMLU-ProX, a com-
prehensive benchmark covering 29 languages,
built on an English benchmark. Each language
version consists of 11,829 identical questions,
enabling direct cross-lingual comparisons. Ad-
ditionally, to meet efficient evaluation needs,
we provide a lite version containing 658 ques-
tions per language. To ensure the high quality
of MMLU-ProX, we employ a rigorous devel-
opment process that involves multiple powerful
LLMs for translation, followed by expert re-
view to ensure accurate expression, consistent
terminology, and cultural relevance. Building
on this, we systematically evaluate 36 state-of-
the-art LLMs, including reasoning-enhanced
and multilingual-optimized LLMs. The results
reveal significant disparities in the multilingual
capabilities of LLMs: While they perform well
in high-resource languages, their performance
declines markedly in low-resource languages,
particularly for African languages. Through
MMLU-ProX, we aim to advance the develop-
ment of more inclusive Al systems and promote
equitable access to technology across global
contexts.

1 Introduction

The rapid development of large language models
(LLMs) has significantly reshaped the field of nat-
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Figure 1: Selected existing benchmarks for multilingual
LLM evaluation on benchmark difficulty and number of
languages.

ural language processing (NLP), with an increas-
ing shift from predominantly English-centric sys-
tems towards multilingual understanding (Yang
et al., 2025; Grattafiori et al., 2024; Aryabumi et al.,
2024). As LLMs become more prevalent in global
applications, the need for comprehensive multilin-
gual evaluations becomes paramount. An effective
multilingual evaluation ensures the global acces-
sibility of LLMs, particularly benefiting users of
diverse linguistic and cultural backgrounds (Poppi
et al., 2024; Bang et al., 2023).

The multilingual evaluation of LLMs faces two
primary challenges, as illustrated in Figure 1. First,
existing benchmarks are constrained by limitations
in both language coverage or translation quality.
Although monolingual benchmarks such as Turk-
ishMMLU (Yiiksel et al., 2024), KMMLU (Son
et al., 2024), and JMMLU (Yin et al., 2024) of-
fer rigorous evaluation within their respective lan-
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guages, they provide limited insight for compre-
hensive multilingual evaluation. Broader initia-
tives such as Global-MMLU (Singh et al., 2025)
extend coverage to 42 languages, distinguishing be-
tween culture-sensitive and culture-agnostic ques-
tions. However, the heterogeneous translation ap-
proaches pose significant challenges. The combi-
nation of professional translators, community vol-
unteers, and Google Translate introduces quality
variations that are difficult to quantify. These incon-
sistencies in translation quality impede objective
comparison of model reasoning across languages
and hinder precise diagnosis of low-resource lan-
guage deficiencies. The second challenge pertains
to the difficulty of the evaluation. The evolution
from MMLU (Hendrycks et al., 2021a) to MMLU-
Pro (Wang et al., 2024a), and Humanity’s Last
Exam (HLE) (Phan et al., 2025) in English bench-
marking reflects the rapidly advanced reasoning
capabilities of LLMs. Among those, MMLU-Pro
enhances its predecessor through more complex
reasoning questions, expanded answer choices, and
reduction of dataset noise, offering greater discrim-
inative power. This progression underscores the
pressing need for equally challenging multilingual
benchmarks that can effectively evaluate sophisti-
cated reasoning capabilities across languages.

To address these challenges, we introduce
MMLU-ProX, a novel multilingual benchmark that
builds upon the challenging, reasoning-focused
design of MMLU-Pro while extending its cover-
age to 29 typologically diverse languages. The
resulting benchmark contains 11,829 questions per
language in its full version, with a lite version
of 658 questions available for efficient evaluation.
To ensure linguistic accuracy and terminological
consistency across languages, we develop a semi-
automated translation agent that combines state-of-
the-art (SOTA) LLMs with expert verification. This
approach effectively mitigates the quality varia-
tions inherent in heterogeneous translation methods
and maintains the discriminative power of MMLU-
ProX in the multilingual setting.

Our primary contributions include: 1) We in-
troduce MMLU-ProX, a multilingual benchmark
for massive multitask language understanding with
enhanced reasoning-focused questions across 29
languages. It enables comprehensive evaluation of
LLMs’ cross-lingual reasoning abilities and lays a
foundation for the development of more inclusive
LLMs in the future. Additionally, we engage over
30 experts to verify the data quality, with a total

labor effort exceeding 400 hours. 2) We conduct
systematic evaluations on MMLU-ProX and its lite
version using both zero-shot and 5-shot chain-of-
thought (CoT) (Wei et al., 2022) prompting across
36 latest LLMs, covering both open-source LLMs
ranging from 3.8B to 671B parameters, as well as
proprietary LLMs. 3) We analyze the reasoning
capabilities of LLMs in the multilingual setting,
revealing significant performance disparities across
languages. This analysis underscores the limita-
tions of current LLMs in global contexts, further
highlighting the need to enhance global accessibil-
ity and advance fairness evaluations.

2 Related Work

Multilingual Large Language Models. The field
of NLP has been profoundly transformed by mul-
tilingual LLMs, which have evolved beyond the
initial English-centric paradigm to address the lin-
guistic diversity of our world with over 7,000 lan-
guages spoken globally (Etxaniz et al., 2024). Mod-
ern LLMs are sophisticated systems built upon
advanced neural architectures such as the Trans-
former, designed to process, comprehend, and
generate text across numerous languages. Re-
cent LLMs such as Claude 3 series (Anthropic,
2025), GPT-4 (Achiam et al., 2023), Gemini se-
ries (Google DeepMind, 2025), Qwen3 (Yang et al.,
2025), and Llama 4 (Meta Al, 2025) have demon-
strated remarkable multilingual capabilities. These
models leverage massive pre-training datasets span-
ning dozens to hundreds of languages, such as
the corpus used by Qwen3, encompassing 119
languages and dialects. However, research indi-
cates persistent challenges in these systems, in-
cluding the "English pivot" phenomenon (Zhong
et al., 2024) where models internally process non-
English inputs through English-like representa-
tions, and consistent performance gaps between
high-resource and low-resource languages. Our
work with MMLU-ProX specifically addresses
these challenges by providing a comprehensive
evaluation framework that enables direct assess-
ment of reasoning capabilities across linguistically
diverse contexts.

LLM Evaluation Benchmarks. Prior work on
multilingual LLM evaluation has largely focused
on breadth or translation fidelity, but often at
the expense of reasoning depth or language nu-
ance. Benchmarks like MMLU (Hendrycks et al.,
2021a), TurkishMMLU (Yiiksel et al., 2024) and
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Dataset Languages Evaluation Modality CoT Parallel Data Subjects Questions
MMLU (Hendrycks et al., 2021b) 1 Multiple-choice (4) X X 57 15908
TurkishMMLU* (Yiiksel et al., 2024) 1 Multiple-choice (4) X X 9 10032
KMMLU (Son et al., 2025) 1 Multiple-choice (4) X X 45 35030
XCOPA (Ponti et al., 2020a) 11 Binary choice X X 1 5500
Global-MMLU (Singh et al., 2025) 42 Multiple-choice (4) X v 57 ~ 600k
MMMLU (Hendrycks et al., 2021a) 14 Multiple-choice (4) X v 57 ~ 197k
Humanity’s Last Exam (Phan et al., 2025) 1 Multiple-choice & exact match X X 2 ~ 5000
MMLU-Pro (Wang et al., 2024a) 1 Multiple-choice (10) v X 57 ~ 12k
MMLU-ProX (this work) 29 Multiple-choice (10) v v 57 =~ 343k

Table 1: Comparison of multilingual benchmarks with ticks (v") and crosses (X) indicating presence or absence
of CoT and Parallel Data. *We acknowledge other MMLU datasets for various languages and randomly select

TurkishMMLU as a representative example.

KMMLU (Son et al., 2025) evaluate expert reason-
ing tasks but are limited to a single language, while
MGSM (Shi et al., 2022) and XCOPA (Ponti et al.,
2020b) prioritize multilingual coverage through
translated or templated questions yet restrict evalua-
tion to narrow reasoning formats such as math prob-
lems or causal inferences. Global-MMLU (Singh
et al., 2025) extends MMLU to 42 languages with
human-machine hybrid translations, but it suffers
from inconsistent translation quality and remains
limited in reasoning difficulty. MMLU-Pro (Wang
et al., 2024b) extends the original MMLU bench-
mark by introducing highly complex reasoning
questions and more distractor options to better eval-
uate LLMs’ reasoning depth and robustness in En-
glish. Similarly, Humanity’s Last Exam (Phan
et al., 2025) is a rigorous benchmark of 5,000
expert-crafted questions across diverse subjects,
designed to challenge advanced Al systems and
assess their progress toward expert-level reasoning,
but it still remains an English-centric benchmark.
While early comprehensive benchmarks such as
XTREME (Ruder et al., 2021) and XGLUE (Liang
et al., 2020) significantly advanced the evaluation
of cross-lingual transfer, they primarily focused
on traditional tasks, often assessing generalization
from English training data rather than deep LLM
reasoning. This landscape underscores the need
for benchmarks that not only cover diverse lan-
guages but also rigorously assess complex reason-
ing within appropriate cultural contexts, a gap that
MMLU-ProX aims to address. A detailed com-
parison of the aforementioned dataset is shown in
Table 1. Among the selected benchmarks, MMLU-
ProX fills an important gap by maintaining a bal-
anced distribution of languages, subjects, and ques-
tions, with a focus on data parallelization and
reasoning-focused features.

3 Benchmark

3.1 Overview

MMLU-ProX extends the challenging MMLU-
Pro benchmark to encompass 29 typologically
diverse languages: English (EN), Chinese (ZH),
Japanese (JA), Korean (KO), French (FR), Ger-
man (DE), Spanish (ES), Portuguese (PT), Ara-
bic (AR), Thai (TH), Hindi (HI), Bengali (BN),
Swabhili (SW), Afrikaans (AF), Czech (CS), Hun-
garian (HU), Indonesian (ID), Italian (IT), Marathi
(MR), Nepali (NE), Russian (RU), Serbian (SR),
Telugu (TE), Ukrainian (UK), Urdu (UR), Viet-
namese (VI), Wolof (WO), Yoruba (YO), and Zulu
(ZU). MMLU-ProX benchmark maintains the high
difficulty level and reasoning focus of MMLU-
Pro while enabling rigorous evaluation of LLMs’
cross-lingual reasoning capabilities. By carefully
translating the same set of questions across all lan-
guages, MMLU-ProX facilitates direct comparison
of model performance across linguistic boundaries
while controlling for question difficulty.

To ensure the quality of MMLU-ProX, we im-
plemented a multi-stage pipeline to generate the
data shown in Figure 2. Initially, we hired a ded-
icated team to perform preliminary data curation,
establishing a clean version suitable for subsequent
translations. Following this, we deployed a trans-
lation agent to maintain translation quality stan-
dards. Finally, we employed a sampling method-
ology wherein professional translators evaluated
selected samples. The results demonstrated that the
generated dataset successfully passed assessment
by professional human translators.

3.2 Data Curation

The data curation process comprises multiple
stages. First, we identify and address duplicate
or partially duplicate questions within MMLU-Pro,
either eliminating or merging these instances to
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Figure 2: MMLU-ProX Data Pipeline: A rigorous four-
stage process consisting of data curation, translation,
external model verification, and expert review.

ensure fair evaluation without redundancy bias.
Subsequently, we performed manual corrections
of grammatical issues in the filtered dataset, ad-
dressing problems that include but are not limited
to run-on words, incorrect hyphenation, and incon-
sistent symbol usage. Finally, we manually rectify
inconsistencies within the questions, particularly
focusing on misalignments between options and
problem statements. For English data curation, we
engage four interdisciplinary specialists, with a to-
tal labor investment of approximately 20 hours to
correct run-on words, incorrect hyphenation, and
other syntactic anomalies that could potentially
confound the translation process. This curation
step is critical to establish a clean baseline for our
multilingual translations, as source-language er-
rors can propagate and amplify through translation
pipelines, particularly in technical and specialized
domains that predominate in MMLU-Pro.

3.3 Translation Pipeline

Our data curation is followed by implementing a ro-
bust translation methodology. Based on recent ma-
chine translation evaluations (Deutsch et al., 2025;
Niklaus et al., 2025), we select the SOTA Claude
model, Claude Sonnet 3.7 (Anthropic, 2025) as
our primary translation model. Although LLMs
have shown impressive translation capabilities, we
recognize the need to safeguard against potential
translation errors. To address this, we develop a
four-stage LLM-driven translation agent for pro-
ducing MMLU-ProX:

L. Initial Translation: Claude Sonnet 3.7 performs
the preliminary translations using carefully crafted
prompts. These prompts emphasize maintaining
accurate expression, consistent terminology across
questions and options, and cultural appropriate-
ness for target language users. The translation pre-
serves all LaTeX notation, mathematical formulae,

programming code (including variable names and
comments), and currency symbols exactly as they
appear in the source text. For units of measure-
ment, we implement standard translations in target
languages while maintaining precise numerical re-
lationships and retaining all special formatting and
emphasis from the original text.
II. Self-Reflection: In this stage, Claude Sonnet
3.7 performs a comprehensive review of its own
translation’s correspondence with the source text,
generating feedback for improving the translation
quality. The reflection process focuses on verifying
proper noun translations and eliminating any su-
perfluous explanations or additions. It also ensures
the use of established technical terminology in the
target language.
III. Improvements: Claude Sonnet 3.7 then con-
ducts meticulous editing, incorporating feedback
from the self-reflection stage. Additionally, we
prompt the model to ensure the explanatory infor-
mation is only included for concepts lacking direct
equivalents in target languages, particularly in low-
resource languages like Wolof and Yoruba. The
LLM-driven process maintains strict preservation
of original single quotation marks and removes
any unnecessary explanations or source language
terms.
IV. External Examination: To mitigate potential
systematic errors from single-model biases, we em-
ploy two different LLMs for verification: OpenAl
03 for low-resource African languages (Swahili,
Zulu, Yoruba, and Wolof), and GPT-4.1 for the rest.
This automated verification process is designed to
flag only significant discrepancies for manual re-
view and human translation.

Appendix §F contains all translation prompts.

3.4 Expert Verification

To rigorously evaluate the benchmark quality fol-
lowing our translation agent implementation, we
conduct comprehensive expert evaluations of the
translation quality. Specifically, we randomly sam-
ple 20 items from each of the 14 disciplines and use
these consistent items across all languages for eval-
uation. We select 15 languages and conduct expert
verification, with each language evaluated by two
professional translators who are native speakers of
the target language and proficient in English. The
total annotation effort exceeds 400 hours. Each
item undergoes assessment by two high-caliber
translators who rate three aspects (accuracy, flu-
ency, and completeness) on a scale of 1 to 5. De-
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tailed scoring criteria and full results can be found
in Appendix §E.

Subsequently, for any category where both trans-
lators assign scores below 3 on any metric, we
conduct a complete retranslation of the entire dis-
cipline of that language to ensure final averaged
scores for all categories strictly exceed 4 points, an
indication of accurate translation. Throughout this
process, only the law category in Yoruba requires
such modification; all other categories across all
languages maintain average scores of 4 or above.

Table 2 presents representative translation scores,
showing examples from three languages within
each resource group (group criteria are in Ap-
pendix §A). The results demonstrate consistently
high translation quality under expert evaluation,
even for low-resource languages such as Wolof,
Yoruba, and Nepali. This uniform performance
across resource groups validates both the reliability
of our translation pipeline and the overall quality
of MMLU-ProX.

Language Accuracy Fluency Completeness
High Resource

ZH 4.70 4.84 4.92
JA 4.60 4.65 4.99
FR 4.68 4.64 4.94
Medium Resource

KO 4.90 441 4.97
PT 4.79 4.77 4.99
AF 4.77 4.78 4.99
Low Resource

WO 4.14 4.42 4.83
YO 4.06 4.56 4.95
NE 4.61 4.73 491

Table 2: Scores (out of 5) assigned by human translators
for Accuracy, Fluency, and Completeness, grouped by
language resource level (We show representatives here).

3.5 Total Cost

The development of MMLU-ProX requires substan-
tial resource investment. Taking into account API
costs for translation and testing, expert verification
expenses, and computational resources, the total
development cost approaches $80,000 at market
rates. This investment demonstrates our commit-
ment to creating a high-quality, reliable benchmark
for advancing multilingual LLM capabilities.

4 Experiments

4.1 Setups

We evaluate a comprehensive set of 36 SOTA
LLMs on MMLU-ProX across 29 linguistically
diverse languages. The evaluation includes both
open-weight and proprietary LLMs, representing
various architectures, parameter scales, and train-
ing paradigms. The open-weight LLMs include
Qwen (QwenTeam, 2025), Llama (Grattafiori et al.,
2024), DeepSeek (Guo et al., 2025), Phi4 (Abdin
et al., 2024), Gemma3 (GemmaTeam et al., 2025),
Mistral (MistralAl, 2025), Aya (Aryabumi et al.,
2024), and InternLM (Cai et al., 2024), while the
proprietary LLMs comprise 04-mini, GPT-4.1 and
GPT-40. Following MMLU-Pro, we primarily em-
ploy 5-shot CoT prompting for model evaluation.
All experiments were conducted on an H100 clus-
ter. For open source models, we used vLLM for
inference, while commercial models were accessed
through direct API calls. Our rough estimation in-
dicates that the unified evaluation consumed over
10,000 GPU hours.

4.2 Overall Performance

We present a comparison in Table 3, showing
the CoT performance across all 29 languages
and the average results of selected models,
specifically the largest or best-performing model
from each family (15 out of 36). We roughly
group the languages by geography (stated in
Appendix §B): |Western Europe, South Asia ,

East Asia & Southeast Asia , Africa ,
Eastern Europe .

Our evaluation of these LLMs reveals significant
disparities in multilingual capabilities. DeepSeek-
R1 demonstrates superior overall performance with
an average of 75.5% across all languages, followed
by GPT-4.1 (72.7%) and DeepSeek-V3 (70.5%).
The performance generally correlates with model
scale and architecture sophistication, with larger
models typically outperforming their smaller coun-
terparts. Among open-weight models, Qwen3-
235B-Think shows exceptional capabilities, achiev-
ing SOTA results in several languages. However,
there remains a substantial performance gap be-
tween high-resource and low-resource languages,
with some models showing accuracy as low as 0.6%
on certain African languages while achieving over
75% on Western European languages. The full
evaluation for all 36 LLMs and zero-shot settings
can be found in Appendix §H. We conduct a more

and
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Overall (AVG) | 693 727 61.1 755 705|459 | 172|256 499|558 |56.6 | 59.9 663 66.7 749

Chinese (ZH) 72.6 75.5 780 739 | 56.5 | 242 | 374 | 623 | 584 | 604 | 67.0 68.7 70.5 77.4
Japanese (JA) 715 75.6 45.8 769 729 | 544 | 20.6 | 299 | 56.5 | 57.0 | 593 | 62.6 702 68.8 77.1
Korean (KO) 732 754 579 7677 70.7 | 523 | 20.0 | 34.4 | 582 | 54.5 | 57.8 | 655 712 69.6 78.3
Vietnamese (VI) | 73.4 76.7 704 763 754|534 | 53 |309 | 571|652 611|685 724 714 726
Thai (TH) 72.0 75.1 66.7 787 712|354 | 55 | 149 | 51.7 | 56.0 | 56.7 | 56.1 70.4 68.8 77.1
Indonesian (ID) | 73.8 75.6 66.1 813 75.8 | 555 | 31.6 | 23.1 | 639 | 655 | 62.6 | 685 734 725 799
Arabic (AR) 725 741 683 762 724|498 | 9.1 | 36.6| 56.8 | 51.0 | 58.7 | 649 704 70.1 78.7
Afrikaans (AF) | 73.5 772 653 809 729|533 |27.6|29.7|578 | 627 | 620 | 659 724 71.1 80.6
Swahili (SW) 669 719 586 750 634|314 | 22 | 9.0 |352|49.0| 528 | 464 56.7 563 708
Wolof (WO) 241 432 243 586 473 |170| 0.6 | 1.5 | 81 | 285 | 88 | 261 266 266 369
Yoruba (YO) 549 534 443 570 477 | 135 | 0.6 | 39 | 23.1 | 31.6 | 324 | 257 188 402 493
Zulu (ZU) 612 650 553 673 537|170 | 2.2 | 145 | 11.5| 33.6 | 40.7 | 179 352 462 464
Russian (RU) 620 712 620 764 749|592 | 261 |36.7|652|61.1|625|680 69.1 729 77.0
Ukrainian (UK) | 73.3 764 56.8 76.8 742 |56.0 | 275|359 | 613|599 | 61.7 | 68.0 735 725 788
Serbian (SR) 726 769 706 809 729|539 |289 274|507 |63.0|617|672 723 71.1 80.2
Czech (CS) 735 775 70.1 76.8 747|551 | 00 | 345|632 | 638|626 677 728 71.8 80.5
Hungarian (HU) | 72.6 76.6 63.0 79.1 714 | 487 | 222 | 29.1 | 594 | 59.7 | 59.8 | 659 71.1 70.1 79.8

Table 3: Model performance (%) on MMLU-ProX across 29 languages. Languages are grouped by geography with
distinct colors. Best result per language is in bold. Full tables can be found in Appendix §H.

detailed analysis in the following.

4.3 Impact of Reasoning Mode in
Multilingual Performance

We examine how reasoning-enhanced capabili-
ties affect multilingual performance. Comparing
reasoning-focused and standard LLMs reveals con-
sistent performance improvements. DeepSeek-R1
outperforms DeepSeek-V3 by 5.0% on average,
with larger gains in low-resource languages (Wolof:
+11.3%, Yoruba: +9.3%). Similarly, Qwen3-235B
with thinking mode enabled achieves superior re-
sults compared to its base performance, reach-
ing SOTA performance on Western European lan-
guages (English: 80.7%, Spanish: 80.7%, Ital-
ian: 80.9%). These results suggest that reasoning-
enhanced models better handle complex multilin-
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Figure 3: Comparison of reasoning-enhanced and
standard models on representative languages. Top:
DeepSeek-V3 vs DeepSeek-R1. Bottom: Qwen3-235B
vs Qwen3-235B with thinking mode.
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gual tasks, particularly in challenging linguistic
contexts, indicating a promising direction for ro-
bust multilingual LLM development.

Best LLM Scores per Language

=
m
<
©

50 55 60 65 70 75 80 85 90
Best Model Score (%)

Figure 4: Best LLM scores on MMLU-ProX for each
language, grouped by language family as in Table 3.
The figure highlights notable performance gaps between
language families, especially the advantages for well-
resourced Western and Eastern European languages
compared to low-resource African and some South
Asian languages.

4.4 Performance across Language Groups

The results in Table 3 reveal clear performance
trends across linguistic groups and model fam-
ilies. Western European languages consistently
achieve high accuracy across all models, with top-
performing models (e.g., Qwen3-235B with think-
ing mode exceeds 77% in every language in this
group). South Asian languages show more varia-
tion: Hindi performs best within the group, while
Telugu lags, highlighting challenges with Dravid-
ian language modeling. DeepSeek-R1 and Qwen3-
235B-Think stand out for their strong performance
across several South Asian languages. East and
Southeast Asian languages perform well overall,
with Indonesian achieving 81.3% and Japanese and
Korean showing stable scores, despite linguistic
divergence from Indo-European languages. In con-
trast, African languages demonstrate the lowest
performance across the board. While Arabic per-
forms competitively, other African languages such
as Wolof, Yoruba, and Zulu exhibit wide perfor-
mance gaps and significantly lower scores—Wolof
ranging from just 0.6% to 58.6%—highlighting
the persistent limitations of current models in

Model Scaling on Multilingual Reasoning
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Figure 5: Performance scaling of Qwen3 dense models
on selected languages.

low-resource settings. Notably, Eastern European
languages also perform well, with models like
DeepSeek and Qwen continuing to lead, suggest-
ing effective adaptation to languages with linguistic
similarity to Western European ones. More detailed
analysis can be found in Appendix §C.

S Analysis

In this section, we present a detailed analysis and
observations on model size and prompting strate-
gies. We then compare the full and lite versions of
MMLU-ProX.

5.1 Model Size

In Figure 5, we analyze Qwen3 dense models at
different scales (4B, 8B, 14B, 32B), revealing how
model size affects multilingual reasoning. Per-
formance improves consistently with scale, and
the 32B model reaches 59.9% accuracy—an ab-
solute gain of 17.9% over the 4B model on aver-
age. The largest improvement occurs from 8B to
14B (+8.0%), while gains from 4B to 8B (+4.0%)
and 14B to 32B (+5.9%) are more modest. High-
resource languages like English show smaller dif-
ferences (12.6% from 59.2% to 71.8%), whereas
low-resource languages benefit more: Wolof im-
proves by 20.5% and Russian by 14.4%. In some
African languages, such as Zulu, only the largest
models show meaningful performance, suggesting
a minimum model size may be required for effec-
tive multilingual capability.

These findings underscore how model scaling
delivers asymmetric benefits across the linguistic
spectrum, with low-resource languages typically
requiring larger models to achieve even moderate
performance. This differential scaling behavior
highlights the importance of sufficient model capac-
ity when developing multilingual systems intended
to serve linguistically diverse user populations.
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Figure 6: Performance comparison of zero-shot and 5-shot prompting across languages and models. The height of
each bar represents accuracy (%). Numbers above the bar pairs indicate the absolute difference in accuracy between
5-shot and zero-shot prompting for each language-model pair. Green numbers indicate improvement, while red

numbers indicate a decrease.

5.2 Prompting Strategies

For LLM evaluation, prompting strategies play a
crucial role. We selected representative LLMs, in-
cluding GPT-4.1 and two Qwen variants, to compre-
hensively evaluate the effect of different prompting
strategies on multilingual reasoning capabilities.
We evaluate selected languages based on resource
availability and linguistic families in Figure 6.

Our analysis reveals substantial performance dif-
ferences between zero-shot and 5-shot prompting
across languages and model families. While 5-shot
prompting generally improves performance, the
magnitude of improvement varies. High-resource
languages like English show modest gains (e.g.,
+3.7% for GPT-4.1), reflecting strong baseline
reasoning abilities, whereas low-resource African
languages benefit more significantly, indicating
the added value of demonstrations in underrep-
resented languages. Reasoning-enhanced models
such as Qwen3-30B in thinking mode show smaller
changes between prompting styles, suggesting in-
ternalized reasoning capabilities. Additionally, lan-
guage characteristics such as morphological com-
plexity affect prompting effectiveness. These find-
ings highlight the importance of tailoring prompt-
ing strategies to both model architecture and target
language characteristics, particularly for multilin-
gual applications targeting diverse linguistic envi-
ronments.

5.3 Full and Lite Versions

To address evaluation efficiency concerns in mul-
tilingual benchmarking, we also uniformly sam-
pled 5% of the items from each of the 14 disci-
plines for all 29 languages. We compare perfor-
mance between the full version of MMLU-ProX

(11,829 questions per language) and this lite ver-
sion. Both versions include 70 validation questions
used for prompt construction in few-shot evalua-
tions, meaning actual assessments occur on 11,759
and 588 questions, respectively. As shown in Fig-
ure 7, the performance gap between both versions
is remarkably small, with an average difference of
only 1.14% across all evaluated models.

Performance Gap: Full vs Lite
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Overall (%)
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o o

N
=]
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Figure 7: Comparison between MMLU-ProX full ver-
sion (11,759 questions) and lite version (588 questions)
across evaluated models, showing an average difference
of only 1.14% while maintaining consistent relative
model rankings.

Across models and language families, the lite
and full versions of MMLU-ProX yield highly
consistent results. Top-performing models like
DeepSeek-R1 and GPT-4.1 show minimal differ-
ences between lite and full evaluations (1.5% and
1.1%, respectively), with even smaller gaps ob-
served in models like DeepSeek-V3 (0.4%) and
o4-mini (1.3%). This pattern holds across resource
levels, from high-resource languages like English
and French to low-resource ones like Wolof, which
shows differences under 1%. Moreover, the lite
version preserves the relative ranking of models
almost perfectly, with DeepSeek-R1, GPT-4.1, and
DeepSeek-V3 consistently outperforming others,
while Phi4-14b remains the weakest. This consis-
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tent ordering confirms that the lite version effec-
tively captures the same performance patterns as
the full benchmark.

6 Conclusion

We introduce MMLU-ProX, a multilingual bench-
mark spanning 29 diverse languages for evaluat-
ing cross-lingual capabilities of LLMs. Our semi-
automatic translation approach combines LLMs
with expert verification to ensure quality across lan-
guages. Additionally, we conduct a comprehensive
evaluation of 36 SOTA LLMs and reveal signif-
icant performance disparities in the multilingual
setting. Our work aims to promote the equitable
accessibility of LLMs in the global context.

Limitations

In this work, we present MMLU-ProX, which cov-
ers 29 languages. One limitation lies in the cover-
age of languages due to budget constraints. While
our current benchmark encompasses a diverse set
of languages, expanding to include additional lan-
guages, particularly extremely low-resource ones,
remains a future goal. We recognize that the ex-
isting pipeline can be extended to support such
languages, and we leave this as future work.

Another limitation pertains to the expert verifi-
cation of translation quality. While we engage ex-
perts to evaluate translation quality for selected lan-
guages, comprehensive expert verification across
all languages and subject areas was not feasible
due to resource constraints. In cases where ex-
pert evaluation was conducted, translations were
assessed based on accuracy, fluency, and complete-
ness using a 5-point Likert scale. Preliminary re-
sults indicate high overall quality, with mean scores
above 4 across these dimensions. However, we ac-
knowledge that automated translation processes
may still introduce subtle errors or potential risks
on the translation quality, particularly in complex
or domain-specific content.

Furthermore, the current benchmark focuses
solely on textual inputs and does not account for
multimodal contexts, which are increasingly rele-
vant in real-world applications. Incorporating mul-
timodal evaluation remains an area for future ex-
ploration.
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A Language Categorization by Resource Availability

Following the taxonomy proposed by (Joshi et al., 2020), and referring to the resource list!, we rank the
languages from high- to low-resource as follows:

English, Chinese, Japanese, French, German, Spanish, Arabic, Korean, Portuguese, Hindi, Serbian,
Hungarian, Vietnamese, Czech, Italian, Russian, Thai, Bengali, Indonesian, Ukrainian, Urdu, Afrikaans,
Zulu, Swahili, Wolof, Yoruba, Telugu, Marathi, Nepali.

B Language Categorization by Geography

We primarily categorize the languages based on geography?. Inside each category, we rank the languages
by resource availability. Below is the complete list of categories:

* Western Europe: English, French, German, Spanish, Portuguese, Italian

* South Asia: Hindi, Bengali, Urdu, Telugu, Marathi, Nepali

» East Asia & Southeast Asia: Chinese, Japanese, Korean, Vietnamese, Thai, Indonesian
e Africa: Arabic, Afrikaans, Swahili, Wolof, Yoruba, Zulu

* Eastern Europe: Russian, Ukrainian, Serbian, Czech, Hungarian
C Performance Patterns across Language Groups

The results in Table 3 reveal distinct patterns across linguistic families, highlighting both achievements
and persistent challenges in multilingual capabilities.

As the Western European languages demonstrate consistently strong performance across all models,
with scores typically ranging between 70-80% for top-performing models. In this group, Qwen3-235B
with thinking achieves remarkable results, reaching 80.9% for Italian, 80.7% for both English and Spanish,
and maintaining above 77% performance across all languages in this family.

South Asian languages exhibit a more nuanced performance pattern, with significant variations both
across models and within the language family. Hindi consistently leads this group with scores ranging
from 58.4% to 78.7%, while related languages like Bengali and Marathi show slightly lower but stable
performance patterns. Telugu, representing the Dravidian family, generally shows lower performance
across models, highlighting potential challenges in handling its distinct linguistic features. DeepSeek-R1
and Qwen3-235B-Think demonstrate particularly strong capabilities in this group, consistently achieving
scores above 75% for several languages.

East Asian & Southeast Asian languages present an interesting case of high performance with model-
specific variations. Chinese shows notable fluctuations across models (53.4-75.5%), while Japanese and
Korean demonstrate more consistent performance patterns. Southeast Asian languages perform remarkably
well, with Indonesian achieving 81.3% with DeepSeek-R1. This success suggests effective handling of
these diverse linguistic structures by modern LLMs, despite the significant typological differences from
Western languages.

African languages reveal the most pronounced performance disparities, underscoring critical challenges
in multilingual AI development. While Arabic achieves competitive scores (up to 78.7% with Qwen3-
235B-Think), other African languages show substantially lower performance. Wolof presents the most
challenging case, with scores ranging dramatically from 0.6% to 58.6%, highlighting severe resource
limitations. Similar patterns emerge for Yoruba (3.9-57.0%) and Zulu (11.5-67.3%), though with slightly
better performance than Wolof. These stark contrasts emphasize the ongoing need for improved model
capabilities in low-resource languages.

Notably, Eastern European languages exhibit comparable performance. Similarly, models from the
DeepSeek and Qwen families continue to perform strongly, with Qwen3-235B-Think achieving over 77%.
These strong performances suggest effective adaptation to these languages, likely due to their shared
linguistic structures with Western European languages.

"https://microsoft.github. io/linguisticdiversity/assets/lang2tax.txt
2https://www.cia.gov/the-world-factbook/field/languages/
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D Translation Pipeline Analysis

For our translation agent evaluation, we compared two competitors in English-to-Japanese translation:
reasoning-based translation and human translators. Using the same samples as in Section 3.4, we
conducted translations using these two methods and employed professional translators to score them
using our 5-point scale. The results are presented in Table 4. Our findings reveal that the reasoning-based
method achieves translation quality only marginally inferior to our translation agent. However, compared
to our agent-based method, reasoning-based translation consumes significantly more tokens, causing
higher translation costs. As for native-speaking translators, their translation quality, particularly accuracy,
proved inferior to LLM-based translation when handling content requiring multidisciplinary expertise.
These results demonstrate the effectiveness of our comprehensive framework and further validate the
quality of MMLU-ProX data.

Method | Accuracy | Fluency | Completeness
Agent-based Translation (Ours) 4.60 4.65 4.99
Reasoning-based Translation 4.56 4.21 4.99
Native-Speaking Translator 4.24 4.14 4.56

Table 4: Scores (out of 5) assigned by human translators for Accuracy, Fluency, and Completeness, grouped by
language resource level.

E Expert Verification Guidance

We ensured that all expert annotators were compensated at rates above the minimum hourly wage in their
respective countries. Evaluation Criteria for Expert Rating of Machine Translation Results:
1. Accuracy (1-5):

* 5 (Highly Accurate):

— All key terms and concepts are translated correctly with no errors.

— Every technical term corresponds precisely to the original text, with no mistranslations or
incorrect word choices.

— The most appropriate and professional terminology in the target language is used.
— Expressions align with commonly used terminology in professional or technical contexts.

¢ 4 (Accurate):
— Most terms and concepts are translated correctly, with only a few minor errors that do not affect
overall comprehension.
— Some terms may be slightly imprecise, but the translation remains generally accurate.

— Uses appropriate terminology in the target language in most cases.
— A few terms may be simplified but remain understandable within the intended domain.

* 3 (Moderately Accurate):
— Key terms and concepts are mostly correct but contain some errors that may cause partial

misunderstandings.

— Some critical terms are inaccurately translated, requiring the reader to infer the intended
meaning.

— Slight deviations in the use of target-language terminology.
— Occasionally uses uncommon or outdated terms.

¢ 2 (Somewhat Inaccurate):

— Many key terms and concepts are mistranslated, significantly affecting comprehension.
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— Important concepts are incorrectly translated, leading to potential misunderstandings of the
original text.

— Uses incorrect or inappropriate terminology in the target language.
— Terminology is inconsistent, reducing the text’s professionalism.

¢ 1 (Inaccurate):
— Frequent and severe mistranslations of key terms and concepts, failing to convey the original
meaning.
— Most of the content does not match the original text.
— Lacks proper use of target-language terminology.
— Terminology is chaotic, possibly using irrelevant or incorrect vocabulary entirely.

2. Fluency (1-5):

« 5 (Highly Fluent):

— The target-language expression is natural and smooth, making it effortless to read.
— The language style is refined and appropriate for professional or formal contexts.

— The sentence structure fully adheres to natural conventions in the target language, with no
grammatical or lexical errors.

¢ 4 (Fluent):
— The target-language expression is generally natural, with only minor linguistic imperfections
that do not affect comprehension.

— Some sentences may sound slightly stiff.

— Sentence structures mostly conform to target-language norms, with very few grammatical errors.

* 3 (Moderately Fluent):

— The target-language expression is somewhat unnatural, requiring the reader to adjust their
understanding slightly.

— Some inappropriate word choices or rigid sentence structures are present.
— Sentence structures are mostly correct, but some grammatical errors exist.

¢ 2 (Somewhat Unnatural):

— The target-language expression lacks fluency, making it difficult to read smoothly.
— Sentence transitions are awkward, and logical connections are unclear.
— Many structural issues exist, with frequent grammatical errors.

¢ 1 (Not Fluent):

— The target-language expression is highly unnatural or difficult to understand.
— Literal translation is evident, lacking natural phrasing in the target language.

— The sentence structure is disorganized, with severe grammatical mistakes, making the text
unreadable.

3. Completeness (1-5):

¢ 5 (Fully Complete):

— The full meaning of the original text is retained with no omissions or additions.
— All details, data, and annotations are accurately conveyed.
— The translation maintains the same length and depth as the original text.
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¢ 4 (Complete):
— The primary meaning of the original text is retained, with only a few minor details omitted or
slightly unclear.
— Some less critical information may be left out.
— The translation generally corresponds to the original content.

¢ 3 (Moderately Complete):

— Most of the original meaning is conveyed, but some information is missing or added.
— Important details may be overlooked.

— The translation differs from the original in certain aspects, requiring readers to infer some
content.

* 2 (Somewhat Incomplete):

— The core information from the original text is not fully conveyed, with noticeable omissions or
unnecessary additions.

— Potential inclusion of unrelated information.

— The translation does not fully correspond to the original, affecting comprehension.
¢ 1 (Incomplete):
— Significant omissions or added incorrect information prevent an accurate reflection of the
original text.

— Important sections or sentences are missing.

— The translation deviates heavily from the original, making it difficult to understand the intended
meaning.

Scoring Examples:

* Accuracy Example:
If “bachelor’s degree” is mistranslated as “single man’s degree,” points should be deducted in the
accuracy category.

* Fluency Example:
If the sentence structure follows target-language norms but the word choice is slightly unnatural, a
score of 4 may be appropriate.

¢ Completeness Example:
If the translated text omits the methodology section from the original, it should receive a lower score
in completeness.

We perform expert verification in 15 selected languages, the full results are shown in Table 5.
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Language Accuracy Fluency Completeness

High Resource

ZH 4.70 4.84 4.92
JA 4.60 4.65 4.99
FR 4.68 4.64 4.94
DE 4.52 4.48 4.64
ES 4.59 4.58 4.84
Medium Resource

KO 4.90 4.41 4.97
PT 4.79 4.77 4.99
AF 4.77 4.78 4.99
Low Resource

ZU 4.20 4.62 4.97
SW 4.36 4.70 4.86
WO 4.14 4.42 4.83
YO 4.06 4.56 4.95
TE 4.60 4.74 4.97
MR 4.51 4.72 4.74
NE 4.61 4.73 491

Table 5: Expert verification scores on 15 languages for Accuracy, Fluency, and Completeness, grouped by language
resource level.

F Translation Prompts

initial translation

System Message: You are a professional translator specializing in accurate translation of technical and academic
content from {source_lang} to {target_lang}.

Your task is to translate assessment questions in the {category} field while:

1. Preserving technical accuracy and terminology

2. Ensuring cultural appropriateness for {target_lang} speakers

3. Keeping terminology consistent throughout questions and options

4. Preserving all LaTeX notation, mathematical formulas, and programming code exactly as they appear (do not
translate content inside LaTeX delimiters or code blocks, including variable names, function names, and comments)
5. Preserving all currency symbols ($) exactly as they appear in the original text, without converting to local currency
units

6. For units of measurement: Use the conventional translations in the target language while preserving the exact
numerical values and relationships

7. Preserving any special formatting or emphasis in the original text

Please translate the following {category} assessment question and options:
<SOURCE_TEXT>

{source_text}

</SOURCE_TEXT>

Output:

Only provide the {target_lang} translation for the above text. Do not include any explanations or text apart from the
translation.

Different options are separated by newline characters(\n).

The number of options in the output must match the input exactly. Do not skip or combine any options.

Return the translation in the following JSON format, with keys "question" and "options", where the value of "options" is
a dictionary with keys optionl, option2, option3, etc. All JSON keys must remain in English exactly as shown and only
translate the content inside square brackets:

<TRANSLATION>

{{

"question": "[translation of question]",
"options": {{

"optionl": "[translation of option] ]",
"option2": "[translation of option2 ]",
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"option3": "[translation of option3 ]",
H

H

</TRANSLATION>

F.1 Self-Reflection Prompt

self reflection

System Message: You are a {category} translation expert, specializing in translation from {source_lang} to
{target_lang}.

Task Description:
Carefully review the source text and its translation from {source_lang} to {target_lang}, and then provide constructive
suggestions in English.

Requirements:

1. Do not add, remove, or explain any information.

2. Make sure retain the original format for specialized information, e.g., anonymous information.

3. Identify any instances where proper nouns remain untranslated or where the translation contains unnecessary
explanations, parenthetical original terms, or additions from {source_lang}.

4. Examine whether any technical terms, subject-specific concepts, or other specialized vocabulary have been left in
{source_lang} instead of using their established {target_lang} equivalents.

5. Verify that currency symbols, mathematical operators, and measurement units remain exactly as they appear in
{source_lang} text. These symbols should not be converted to their written form in {target_lang}.

6. Check that no additional symbols or written representations have been added to options where they did not exist in
{source_lang} text.

Input:
<SOURCE_TEXT>
{source_text}
</SOURCE_TEXT>

<INITIAL_TRANSLATION>
{initial_trans}
</INITIAL_TRANSLATION>

Output:
<SUGGESTIONS>
[Your suggestions here ]
</SUGGESTIONS>

\.

F.2 Translation Improvement Prompt

improve_translation

System Message: You are a {category} translation expert, specializing in translation from {source_lang} to
{target_lang}.

Task Description:
Carefully review and edit the {category} translation from {source_lang} to {target_lang}, incorporating the expert
feedback.

Requirements:

1. Do not explain any information.

2. Strictly keep the single quotes in the original text and do not add new single and double quotes.

3. Remove unnecessary explanations or original terms from {source_lang} if present in the translation.

Input:
<SOURCE_TEXT>
{source_text}
</SOURCE_TEXT>

<INITIAL_TRANSLATION>
{initial_trans}
</INITIAL_TRANSLATION>
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<EXPERT_SUGGESTIONS>
{reflection}
</EXPERT_SUGGESTIONS>

Output:

Only provide the improved translation. Do not include any explanations or text apart from the translation.

Different options are separated by newline characters(\n).

The number of options in the output must match the input exactly. Do not skip or combine any options.

Return the translation in the following JSON format, with keys "question" and "options", where the value of "options" is
a dictionary with keys optionl, option2, option3, etc. All JSON keys must remain in English exactly as shown and only
translate the content inside square brackets:

<IMPROVED_TRANSLATION>

{{

"question": "[improved translation of question ]",
"options": {{

"optionl": "[improved translation of optionl ]",
"option2": "[improved translation of option2 ]",
"option3": "[improved translation of option3 ]",
1}

H

</IMPROVED_TRANSLATION>

\

G Generative Al Statement

Large language models were utilized to facilitate aspects of the dataset creation in this project. Specifically,
Claude Sonnet 3.7 was employed to assist with the translation of benchmark content into multiple
languages, and GPT-4.1 and o3 were used to provide external verification of translation quality.

H Detailed Evaluation Results
We put more results in Table 6, Table 7, Table 8, and Table 9.
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